Properties

Label 1323.2.o.e.440.11
Level $1323$
Weight $2$
Character 1323.440
Analytic conductor $10.564$
Analytic rank $0$
Dimension $48$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 440.11
Character \(\chi\) \(=\) 1323.440
Dual form 1323.2.o.e.881.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.105953 - 0.0611722i) q^{2} +(-0.992516 - 1.71909i) q^{4} +(-0.264715 - 0.458500i) q^{5} +0.487547i q^{8} +O(q^{10})\) \(q+(-0.105953 - 0.0611722i) q^{2} +(-0.992516 - 1.71909i) q^{4} +(-0.264715 - 0.458500i) q^{5} +0.487547i q^{8} +0.0647728i q^{10} +(3.64120 + 2.10225i) q^{11} +(1.74714 - 1.00871i) q^{13} +(-1.95521 + 3.38652i) q^{16} +4.38762 q^{17} -5.24685i q^{19} +(-0.525467 + 0.910136i) q^{20} +(-0.257198 - 0.445480i) q^{22} +(-5.43444 + 3.13757i) q^{23} +(2.35985 - 4.08738i) q^{25} -0.246821 q^{26} +(7.27689 + 4.20131i) q^{29} +(-1.03204 + 0.595849i) q^{31} +(1.25878 - 0.726755i) q^{32} +(-0.464883 - 0.268400i) q^{34} -3.23252 q^{37} +(-0.320962 + 0.555922i) q^{38} +(0.223540 - 0.129061i) q^{40} +(-0.0994958 - 0.172332i) q^{41} +(3.96309 - 6.86427i) q^{43} -8.34605i q^{44} +0.767730 q^{46} +(4.98595 - 8.63591i) q^{47} +(-0.500069 + 0.288715i) q^{50} +(-3.46814 - 2.00233i) q^{52} +4.21753i q^{53} -2.22598i q^{55} +(-0.514008 - 0.890287i) q^{58} +(-6.71960 - 11.6387i) q^{59} +(-11.3564 - 6.55662i) q^{61} +0.145798 q^{62} +7.64300 q^{64} +(-0.924990 - 0.534043i) q^{65} +(3.29001 + 5.69847i) q^{67} +(-4.35478 - 7.54270i) q^{68} -8.50587i q^{71} -5.61202i q^{73} +(0.342497 + 0.197741i) q^{74} +(-9.01980 + 5.20758i) q^{76} +(-0.286342 + 0.495959i) q^{79} +2.07029 q^{80} +0.0243455i q^{82} +(5.42692 - 9.39971i) q^{83} +(-1.16147 - 2.01172i) q^{85} +(-0.839806 + 0.484862i) q^{86} +(-1.02494 + 1.77525i) q^{88} +12.8738 q^{89} +(10.7875 + 6.22819i) q^{92} +(-1.05656 + 0.610003i) q^{94} +(-2.40568 + 1.38892i) q^{95} +(-0.493773 - 0.285080i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48q + 24q^{4} + O(q^{10}) \) \( 48q + 24q^{4} + 24q^{11} - 24q^{16} + 48q^{23} - 24q^{25} - 120q^{32} - 48q^{50} - 48q^{64} - 120q^{65} + 168q^{74} - 24q^{79} - 24q^{85} - 24q^{86} + 144q^{92} - 96q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.105953 0.0611722i −0.0749204 0.0432553i 0.462072 0.886842i \(-0.347106\pi\)
−0.536992 + 0.843587i \(0.680440\pi\)
\(3\) 0 0
\(4\) −0.992516 1.71909i −0.496258 0.859544i
\(5\) −0.264715 0.458500i −0.118384 0.205047i 0.800743 0.599008i \(-0.204438\pi\)
−0.919127 + 0.393960i \(0.871105\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.487547i 0.172374i
\(9\) 0 0
\(10\) 0.0647728i 0.0204830i
\(11\) 3.64120 + 2.10225i 1.09786 + 0.633851i 0.935659 0.352906i \(-0.114807\pi\)
0.162204 + 0.986757i \(0.448140\pi\)
\(12\) 0 0
\(13\) 1.74714 1.00871i 0.484570 0.279767i −0.237749 0.971327i \(-0.576410\pi\)
0.722319 + 0.691560i \(0.243076\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.95521 + 3.38652i −0.488802 + 0.846630i
\(17\) 4.38762 1.06415 0.532077 0.846696i \(-0.321412\pi\)
0.532077 + 0.846696i \(0.321412\pi\)
\(18\) 0 0
\(19\) 5.24685i 1.20371i −0.798605 0.601855i \(-0.794428\pi\)
0.798605 0.601855i \(-0.205572\pi\)
\(20\) −0.525467 + 0.910136i −0.117498 + 0.203513i
\(21\) 0 0
\(22\) −0.257198 0.445480i −0.0548348 0.0949767i
\(23\) −5.43444 + 3.13757i −1.13316 + 0.654230i −0.944727 0.327857i \(-0.893674\pi\)
−0.188431 + 0.982086i \(0.560340\pi\)
\(24\) 0 0
\(25\) 2.35985 4.08738i 0.471970 0.817477i
\(26\) −0.246821 −0.0484056
\(27\) 0 0
\(28\) 0 0
\(29\) 7.27689 + 4.20131i 1.35128 + 0.780164i 0.988429 0.151681i \(-0.0484687\pi\)
0.362855 + 0.931846i \(0.381802\pi\)
\(30\) 0 0
\(31\) −1.03204 + 0.595849i −0.185360 + 0.107018i −0.589809 0.807543i \(-0.700797\pi\)
0.404449 + 0.914561i \(0.367463\pi\)
\(32\) 1.25878 0.726755i 0.222522 0.128473i
\(33\) 0 0
\(34\) −0.464883 0.268400i −0.0797268 0.0460303i
\(35\) 0 0
\(36\) 0 0
\(37\) −3.23252 −0.531424 −0.265712 0.964053i \(-0.585607\pi\)
−0.265712 + 0.964053i \(0.585607\pi\)
\(38\) −0.320962 + 0.555922i −0.0520668 + 0.0901824i
\(39\) 0 0
\(40\) 0.223540 0.129061i 0.0353448 0.0204063i
\(41\) −0.0994958 0.172332i −0.0155386 0.0269137i 0.858152 0.513396i \(-0.171613\pi\)
−0.873690 + 0.486483i \(0.838280\pi\)
\(42\) 0 0
\(43\) 3.96309 6.86427i 0.604366 1.04679i −0.387786 0.921750i \(-0.626760\pi\)
0.992151 0.125042i \(-0.0399067\pi\)
\(44\) 8.34605i 1.25821i
\(45\) 0 0
\(46\) 0.767730 0.113196
\(47\) 4.98595 8.63591i 0.727275 1.25968i −0.230756 0.973012i \(-0.574120\pi\)
0.958031 0.286665i \(-0.0925468\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −0.500069 + 0.288715i −0.0707204 + 0.0408304i
\(51\) 0 0
\(52\) −3.46814 2.00233i −0.480944 0.277673i
\(53\) 4.21753i 0.579323i 0.957129 + 0.289661i \(0.0935427\pi\)
−0.957129 + 0.289661i \(0.906457\pi\)
\(54\) 0 0
\(55\) 2.22598i 0.300152i
\(56\) 0 0
\(57\) 0 0
\(58\) −0.514008 0.890287i −0.0674925 0.116900i
\(59\) −6.71960 11.6387i −0.874817 1.51523i −0.856958 0.515387i \(-0.827648\pi\)
−0.0178590 0.999841i \(-0.505685\pi\)
\(60\) 0 0
\(61\) −11.3564 6.55662i −1.45404 0.839489i −0.455330 0.890323i \(-0.650479\pi\)
−0.998707 + 0.0508335i \(0.983812\pi\)
\(62\) 0.145798 0.0185163
\(63\) 0 0
\(64\) 7.64300 0.955375
\(65\) −0.924990 0.534043i −0.114731 0.0662399i
\(66\) 0 0
\(67\) 3.29001 + 5.69847i 0.401939 + 0.696179i 0.993960 0.109744i \(-0.0350030\pi\)
−0.592021 + 0.805923i \(0.701670\pi\)
\(68\) −4.35478 7.54270i −0.528095 0.914687i
\(69\) 0 0
\(70\) 0 0
\(71\) 8.50587i 1.00946i −0.863277 0.504730i \(-0.831592\pi\)
0.863277 0.504730i \(-0.168408\pi\)
\(72\) 0 0
\(73\) 5.61202i 0.656837i −0.944532 0.328419i \(-0.893484\pi\)
0.944532 0.328419i \(-0.106516\pi\)
\(74\) 0.342497 + 0.197741i 0.0398145 + 0.0229869i
\(75\) 0 0
\(76\) −9.01980 + 5.20758i −1.03464 + 0.597351i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.286342 + 0.495959i −0.0322160 + 0.0557997i −0.881684 0.471841i \(-0.843590\pi\)
0.849468 + 0.527640i \(0.176923\pi\)
\(80\) 2.07029 0.231465
\(81\) 0 0
\(82\) 0.0243455i 0.00268851i
\(83\) 5.42692 9.39971i 0.595682 1.03175i −0.397768 0.917486i \(-0.630215\pi\)
0.993450 0.114266i \(-0.0364516\pi\)
\(84\) 0 0
\(85\) −1.16147 2.01172i −0.125979 0.218202i
\(86\) −0.839806 + 0.484862i −0.0905586 + 0.0522840i
\(87\) 0 0
\(88\) −1.02494 + 1.77525i −0.109259 + 0.189243i
\(89\) 12.8738 1.36461 0.682307 0.731065i \(-0.260977\pi\)
0.682307 + 0.731065i \(0.260977\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 10.7875 + 6.22819i 1.12468 + 0.649333i
\(93\) 0 0
\(94\) −1.05656 + 0.610003i −0.108975 + 0.0629170i
\(95\) −2.40568 + 1.38892i −0.246817 + 0.142500i
\(96\) 0 0
\(97\) −0.493773 0.285080i −0.0501351 0.0289455i 0.474723 0.880135i \(-0.342548\pi\)
−0.524858 + 0.851190i \(0.675882\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −9.36876 −0.936876
\(101\) −5.81552 + 10.0728i −0.578666 + 1.00228i 0.416966 + 0.908922i \(0.363093\pi\)
−0.995633 + 0.0933576i \(0.970240\pi\)
\(102\) 0 0
\(103\) −5.54001 + 3.19853i −0.545874 + 0.315160i −0.747456 0.664311i \(-0.768725\pi\)
0.201582 + 0.979472i \(0.435392\pi\)
\(104\) 0.491795 + 0.851814i 0.0482245 + 0.0835272i
\(105\) 0 0
\(106\) 0.257996 0.446862i 0.0250588 0.0434031i
\(107\) 0.253263i 0.0244839i −0.999925 0.0122419i \(-0.996103\pi\)
0.999925 0.0122419i \(-0.00389683\pi\)
\(108\) 0 0
\(109\) 11.9720 1.14671 0.573357 0.819306i \(-0.305641\pi\)
0.573357 + 0.819306i \(0.305641\pi\)
\(110\) −0.136168 + 0.235851i −0.0129831 + 0.0224875i
\(111\) 0 0
\(112\) 0 0
\(113\) −4.28636 + 2.47473i −0.403227 + 0.232803i −0.687875 0.725829i \(-0.741456\pi\)
0.284648 + 0.958632i \(0.408123\pi\)
\(114\) 0 0
\(115\) 2.87715 + 1.66113i 0.268296 + 0.154901i
\(116\) 16.6795i 1.54865i
\(117\) 0 0
\(118\) 1.64421i 0.151362i
\(119\) 0 0
\(120\) 0 0
\(121\) 3.33888 + 5.78311i 0.303535 + 0.525737i
\(122\) 0.802166 + 1.38939i 0.0726247 + 0.125790i
\(123\) 0 0
\(124\) 2.04863 + 1.18278i 0.183973 + 0.106217i
\(125\) −5.14590 −0.460263
\(126\) 0 0
\(127\) −3.68446 −0.326943 −0.163472 0.986548i \(-0.552269\pi\)
−0.163472 + 0.986548i \(0.552269\pi\)
\(128\) −3.32736 1.92105i −0.294100 0.169798i
\(129\) 0 0
\(130\) 0.0653372 + 0.113167i 0.00573045 + 0.00992543i
\(131\) −2.72837 4.72567i −0.238379 0.412884i 0.721871 0.692028i \(-0.243283\pi\)
−0.960249 + 0.279144i \(0.909949\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.805030i 0.0695440i
\(135\) 0 0
\(136\) 2.13917i 0.183432i
\(137\) 1.39996 + 0.808270i 0.119607 + 0.0690551i 0.558610 0.829431i \(-0.311335\pi\)
−0.439003 + 0.898486i \(0.644668\pi\)
\(138\) 0 0
\(139\) 9.79085 5.65275i 0.830449 0.479460i −0.0235572 0.999722i \(-0.507499\pi\)
0.854006 + 0.520262i \(0.174166\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.520323 + 0.901226i −0.0436645 + 0.0756292i
\(143\) 8.48226 0.709322
\(144\) 0 0
\(145\) 4.44860i 0.369436i
\(146\) −0.343300 + 0.594613i −0.0284117 + 0.0492105i
\(147\) 0 0
\(148\) 3.20833 + 5.55699i 0.263723 + 0.456782i
\(149\) −4.61426 + 2.66404i −0.378015 + 0.218247i −0.676954 0.736025i \(-0.736700\pi\)
0.298939 + 0.954272i \(0.403367\pi\)
\(150\) 0 0
\(151\) 1.32132 2.28859i 0.107527 0.186243i −0.807241 0.590222i \(-0.799040\pi\)
0.914768 + 0.403980i \(0.132373\pi\)
\(152\) 2.55808 0.207488
\(153\) 0 0
\(154\) 0 0
\(155\) 0.546393 + 0.315460i 0.0438873 + 0.0253384i
\(156\) 0 0
\(157\) 11.3181 6.53448i 0.903279 0.521508i 0.0250163 0.999687i \(-0.492036\pi\)
0.878263 + 0.478179i \(0.158703\pi\)
\(158\) 0.0606778 0.0350324i 0.00482727 0.00278703i
\(159\) 0 0
\(160\) −0.666434 0.384766i −0.0526862 0.0304184i
\(161\) 0 0
\(162\) 0 0
\(163\) 17.0269 1.33365 0.666825 0.745214i \(-0.267653\pi\)
0.666825 + 0.745214i \(0.267653\pi\)
\(164\) −0.197502 + 0.342084i −0.0154223 + 0.0267123i
\(165\) 0 0
\(166\) −1.15000 + 0.663954i −0.0892575 + 0.0515328i
\(167\) 10.6605 + 18.4645i 0.824932 + 1.42882i 0.901971 + 0.431796i \(0.142120\pi\)
−0.0770396 + 0.997028i \(0.524547\pi\)
\(168\) 0 0
\(169\) −4.46499 + 7.73360i −0.343461 + 0.594892i
\(170\) 0.284198i 0.0217970i
\(171\) 0 0
\(172\) −15.7337 −1.19968
\(173\) −10.2433 + 17.7418i −0.778781 + 1.34889i 0.153864 + 0.988092i \(0.450828\pi\)
−0.932645 + 0.360796i \(0.882505\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −14.2386 + 8.22066i −1.07327 + 0.619655i
\(177\) 0 0
\(178\) −1.36402 0.787516i −0.102237 0.0590268i
\(179\) 14.4071i 1.07684i 0.842676 + 0.538420i \(0.180979\pi\)
−0.842676 + 0.538420i \(0.819021\pi\)
\(180\) 0 0
\(181\) 6.97309i 0.518306i −0.965836 0.259153i \(-0.916557\pi\)
0.965836 0.259153i \(-0.0834434\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.52971 2.64954i −0.112772 0.195327i
\(185\) 0.855697 + 1.48211i 0.0629121 + 0.108967i
\(186\) 0 0
\(187\) 15.9762 + 9.22386i 1.16829 + 0.674515i
\(188\) −19.7945 −1.44366
\(189\) 0 0
\(190\) 0.339853 0.0246555
\(191\) 9.38310 + 5.41734i 0.678937 + 0.391985i 0.799455 0.600727i \(-0.205122\pi\)
−0.120517 + 0.992711i \(0.538455\pi\)
\(192\) 0 0
\(193\) −5.26223 9.11444i −0.378783 0.656072i 0.612102 0.790779i \(-0.290324\pi\)
−0.990886 + 0.134707i \(0.956991\pi\)
\(194\) 0.0348780 + 0.0604104i 0.00250409 + 0.00433722i
\(195\) 0 0
\(196\) 0 0
\(197\) 15.5156i 1.10544i −0.833366 0.552721i \(-0.813590\pi\)
0.833366 0.552721i \(-0.186410\pi\)
\(198\) 0 0
\(199\) 12.5479i 0.889495i 0.895656 + 0.444748i \(0.146707\pi\)
−0.895656 + 0.444748i \(0.853293\pi\)
\(200\) 1.99279 + 1.15054i 0.140912 + 0.0813553i
\(201\) 0 0
\(202\) 1.23235 0.711497i 0.0867078 0.0500608i
\(203\) 0 0
\(204\) 0 0
\(205\) −0.0526760 + 0.0912375i −0.00367905 + 0.00637231i
\(206\) 0.782644 0.0545294
\(207\) 0 0
\(208\) 7.88898i 0.547002i
\(209\) 11.0302 19.1048i 0.762973 1.32151i
\(210\) 0 0
\(211\) −1.19765 2.07438i −0.0824494 0.142807i 0.821852 0.569701i \(-0.192941\pi\)
−0.904302 + 0.426894i \(0.859608\pi\)
\(212\) 7.25031 4.18597i 0.497953 0.287493i
\(213\) 0 0
\(214\) −0.0154927 + 0.0268341i −0.00105906 + 0.00183434i
\(215\) −4.19636 −0.286189
\(216\) 0 0
\(217\) 0 0
\(218\) −1.26848 0.732357i −0.0859123 0.0496015i
\(219\) 0 0
\(220\) −3.82666 + 2.20932i −0.257993 + 0.148953i
\(221\) 7.66580 4.42585i 0.515657 0.297715i
\(222\) 0 0
\(223\) 2.42193 + 1.39830i 0.162184 + 0.0936370i 0.578895 0.815402i \(-0.303484\pi\)
−0.416711 + 0.909039i \(0.636817\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0.605540 0.0402799
\(227\) −1.42300 + 2.46471i −0.0944480 + 0.163589i −0.909378 0.415970i \(-0.863442\pi\)
0.814930 + 0.579559i \(0.196775\pi\)
\(228\) 0 0
\(229\) 20.5460 11.8623i 1.35772 0.783880i 0.368404 0.929666i \(-0.379904\pi\)
0.989316 + 0.145786i \(0.0465711\pi\)
\(230\) −0.203229 0.352004i −0.0134006 0.0232104i
\(231\) 0 0
\(232\) −2.04834 + 3.54782i −0.134480 + 0.232926i
\(233\) 18.7298i 1.22703i 0.789684 + 0.613514i \(0.210245\pi\)
−0.789684 + 0.613514i \(0.789755\pi\)
\(234\) 0 0
\(235\) −5.27942 −0.344391
\(236\) −13.3386 + 23.1032i −0.868270 + 1.50389i
\(237\) 0 0
\(238\) 0 0
\(239\) −11.1421 + 6.43288i −0.720721 + 0.416109i −0.815018 0.579436i \(-0.803273\pi\)
0.0942969 + 0.995544i \(0.469940\pi\)
\(240\) 0 0
\(241\) −3.64082 2.10203i −0.234526 0.135403i 0.378132 0.925752i \(-0.376566\pi\)
−0.612658 + 0.790348i \(0.709900\pi\)
\(242\) 0.816987i 0.0525179i
\(243\) 0 0
\(244\) 26.0302i 1.66641i
\(245\) 0 0
\(246\) 0 0
\(247\) −5.29257 9.16700i −0.336758 0.583282i
\(248\) −0.290504 0.503168i −0.0184470 0.0319512i
\(249\) 0 0
\(250\) 0.545226 + 0.314786i 0.0344831 + 0.0199088i
\(251\) −7.50592 −0.473770 −0.236885 0.971538i \(-0.576126\pi\)
−0.236885 + 0.971538i \(0.576126\pi\)
\(252\) 0 0
\(253\) −26.3838 −1.65874
\(254\) 0.390381 + 0.225387i 0.0244947 + 0.0141420i
\(255\) 0 0
\(256\) −7.40797 12.8310i −0.462998 0.801936i
\(257\) 2.51960 + 4.36408i 0.157169 + 0.272224i 0.933847 0.357674i \(-0.116430\pi\)
−0.776678 + 0.629898i \(0.783097\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 2.12018i 0.131488i
\(261\) 0 0
\(262\) 0.667601i 0.0412445i
\(263\) −12.2494 7.07220i −0.755331 0.436091i 0.0722856 0.997384i \(-0.476971\pi\)
−0.827617 + 0.561293i \(0.810304\pi\)
\(264\) 0 0
\(265\) 1.93374 1.11644i 0.118789 0.0685826i
\(266\) 0 0
\(267\) 0 0
\(268\) 6.53078 11.3116i 0.398931 0.690969i
\(269\) 15.7771 0.961948 0.480974 0.876735i \(-0.340283\pi\)
0.480974 + 0.876735i \(0.340283\pi\)
\(270\) 0 0
\(271\) 16.8078i 1.02100i 0.859877 + 0.510501i \(0.170540\pi\)
−0.859877 + 0.510501i \(0.829460\pi\)
\(272\) −8.57871 + 14.8588i −0.520160 + 0.900944i
\(273\) 0 0
\(274\) −0.0988873 0.171278i −0.00597400 0.0103473i
\(275\) 17.1854 9.92198i 1.03632 0.598318i
\(276\) 0 0
\(277\) −8.91066 + 15.4337i −0.535390 + 0.927322i 0.463755 + 0.885964i \(0.346502\pi\)
−0.999144 + 0.0413586i \(0.986831\pi\)
\(278\) −1.38317 −0.0829568
\(279\) 0 0
\(280\) 0 0
\(281\) −7.59774 4.38656i −0.453243 0.261680i 0.255956 0.966688i \(-0.417610\pi\)
−0.709199 + 0.705008i \(0.750943\pi\)
\(282\) 0 0
\(283\) −18.7047 + 10.7991i −1.11188 + 0.641942i −0.939315 0.343056i \(-0.888538\pi\)
−0.172562 + 0.984999i \(0.555204\pi\)
\(284\) −14.6223 + 8.44221i −0.867676 + 0.500953i
\(285\) 0 0
\(286\) −0.898724 0.518879i −0.0531427 0.0306819i
\(287\) 0 0
\(288\) 0 0
\(289\) 2.25120 0.132424
\(290\) −0.272131 + 0.471344i −0.0159801 + 0.0276783i
\(291\) 0 0
\(292\) −9.64756 + 5.57002i −0.564581 + 0.325961i
\(293\) 9.79756 + 16.9699i 0.572379 + 0.991390i 0.996321 + 0.0857006i \(0.0273128\pi\)
−0.423942 + 0.905690i \(0.639354\pi\)
\(294\) 0 0
\(295\) −3.55755 + 6.16186i −0.207129 + 0.358758i
\(296\) 1.57601i 0.0916035i
\(297\) 0 0
\(298\) 0.651862 0.0377613
\(299\) −6.32983 + 10.9636i −0.366063 + 0.634040i
\(300\) 0 0
\(301\) 0 0
\(302\) −0.279996 + 0.161656i −0.0161120 + 0.00930224i
\(303\) 0 0
\(304\) 17.7686 + 10.2587i 1.01910 + 0.588376i
\(305\) 6.94254i 0.397529i
\(306\) 0 0
\(307\) 27.7677i 1.58478i −0.610012 0.792392i \(-0.708835\pi\)
0.610012 0.792392i \(-0.291165\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.0385948 0.0668482i −0.00219204 0.00379672i
\(311\) −10.0080 17.3344i −0.567501 0.982941i −0.996812 0.0797841i \(-0.974577\pi\)
0.429311 0.903157i \(-0.358756\pi\)
\(312\) 0 0
\(313\) 15.9654 + 9.21765i 0.902420 + 0.521012i 0.877984 0.478689i \(-0.158888\pi\)
0.0244352 + 0.999701i \(0.492221\pi\)
\(314\) −1.59891 −0.0902320
\(315\) 0 0
\(316\) 1.13680 0.0639498
\(317\) 12.5992 + 7.27416i 0.707642 + 0.408558i 0.810187 0.586171i \(-0.199365\pi\)
−0.102545 + 0.994728i \(0.532699\pi\)
\(318\) 0 0
\(319\) 17.6644 + 30.5956i 0.989016 + 1.71303i
\(320\) −2.02322 3.50431i −0.113101 0.195897i
\(321\) 0 0
\(322\) 0 0
\(323\) 23.0212i 1.28093i
\(324\) 0 0
\(325\) 9.52166i 0.528167i
\(326\) −1.80406 1.04157i −0.0999176 0.0576874i
\(327\) 0 0
\(328\) 0.0840197 0.0485088i 0.00463921 0.00267845i
\(329\) 0 0
\(330\) 0 0
\(331\) 14.8446 25.7115i 0.815930 1.41323i −0.0927274 0.995692i \(-0.529559\pi\)
0.908658 0.417541i \(-0.137108\pi\)
\(332\) −21.5452 −1.18245
\(333\) 0 0
\(334\) 2.60850i 0.142731i
\(335\) 1.74183 3.01694i 0.0951664 0.164833i
\(336\) 0 0
\(337\) −4.60606 7.97793i −0.250908 0.434586i 0.712868 0.701298i \(-0.247396\pi\)
−0.963776 + 0.266713i \(0.914063\pi\)
\(338\) 0.946163 0.546267i 0.0514645 0.0297130i
\(339\) 0 0
\(340\) −2.30555 + 3.99333i −0.125036 + 0.216569i
\(341\) −5.01049 −0.271333
\(342\) 0 0
\(343\) 0 0
\(344\) 3.34665 + 1.93219i 0.180439 + 0.104177i
\(345\) 0 0
\(346\) 2.17062 1.25321i 0.116693 0.0673728i
\(347\) −15.7313 + 9.08247i −0.844501 + 0.487573i −0.858791 0.512325i \(-0.828784\pi\)
0.0142910 + 0.999898i \(0.495451\pi\)
\(348\) 0 0
\(349\) 5.70494 + 3.29375i 0.305378 + 0.176310i 0.644856 0.764304i \(-0.276917\pi\)
−0.339478 + 0.940614i \(0.610250\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 6.11128 0.325732
\(353\) −10.4692 + 18.1332i −0.557221 + 0.965135i 0.440506 + 0.897750i \(0.354799\pi\)
−0.997727 + 0.0673857i \(0.978534\pi\)
\(354\) 0 0
\(355\) −3.89994 + 2.25163i −0.206987 + 0.119504i
\(356\) −12.7774 22.1311i −0.677201 1.17295i
\(357\) 0 0
\(358\) 0.881317 1.52649i 0.0465791 0.0806773i
\(359\) 14.2265i 0.750845i −0.926854 0.375422i \(-0.877498\pi\)
0.926854 0.375422i \(-0.122502\pi\)
\(360\) 0 0
\(361\) −8.52944 −0.448918
\(362\) −0.426560 + 0.738823i −0.0224195 + 0.0388317i
\(363\) 0 0
\(364\) 0 0
\(365\) −2.57311 + 1.48559i −0.134683 + 0.0777591i
\(366\) 0 0
\(367\) −10.7237 6.19136i −0.559775 0.323186i 0.193280 0.981144i \(-0.438087\pi\)
−0.753055 + 0.657957i \(0.771421\pi\)
\(368\) 24.5384i 1.27915i
\(369\) 0 0
\(370\) 0.209380i 0.0108851i
\(371\) 0 0
\(372\) 0 0
\(373\) 10.6559 + 18.4565i 0.551740 + 0.955642i 0.998149 + 0.0608130i \(0.0193693\pi\)
−0.446409 + 0.894829i \(0.647297\pi\)
\(374\) −1.12849 1.95460i −0.0583527 0.101070i
\(375\) 0 0
\(376\) 4.21041 + 2.43088i 0.217135 + 0.125363i
\(377\) 16.9517 0.873057
\(378\) 0 0
\(379\) 10.6001 0.544489 0.272244 0.962228i \(-0.412234\pi\)
0.272244 + 0.962228i \(0.412234\pi\)
\(380\) 4.77535 + 2.75705i 0.244970 + 0.141434i
\(381\) 0 0
\(382\) −0.662781 1.14797i −0.0339108 0.0587353i
\(383\) 6.32174 + 10.9496i 0.323026 + 0.559497i 0.981111 0.193446i \(-0.0619666\pi\)
−0.658085 + 0.752944i \(0.728633\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.28761i 0.0655375i
\(387\) 0 0
\(388\) 1.13179i 0.0574578i
\(389\) −11.4538 6.61286i −0.580732 0.335286i 0.180692 0.983540i \(-0.442166\pi\)
−0.761424 + 0.648254i \(0.775499\pi\)
\(390\) 0 0
\(391\) −23.8442 + 13.7665i −1.20586 + 0.696201i
\(392\) 0 0
\(393\) 0 0
\(394\) −0.949125 + 1.64393i −0.0478162 + 0.0828201i
\(395\) 0.303196 0.0152554
\(396\) 0 0
\(397\) 24.7882i 1.24409i 0.782983 + 0.622043i \(0.213697\pi\)
−0.782983 + 0.622043i \(0.786303\pi\)
\(398\) 0.767582 1.32949i 0.0384754 0.0666413i
\(399\) 0 0
\(400\) 9.22800 + 15.9834i 0.461400 + 0.799168i
\(401\) −3.19615 + 1.84530i −0.159608 + 0.0921499i −0.577677 0.816266i \(-0.696041\pi\)
0.418068 + 0.908416i \(0.362707\pi\)
\(402\) 0 0
\(403\) −1.20208 + 2.08207i −0.0598800 + 0.103715i
\(404\) 23.0880 1.14867
\(405\) 0 0
\(406\) 0 0
\(407\) −11.7703 6.79556i −0.583430 0.336843i
\(408\) 0 0
\(409\) 16.0535 9.26852i 0.793797 0.458299i −0.0475008 0.998871i \(-0.515126\pi\)
0.841297 + 0.540573i \(0.181792\pi\)
\(410\) 0.0111624 0.00644462i 0.000551272 0.000318277i
\(411\) 0 0
\(412\) 10.9971 + 6.34918i 0.541788 + 0.312802i
\(413\) 0 0
\(414\) 0 0
\(415\) −5.74635 −0.282077
\(416\) 1.46618 2.53949i 0.0718852 0.124509i
\(417\) 0 0
\(418\) −2.33737 + 1.34948i −0.114324 + 0.0660053i
\(419\) 1.46994 + 2.54600i 0.0718111 + 0.124380i 0.899695 0.436519i \(-0.143789\pi\)
−0.827884 + 0.560899i \(0.810455\pi\)
\(420\) 0 0
\(421\) −14.1081 + 24.4359i −0.687585 + 1.19093i 0.285031 + 0.958518i \(0.407996\pi\)
−0.972617 + 0.232415i \(0.925337\pi\)
\(422\) 0.293051i 0.0142655i
\(423\) 0 0
\(424\) −2.05624 −0.0998600
\(425\) 10.3541 17.9339i 0.502249 0.869921i
\(426\) 0 0
\(427\) 0 0
\(428\) −0.435382 + 0.251368i −0.0210450 + 0.0121503i
\(429\) 0 0
\(430\) 0.444618 + 0.256700i 0.0214414 + 0.0123792i
\(431\) 6.76465i 0.325842i −0.986639 0.162921i \(-0.947908\pi\)
0.986639 0.162921i \(-0.0520915\pi\)
\(432\) 0 0
\(433\) 28.3475i 1.36229i 0.732146 + 0.681147i \(0.238519\pi\)
−0.732146 + 0.681147i \(0.761481\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −11.8824 20.5810i −0.569066 0.985651i
\(437\) 16.4624 + 28.5137i 0.787503 + 1.36399i
\(438\) 0 0
\(439\) −22.8208 13.1756i −1.08918 0.628837i −0.155821 0.987785i \(-0.549802\pi\)
−0.933358 + 0.358948i \(0.883136\pi\)
\(440\) 1.08527 0.0517382
\(441\) 0 0
\(442\) −1.08296 −0.0515110
\(443\) 4.75958 + 2.74795i 0.226135 + 0.130559i 0.608788 0.793333i \(-0.291656\pi\)
−0.382653 + 0.923892i \(0.624989\pi\)
\(444\) 0 0
\(445\) −3.40787 5.90261i −0.161549 0.279810i
\(446\) −0.171074 0.296309i −0.00810060 0.0140306i
\(447\) 0 0
\(448\) 0 0
\(449\) 7.38342i 0.348445i 0.984706 + 0.174223i \(0.0557412\pi\)
−0.984706 + 0.174223i \(0.944259\pi\)
\(450\) 0 0
\(451\) 0.836659i 0.0393967i
\(452\) 8.50857 + 4.91242i 0.400209 + 0.231061i
\(453\) 0 0
\(454\) 0.301544 0.174097i 0.0141522 0.00817076i
\(455\) 0 0
\(456\) 0 0
\(457\) −20.7109 + 35.8724i −0.968817 + 1.67804i −0.269826 + 0.962909i \(0.586966\pi\)
−0.698991 + 0.715130i \(0.746367\pi\)
\(458\) −2.90256 −0.135628
\(459\) 0 0
\(460\) 6.59477i 0.307483i
\(461\) 5.44638 9.43341i 0.253663 0.439357i −0.710868 0.703325i \(-0.751698\pi\)
0.964532 + 0.263968i \(0.0850312\pi\)
\(462\) 0 0
\(463\) −2.87980 4.98796i −0.133836 0.231810i 0.791316 0.611407i \(-0.209396\pi\)
−0.925152 + 0.379597i \(0.876063\pi\)
\(464\) −28.4557 + 16.4289i −1.32102 + 0.762692i
\(465\) 0 0
\(466\) 1.14574 1.98448i 0.0530755 0.0919294i
\(467\) −23.8882 −1.10541 −0.552707 0.833376i \(-0.686405\pi\)
−0.552707 + 0.833376i \(0.686405\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0.559372 + 0.322954i 0.0258019 + 0.0148967i
\(471\) 0 0
\(472\) 5.67440 3.27612i 0.261185 0.150795i
\(473\) 28.8608 16.6628i 1.32702 0.766156i
\(474\) 0 0
\(475\) −21.4459 12.3818i −0.984005 0.568116i
\(476\) 0 0
\(477\) 0 0
\(478\) 1.57406 0.0719956
\(479\) 0.947645 1.64137i 0.0432990 0.0749961i −0.843564 0.537029i \(-0.819547\pi\)
0.886863 + 0.462033i \(0.152880\pi\)
\(480\) 0 0
\(481\) −5.64768 + 3.26069i −0.257512 + 0.148675i
\(482\) 0.257171 + 0.445434i 0.0117138 + 0.0202890i
\(483\) 0 0
\(484\) 6.62778 11.4797i 0.301263 0.521803i
\(485\) 0.301860i 0.0137067i
\(486\) 0 0
\(487\) 28.2248 1.27899 0.639494 0.768796i \(-0.279144\pi\)
0.639494 + 0.768796i \(0.279144\pi\)
\(488\) 3.19666 5.53677i 0.144706 0.250638i
\(489\) 0 0
\(490\) 0 0
\(491\) 2.30250 1.32935i 0.103910 0.0599927i −0.447144 0.894462i \(-0.647559\pi\)
0.551055 + 0.834469i \(0.314226\pi\)
\(492\) 0 0
\(493\) 31.9282 + 18.4338i 1.43797 + 0.830215i
\(494\) 1.29503i 0.0582663i
\(495\) 0 0
\(496\) 4.66003i 0.209242i
\(497\) 0 0
\(498\) 0 0
\(499\) 6.27844 + 10.8746i 0.281062 + 0.486813i 0.971646 0.236438i \(-0.0759801\pi\)
−0.690585 + 0.723251i \(0.742647\pi\)
\(500\) 5.10739 + 8.84625i 0.228409 + 0.395617i
\(501\) 0 0
\(502\) 0.795278 + 0.459154i 0.0354950 + 0.0204930i
\(503\) 18.1502 0.809278 0.404639 0.914476i \(-0.367397\pi\)
0.404639 + 0.914476i \(0.367397\pi\)
\(504\) 0 0
\(505\) 6.15782 0.274020
\(506\) 2.79546 + 1.61396i 0.124273 + 0.0717491i
\(507\) 0 0
\(508\) 3.65689 + 6.33391i 0.162248 + 0.281022i
\(509\) 9.33827 + 16.1744i 0.413912 + 0.716916i 0.995314 0.0967005i \(-0.0308289\pi\)
−0.581402 + 0.813617i \(0.697496\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 9.49685i 0.419705i
\(513\) 0 0
\(514\) 0.616519i 0.0271935i
\(515\) 2.93305 + 1.69340i 0.129245 + 0.0746199i
\(516\) 0 0
\(517\) 36.3096 20.9634i 1.59690 0.921968i
\(518\) 0 0
\(519\) 0 0
\(520\) 0.260371 0.450975i 0.0114180 0.0197766i
\(521\) 18.0665 0.791508 0.395754 0.918357i \(-0.370483\pi\)
0.395754 + 0.918357i \(0.370483\pi\)
\(522\) 0 0
\(523\) 21.1338i 0.924116i −0.886850 0.462058i \(-0.847111\pi\)
0.886850 0.462058i \(-0.152889\pi\)
\(524\) −5.41590 + 9.38061i −0.236595 + 0.409794i
\(525\) 0 0
\(526\) 0.865245 + 1.49865i 0.0377265 + 0.0653442i
\(527\) −4.52820 + 2.61436i −0.197252 + 0.113883i
\(528\) 0 0
\(529\) 8.18875 14.1833i 0.356033 0.616666i
\(530\) −0.273181 −0.0118662
\(531\) 0 0
\(532\) 0 0
\(533\) −0.347667 0.200725i −0.0150591 0.00869439i
\(534\) 0 0
\(535\) −0.116121 + 0.0670425i −0.00502035 + 0.00289850i
\(536\) −2.77827 + 1.60403i −0.120003 + 0.0692837i
\(537\) 0 0
\(538\) −1.67164 0.965122i −0.0720695 0.0416093i
\(539\) 0 0
\(540\) 0 0
\(541\) 17.7732 0.764131 0.382065 0.924135i \(-0.375213\pi\)
0.382065 + 0.924135i \(0.375213\pi\)
\(542\) 1.02817 1.78084i 0.0441637 0.0764938i
\(543\) 0 0
\(544\) 5.52304 3.18873i 0.236798 0.136715i
\(545\) −3.16918 5.48918i −0.135753 0.235131i
\(546\) 0 0
\(547\) 14.1560 24.5190i 0.605268 1.04835i −0.386741 0.922188i \(-0.626399\pi\)
0.992009 0.126166i \(-0.0402673\pi\)
\(548\) 3.20888i 0.137077i
\(549\) 0 0
\(550\) −2.42780 −0.103522
\(551\) 22.0437 38.1808i 0.939092 1.62655i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.88823 1.09017i 0.0802232 0.0463169i
\(555\) 0 0
\(556\) −19.4352 11.2209i −0.824234 0.475872i
\(557\) 11.7214i 0.496651i 0.968677 + 0.248326i \(0.0798803\pi\)
−0.968677 + 0.248326i \(0.920120\pi\)
\(558\) 0 0
\(559\) 15.9905i 0.676326i
\(560\) 0 0
\(561\) 0 0
\(562\) 0.536671 + 0.929541i 0.0226381 + 0.0392103i
\(563\) −18.3014 31.6990i −0.771314 1.33595i −0.936843 0.349750i \(-0.886267\pi\)
0.165529 0.986205i \(-0.447067\pi\)
\(564\) 0 0
\(565\) 2.26933 + 1.31020i 0.0954713 + 0.0551204i
\(566\) 2.64243 0.111070
\(567\) 0 0
\(568\) 4.14701 0.174005
\(569\) −32.6468 18.8486i −1.36862 0.790176i −0.377872 0.925858i \(-0.623344\pi\)
−0.990752 + 0.135682i \(0.956677\pi\)
\(570\) 0 0
\(571\) −14.1123 24.4432i −0.590581 1.02292i −0.994154 0.107968i \(-0.965565\pi\)
0.403574 0.914947i \(-0.367768\pi\)
\(572\) −8.41878 14.5817i −0.352007 0.609694i
\(573\) 0 0
\(574\) 0 0
\(575\) 29.6168i 1.23511i
\(576\) 0 0
\(577\) 9.38512i 0.390708i −0.980733 0.195354i \(-0.937414\pi\)
0.980733 0.195354i \(-0.0625855\pi\)
\(578\) −0.238523 0.137711i −0.00992123 0.00572802i
\(579\) 0 0
\(580\) −7.64754 + 4.41531i −0.317547 + 0.183336i
\(581\) 0 0
\(582\) 0 0
\(583\) −8.86629 + 15.3569i −0.367204 + 0.636017i
\(584\) 2.73612 0.113222
\(585\) 0 0
\(586\) 2.39735i 0.0990338i
\(587\) −23.1819 + 40.1523i −0.956821 + 1.65726i −0.226675 + 0.973971i \(0.572785\pi\)
−0.730146 + 0.683291i \(0.760548\pi\)
\(588\) 0 0
\(589\) 3.12633 + 5.41496i 0.128818 + 0.223120i
\(590\) 0.753870 0.435247i 0.0310363 0.0179188i
\(591\) 0 0
\(592\) 6.32025 10.9470i 0.259761 0.449919i
\(593\) −18.1416 −0.744986 −0.372493 0.928035i \(-0.621497\pi\)
−0.372493 + 0.928035i \(0.621497\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9.15945 + 5.28821i 0.375186 + 0.216613i
\(597\) 0 0
\(598\) 1.34133 0.774419i 0.0548512 0.0316684i
\(599\) −6.02771 + 3.48010i −0.246286 + 0.142193i −0.618062 0.786129i \(-0.712082\pi\)
0.371777 + 0.928322i \(0.378749\pi\)
\(600\) 0 0
\(601\) −2.08865 1.20588i −0.0851976 0.0491889i 0.456796 0.889572i \(-0.348997\pi\)
−0.541994 + 0.840383i \(0.682330\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −5.24571 −0.213445
\(605\) 1.76770 3.06175i 0.0718673 0.124478i
\(606\) 0 0
\(607\) 11.0306 6.36850i 0.447717 0.258489i −0.259149 0.965837i \(-0.583442\pi\)
0.706865 + 0.707348i \(0.250109\pi\)
\(608\) −3.81318 6.60462i −0.154645 0.267853i
\(609\) 0 0
\(610\) 0.424690 0.735585i 0.0171952 0.0297830i
\(611\) 20.1176i 0.813870i
\(612\) 0 0
\(613\) −10.3352 −0.417436 −0.208718 0.977976i \(-0.566929\pi\)
−0.208718 + 0.977976i \(0.566929\pi\)
\(614\) −1.69861 + 2.94208i −0.0685503 + 0.118733i
\(615\) 0 0
\(616\) 0 0
\(617\) 41.3741 23.8873i 1.66566 0.961668i 0.695721 0.718313i \(-0.255085\pi\)
0.969937 0.243355i \(-0.0782481\pi\)
\(618\) 0 0
\(619\) −35.2626 20.3588i −1.41732 0.818291i −0.421259 0.906940i \(-0.638412\pi\)
−0.996063 + 0.0886491i \(0.971745\pi\)
\(620\) 1.25240i 0.0502975i
\(621\) 0 0
\(622\) 2.44884i 0.0981897i
\(623\) 0 0
\(624\) 0 0
\(625\) −10.4371 18.0775i −0.417483 0.723101i
\(626\) −1.12773 1.95328i −0.0450731 0.0780689i
\(627\) 0 0
\(628\) −22.4667 12.9711i −0.896519 0.517605i
\(629\) −14.1831 −0.565517
\(630\) 0 0
\(631\) 11.4782 0.456942 0.228471 0.973551i \(-0.426627\pi\)
0.228471 + 0.973551i \(0.426627\pi\)
\(632\) −0.241803 0.139605i −0.00961841 0.00555319i
\(633\) 0 0
\(634\) −0.889953 1.54144i −0.0353446 0.0612186i
\(635\) 0.975332 + 1.68932i 0.0387049 + 0.0670388i
\(636\) 0 0
\(637\) 0 0
\(638\) 4.32228i 0.171121i
\(639\) 0 0
\(640\) 2.03412i 0.0804057i
\(641\) 30.5823 + 17.6567i 1.20793 + 0.697398i 0.962306 0.271968i \(-0.0876744\pi\)
0.245622 + 0.969366i \(0.421008\pi\)
\(642\) 0 0
\(643\) −6.09416 + 3.51846i −0.240330 + 0.138755i −0.615328 0.788271i \(-0.710977\pi\)
0.374998 + 0.927025i \(0.377643\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.40826 + 2.43917i −0.0554071 + 0.0959680i
\(647\) −14.9942 −0.589482 −0.294741 0.955577i \(-0.595233\pi\)
−0.294741 + 0.955577i \(0.595233\pi\)
\(648\) 0 0
\(649\) 56.5050i 2.21801i
\(650\) −0.582461 + 1.00885i −0.0228460 + 0.0395704i
\(651\) 0 0
\(652\) −16.8995 29.2708i −0.661835 1.14633i
\(653\) −4.15597 + 2.39945i −0.162636 + 0.0938977i −0.579109 0.815250i \(-0.696599\pi\)
0.416473 + 0.909148i \(0.363266\pi\)
\(654\) 0 0
\(655\) −1.44448 + 2.50191i −0.0564405 + 0.0977577i
\(656\) 0.778140 0.0303812
\(657\) 0 0
\(658\) 0 0
\(659\) 13.4562 + 7.76893i 0.524179 + 0.302635i 0.738643 0.674097i \(-0.235467\pi\)
−0.214464 + 0.976732i \(0.568800\pi\)
\(660\) 0 0
\(661\) −18.2131 + 10.5154i −0.708409 + 0.409000i −0.810472 0.585778i \(-0.800789\pi\)
0.102062 + 0.994778i \(0.467456\pi\)
\(662\) −3.14566 + 1.81615i −0.122260 + 0.0705866i
\(663\) 0 0
\(664\) 4.58280 + 2.64588i 0.177847 + 0.102680i
\(665\) 0 0
\(666\) 0 0
\(667\) −52.7277 −2.04163
\(668\) 21.1614 36.6526i 0.818758 1.41813i
\(669\) 0 0
\(670\) −0.369106 + 0.213103i −0.0142598 + 0.00823290i
\(671\) −27.5673 47.7479i −1.06422 1.84329i
\(672\) 0 0
\(673\) 10.7194 18.5665i 0.413201 0.715686i −0.582036 0.813163i \(-0.697744\pi\)
0.995238 + 0.0974770i \(0.0310772\pi\)
\(674\) 1.12705i 0.0434124i
\(675\) 0 0
\(676\) 17.7263 0.681781
\(677\) 9.03150 15.6430i 0.347109 0.601210i −0.638626 0.769517i \(-0.720497\pi\)
0.985735 + 0.168308i \(0.0538302\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.980808 0.566270i 0.0376123 0.0217155i
\(681\) 0 0
\(682\) 0.530878 + 0.306503i 0.0203284 + 0.0117366i
\(683\) 45.5647i 1.74349i 0.489963 + 0.871743i \(0.337010\pi\)
−0.489963 + 0.871743i \(0.662990\pi\)
\(684\) 0 0
\(685\) 0.855844i 0.0327001i
\(686\) 0 0
\(687\) 0 0
\(688\) 15.4973 + 26.8422i 0.590830 + 1.02335i
\(689\) 4.25428 + 7.36863i 0.162075 + 0.280723i
\(690\) 0 0
\(691\) −3.33627 1.92620i −0.126918 0.0732760i 0.435197 0.900335i \(-0.356679\pi\)
−0.562115 + 0.827059i \(0.690012\pi\)
\(692\) 40.6664 1.54590
\(693\) 0 0
\(694\) 2.22238 0.0843604
\(695\) −5.18357 2.99273i −0.196624 0.113521i
\(696\) 0 0
\(697\) −0.436550 0.756126i −0.0165355 0.0286403i
\(698\) −0.402972 0.697967i −0.0152527 0.0264185i
\(699\) 0 0
\(700\) 0 0
\(701\) 46.5216i 1.75710i 0.477653 + 0.878549i \(0.341488\pi\)
−0.477653 + 0.878549i \(0.658512\pi\)
\(702\) 0 0
\(703\) 16.9606i 0.639680i
\(704\) 27.8297 + 16.0675i 1.04887 + 0.605566i
\(705\) 0 0
\(706\) 2.21850 1.28085i 0.0834944 0.0482055i
\(707\) 0 0
\(708\) 0 0
\(709\) 14.6187 25.3203i 0.549017 0.950925i −0.449326 0.893368i \(-0.648336\pi\)
0.998342 0.0575566i \(-0.0183310\pi\)
\(710\) 0.550949 0.0206767
\(711\) 0 0
\(712\) 6.27655i 0.235224i
\(713\) 3.73904 6.47621i 0.140028 0.242536i
\(714\) 0 0
\(715\) −2.24538 3.88911i −0.0839724 0.145445i
\(716\) 24.7672 14.2993i 0.925592 0.534391i
\(717\) 0 0
\(718\) −0.870265 + 1.50734i −0.0324780 + 0.0562536i
\(719\) 3.37122 0.125725 0.0628627 0.998022i \(-0.479977\pi\)
0.0628627 + 0.998022i \(0.479977\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0.903723 + 0.521765i 0.0336331 + 0.0194181i
\(723\) 0 0
\(724\) −11.9874 + 6.92091i −0.445507 + 0.257214i
\(725\) 34.3448 19.8290i 1.27553 0.736429i
\(726\) 0 0
\(727\) 4.34397 + 2.50799i 0.161109 + 0.0930164i 0.578387 0.815763i \(-0.303682\pi\)
−0.417278 + 0.908779i \(0.637016\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0.363506 0.0134540
\(731\) 17.3885 30.1178i 0.643138 1.11395i
\(732\) 0 0
\(733\) −19.6875 + 11.3666i −0.727175 + 0.419835i −0.817388 0.576088i \(-0.804579\pi\)
0.0902126 + 0.995923i \(0.471245\pi\)
\(734\) 0.757478 + 1.31199i 0.0279590 + 0.0484265i
\(735\) 0 0
\(736\) −4.56050 + 7.89901i −0.168102 + 0.291162i
\(737\) 27.6657i 1.01908i
\(738\) 0 0
\(739\) −2.39022 −0.0879256 −0.0439628 0.999033i \(-0.513998\pi\)
−0.0439628 + 0.999033i \(0.513998\pi\)
\(740\) 1.69859 2.94204i 0.0624413 0.108151i
\(741\) 0 0
\(742\) 0 0
\(743\) 36.1039 20.8446i 1.32453 0.764715i 0.340078 0.940397i \(-0.389546\pi\)
0.984447 + 0.175682i \(0.0562131\pi\)
\(744\) 0 0
\(745\) 2.44292 + 1.41042i 0.0895018 + 0.0516739i
\(746\) 2.60737i 0.0954627i
\(747\) 0 0
\(748\) 36.6193i 1.33893i
\(749\) 0 0
\(750\) 0 0
\(751\) −13.2710 22.9861i −0.484267 0.838775i 0.515570 0.856848i \(-0.327580\pi\)
−0.999837 + 0.0180728i \(0.994247\pi\)
\(752\) 19.4971 + 33.7700i 0.710987 + 1.23147i
\(753\) 0 0
\(754\) −1.79609 1.03697i −0.0654097 0.0377643i
\(755\) −1.39909 −0.0509180
\(756\) 0 0
\(757\) 20.3580 0.739923 0.369961 0.929047i \(-0.379371\pi\)
0.369961 + 0.929047i \(0.379371\pi\)
\(758\) −1.12311 0.648430i −0.0407933 0.0235520i
\(759\) 0 0
\(760\) −0.677163 1.17288i −0.0245633 0.0425448i
\(761\) −12.9578 22.4436i −0.469720 0.813578i 0.529681 0.848197i \(-0.322312\pi\)
−0.999401 + 0.0346186i \(0.988978\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 21.5072i 0.778102i
\(765\) 0 0
\(766\) 1.54686i 0.0558903i
\(767\) −23.4802 13.5563i −0.847821 0.489489i
\(768\) 0 0
\(769\) −18.8269 + 10.8697i −0.678914 + 0.391971i −0.799446 0.600738i \(-0.794873\pi\)
0.120532 + 0.992709i \(0.461540\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.4457 + 18.0925i −0.375948 + 0.651162i
\(773\) −20.3213 −0.730905 −0.365453 0.930830i \(-0.619086\pi\)
−0.365453 + 0.930830i \(0.619086\pi\)
\(774\) 0 0
\(775\) 5.62446i 0.202037i
\(776\) 0.138990 0.240738i 0.00498945 0.00864197i
\(777\) 0 0
\(778\) 0.809047 + 1.40131i 0.0290058 + 0.0502394i
\(779\) −0.904199 + 0.522039i −0.0323963 + 0.0187040i
\(780\) 0 0
\(781\) 17.8814 30.9715i 0.639848 1.10825i
\(782\) 3.36851 0.120458
\(783\) 0 0
\(784\) 0 0
\(785\) −5.99211 3.45955i −0.213868 0.123477i
\(786\) 0 0
\(787\) −16.4065 + 9.47232i −0.584830 + 0.337652i −0.763051 0.646339i \(-0.776299\pi\)
0.178221 + 0.983991i \(0.442966\pi\)
\(788\) −26.6727 + 15.3995i −0.950176 + 0.548584i
\(789\) 0 0
\(790\) −0.0321246 0.0185472i −0.00114294 0.000659879i
\(791\) 0 0
\(792\) 0 0
\(793\) −26.4550 −0.939445
\(794\) 1.51635 2.62640i 0.0538133 0.0932074i
\(795\) 0 0
\(796\) 21.5709 12.4540i