Properties

Label 1323.2.i.a
Level $1323$
Weight $2$
Character orbit 1323.i
Analytic conductor $10.564$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + 2 \zeta_{6} ) q^{2} - q^{4} + ( -3 + 3 \zeta_{6} ) q^{5} + ( -1 + 2 \zeta_{6} ) q^{8} +O(q^{10})\) \( q + ( -1 + 2 \zeta_{6} ) q^{2} - q^{4} + ( -3 + 3 \zeta_{6} ) q^{5} + ( -1 + 2 \zeta_{6} ) q^{8} + ( -3 - 3 \zeta_{6} ) q^{10} + ( -2 + \zeta_{6} ) q^{11} + ( -2 + \zeta_{6} ) q^{13} -5 q^{16} + ( -3 + 3 \zeta_{6} ) q^{17} + ( 6 - 3 \zeta_{6} ) q^{19} + ( 3 - 3 \zeta_{6} ) q^{20} -3 \zeta_{6} q^{22} + ( -3 - 3 \zeta_{6} ) q^{23} -4 \zeta_{6} q^{25} -3 \zeta_{6} q^{26} + ( 3 + 3 \zeta_{6} ) q^{29} + ( -2 + 4 \zeta_{6} ) q^{31} + ( 3 - 6 \zeta_{6} ) q^{32} + ( -3 - 3 \zeta_{6} ) q^{34} -7 \zeta_{6} q^{37} + 9 \zeta_{6} q^{38} + ( -3 - 3 \zeta_{6} ) q^{40} -3 \zeta_{6} q^{41} + ( -1 + \zeta_{6} ) q^{43} + ( 2 - \zeta_{6} ) q^{44} + ( 9 - 9 \zeta_{6} ) q^{46} + ( 8 - 4 \zeta_{6} ) q^{50} + ( 2 - \zeta_{6} ) q^{52} + ( -5 - 5 \zeta_{6} ) q^{53} + ( 3 - 6 \zeta_{6} ) q^{55} + ( -9 + 9 \zeta_{6} ) q^{58} + ( -8 + 16 \zeta_{6} ) q^{61} -6 q^{62} - q^{64} + ( 3 - 6 \zeta_{6} ) q^{65} -4 q^{67} + ( 3 - 3 \zeta_{6} ) q^{68} + ( 2 - 4 \zeta_{6} ) q^{71} + ( 3 + 3 \zeta_{6} ) q^{73} + ( 14 - 7 \zeta_{6} ) q^{74} + ( -6 + 3 \zeta_{6} ) q^{76} + 8 q^{79} + ( 15 - 15 \zeta_{6} ) q^{80} + ( 6 - 3 \zeta_{6} ) q^{82} + ( 15 - 15 \zeta_{6} ) q^{83} -9 \zeta_{6} q^{85} + ( -1 - \zeta_{6} ) q^{86} -3 \zeta_{6} q^{88} -3 \zeta_{6} q^{89} + ( 3 + 3 \zeta_{6} ) q^{92} + ( -9 + 18 \zeta_{6} ) q^{95} + ( -1 - \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} - 3q^{5} + O(q^{10}) \) \( 2q - 2q^{4} - 3q^{5} - 9q^{10} - 3q^{11} - 3q^{13} - 10q^{16} - 3q^{17} + 9q^{19} + 3q^{20} - 3q^{22} - 9q^{23} - 4q^{25} - 3q^{26} + 9q^{29} - 9q^{34} - 7q^{37} + 9q^{38} - 9q^{40} - 3q^{41} - q^{43} + 3q^{44} + 9q^{46} + 12q^{50} + 3q^{52} - 15q^{53} - 9q^{58} - 12q^{62} - 2q^{64} - 8q^{67} + 3q^{68} + 9q^{73} + 21q^{74} - 9q^{76} + 16q^{79} + 15q^{80} + 9q^{82} + 15q^{83} - 9q^{85} - 3q^{86} - 3q^{88} - 3q^{89} + 9q^{92} - 3q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(\zeta_{6}\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
521.1
0.500000 + 0.866025i
0.500000 0.866025i
1.73205i 0 −1.00000 −1.50000 + 2.59808i 0 0 1.73205i 0 −4.50000 2.59808i
1097.1 1.73205i 0 −1.00000 −1.50000 2.59808i 0 0 1.73205i 0 −4.50000 + 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.i.a 2
3.b odd 2 1 441.2.i.a 2
7.b odd 2 1 189.2.i.a 2
7.c even 3 1 189.2.s.a 2
7.c even 3 1 1323.2.o.a 2
7.d odd 6 1 1323.2.o.b 2
7.d odd 6 1 1323.2.s.a 2
9.c even 3 1 441.2.s.a 2
9.d odd 6 1 1323.2.s.a 2
21.c even 2 1 63.2.i.a 2
21.g even 6 1 441.2.o.a 2
21.g even 6 1 441.2.s.a 2
21.h odd 6 1 63.2.s.a yes 2
21.h odd 6 1 441.2.o.b 2
28.d even 2 1 3024.2.ca.a 2
28.g odd 6 1 3024.2.df.a 2
63.g even 3 1 441.2.o.a 2
63.g even 3 1 567.2.p.a 2
63.h even 3 1 63.2.i.a 2
63.i even 6 1 inner 1323.2.i.a 2
63.j odd 6 1 189.2.i.a 2
63.k odd 6 1 441.2.o.b 2
63.l odd 6 1 63.2.s.a yes 2
63.l odd 6 1 567.2.p.b 2
63.n odd 6 1 567.2.p.b 2
63.n odd 6 1 1323.2.o.b 2
63.o even 6 1 189.2.s.a 2
63.o even 6 1 567.2.p.a 2
63.s even 6 1 1323.2.o.a 2
63.t odd 6 1 441.2.i.a 2
84.h odd 2 1 1008.2.ca.a 2
84.n even 6 1 1008.2.df.a 2
252.s odd 6 1 3024.2.df.a 2
252.u odd 6 1 1008.2.ca.a 2
252.bb even 6 1 3024.2.ca.a 2
252.bi even 6 1 1008.2.df.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.i.a 2 21.c even 2 1
63.2.i.a 2 63.h even 3 1
63.2.s.a yes 2 21.h odd 6 1
63.2.s.a yes 2 63.l odd 6 1
189.2.i.a 2 7.b odd 2 1
189.2.i.a 2 63.j odd 6 1
189.2.s.a 2 7.c even 3 1
189.2.s.a 2 63.o even 6 1
441.2.i.a 2 3.b odd 2 1
441.2.i.a 2 63.t odd 6 1
441.2.o.a 2 21.g even 6 1
441.2.o.a 2 63.g even 3 1
441.2.o.b 2 21.h odd 6 1
441.2.o.b 2 63.k odd 6 1
441.2.s.a 2 9.c even 3 1
441.2.s.a 2 21.g even 6 1
567.2.p.a 2 63.g even 3 1
567.2.p.a 2 63.o even 6 1
567.2.p.b 2 63.l odd 6 1
567.2.p.b 2 63.n odd 6 1
1008.2.ca.a 2 84.h odd 2 1
1008.2.ca.a 2 252.u odd 6 1
1008.2.df.a 2 84.n even 6 1
1008.2.df.a 2 252.bi even 6 1
1323.2.i.a 2 1.a even 1 1 trivial
1323.2.i.a 2 63.i even 6 1 inner
1323.2.o.a 2 7.c even 3 1
1323.2.o.a 2 63.s even 6 1
1323.2.o.b 2 7.d odd 6 1
1323.2.o.b 2 63.n odd 6 1
1323.2.s.a 2 7.d odd 6 1
1323.2.s.a 2 9.d odd 6 1
3024.2.ca.a 2 28.d even 2 1
3024.2.ca.a 2 252.bb even 6 1
3024.2.df.a 2 28.g odd 6 1
3024.2.df.a 2 252.s odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 3 \) acting on \(S_{2}^{\mathrm{new}}(1323, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 3 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 9 + 3 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 3 + 3 T + T^{2} \)
$13$ \( 3 + 3 T + T^{2} \)
$17$ \( 9 + 3 T + T^{2} \)
$19$ \( 27 - 9 T + T^{2} \)
$23$ \( 27 + 9 T + T^{2} \)
$29$ \( 27 - 9 T + T^{2} \)
$31$ \( 12 + T^{2} \)
$37$ \( 49 + 7 T + T^{2} \)
$41$ \( 9 + 3 T + T^{2} \)
$43$ \( 1 + T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( 75 + 15 T + T^{2} \)
$59$ \( T^{2} \)
$61$ \( 192 + T^{2} \)
$67$ \( ( 4 + T )^{2} \)
$71$ \( 12 + T^{2} \)
$73$ \( 27 - 9 T + T^{2} \)
$79$ \( ( -8 + T )^{2} \)
$83$ \( 225 - 15 T + T^{2} \)
$89$ \( 9 + 3 T + T^{2} \)
$97$ \( 3 + 3 T + T^{2} \)
show more
show less