Properties

Label 1323.2.h.h.226.3
Level $1323$
Weight $2$
Character 1323.226
Analytic conductor $10.564$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 226.3
Character \(\chi\) \(=\) 1323.226
Dual form 1323.2.h.h.802.3

$q$-expansion

\(f(q)\) \(=\) \(q-1.29987 q^{2} -0.310333 q^{4} +(1.76292 + 3.05347i) q^{5} +3.00314 q^{8} +O(q^{10})\) \(q-1.29987 q^{2} -0.310333 q^{4} +(1.76292 + 3.05347i) q^{5} +3.00314 q^{8} +(-2.29157 - 3.96912i) q^{10} +(0.589267 - 1.02064i) q^{11} +(1.61030 - 2.78913i) q^{13} -3.28303 q^{16} +(-2.45159 - 4.24627i) q^{17} +(3.43318 - 5.94645i) q^{19} +(-0.547092 - 0.947591i) q^{20} +(-0.765972 + 1.32670i) q^{22} +(-2.14994 - 3.72380i) q^{23} +(-3.71578 + 6.43592i) q^{25} +(-2.09319 + 3.62551i) q^{26} +(-1.36140 - 2.35802i) q^{29} -1.92080 q^{31} -1.73876 q^{32} +(3.18675 + 5.51961i) q^{34} +(4.88229 - 8.45637i) q^{37} +(-4.46270 + 7.72962i) q^{38} +(5.29429 + 9.16998i) q^{40} +(3.32673 - 5.76206i) q^{41} +(4.83441 + 8.37344i) q^{43} +(-0.182869 + 0.316738i) q^{44} +(2.79464 + 4.84046i) q^{46} -0.633218 q^{47} +(4.83004 - 8.36587i) q^{50} +(-0.499729 + 0.865557i) q^{52} +(-1.11378 - 1.92912i) q^{53} +4.15533 q^{55} +(1.76965 + 3.06512i) q^{58} -8.21304 q^{59} -9.65916 q^{61} +2.49680 q^{62} +8.82622 q^{64} +11.3553 q^{65} +5.33301 q^{67} +(0.760807 + 1.31776i) q^{68} +3.27719 q^{71} +(-0.519036 - 0.898997i) q^{73} +(-6.34635 + 10.9922i) q^{74} +(-1.06543 + 1.84538i) q^{76} +1.00408 q^{79} +(-5.78772 - 10.0246i) q^{80} +(-4.32432 + 7.48994i) q^{82} +(3.65598 + 6.33234i) q^{83} +(8.64391 - 14.9717i) q^{85} +(-6.28411 - 10.8844i) q^{86} +(1.76965 - 3.06512i) q^{88} +(6.02144 - 10.4294i) q^{89} +(0.667195 + 1.15562i) q^{92} +0.823103 q^{94} +24.2097 q^{95} +(-5.46454 - 9.46487i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q + 8q^{2} + 24q^{4} + 24q^{8} + O(q^{10}) \) \( 24q + 8q^{2} + 24q^{4} + 24q^{8} - 20q^{11} + 24q^{16} - 32q^{23} - 12q^{25} - 16q^{29} + 96q^{32} - 12q^{37} - 56q^{44} + 24q^{46} + 4q^{50} - 32q^{53} + 96q^{64} + 120q^{65} + 24q^{67} + 112q^{71} - 68q^{74} - 24q^{79} + 12q^{85} - 76q^{86} - 16q^{92} + 128q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29987 −0.919148 −0.459574 0.888139i \(-0.651998\pi\)
−0.459574 + 0.888139i \(0.651998\pi\)
\(3\) 0 0
\(4\) −0.310333 −0.155166
\(5\) 1.76292 + 3.05347i 0.788402 + 1.36555i 0.926945 + 0.375196i \(0.122425\pi\)
−0.138543 + 0.990356i \(0.544242\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.00314 1.06177
\(9\) 0 0
\(10\) −2.29157 3.96912i −0.724659 1.25515i
\(11\) 0.589267 1.02064i 0.177671 0.307735i −0.763412 0.645912i \(-0.776477\pi\)
0.941082 + 0.338178i \(0.109810\pi\)
\(12\) 0 0
\(13\) 1.61030 2.78913i 0.446618 0.773564i −0.551546 0.834145i \(-0.685962\pi\)
0.998163 + 0.0605803i \(0.0192951\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.28303 −0.820757
\(17\) −2.45159 4.24627i −0.594597 1.02987i −0.993604 0.112924i \(-0.963978\pi\)
0.399006 0.916948i \(-0.369355\pi\)
\(18\) 0 0
\(19\) 3.43318 5.94645i 0.787627 1.36421i −0.139791 0.990181i \(-0.544643\pi\)
0.927417 0.374028i \(-0.122024\pi\)
\(20\) −0.547092 0.947591i −0.122333 0.211888i
\(21\) 0 0
\(22\) −0.765972 + 1.32670i −0.163306 + 0.282854i
\(23\) −2.14994 3.72380i −0.448293 0.776466i 0.549982 0.835176i \(-0.314634\pi\)
−0.998275 + 0.0587106i \(0.981301\pi\)
\(24\) 0 0
\(25\) −3.71578 + 6.43592i −0.743156 + 1.28718i
\(26\) −2.09319 + 3.62551i −0.410508 + 0.711020i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.36140 2.35802i −0.252806 0.437873i 0.711491 0.702695i \(-0.248020\pi\)
−0.964297 + 0.264822i \(0.914687\pi\)
\(30\) 0 0
\(31\) −1.92080 −0.344986 −0.172493 0.985011i \(-0.555182\pi\)
−0.172493 + 0.985011i \(0.555182\pi\)
\(32\) −1.73876 −0.307372
\(33\) 0 0
\(34\) 3.18675 + 5.51961i 0.546523 + 0.946606i
\(35\) 0 0
\(36\) 0 0
\(37\) 4.88229 8.45637i 0.802643 1.39022i −0.115228 0.993339i \(-0.536760\pi\)
0.917871 0.396879i \(-0.129907\pi\)
\(38\) −4.46270 + 7.72962i −0.723946 + 1.25391i
\(39\) 0 0
\(40\) 5.29429 + 9.16998i 0.837101 + 1.44990i
\(41\) 3.32673 5.76206i 0.519547 0.899883i −0.480194 0.877162i \(-0.659434\pi\)
0.999742 0.0227205i \(-0.00723278\pi\)
\(42\) 0 0
\(43\) 4.83441 + 8.37344i 0.737240 + 1.27694i 0.953734 + 0.300653i \(0.0972047\pi\)
−0.216493 + 0.976284i \(0.569462\pi\)
\(44\) −0.182869 + 0.316738i −0.0275685 + 0.0477501i
\(45\) 0 0
\(46\) 2.79464 + 4.84046i 0.412047 + 0.713687i
\(47\) −0.633218 −0.0923644 −0.0461822 0.998933i \(-0.514705\pi\)
−0.0461822 + 0.998933i \(0.514705\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 4.83004 8.36587i 0.683071 1.18311i
\(51\) 0 0
\(52\) −0.499729 + 0.865557i −0.0693000 + 0.120031i
\(53\) −1.11378 1.92912i −0.152989 0.264985i 0.779336 0.626606i \(-0.215557\pi\)
−0.932325 + 0.361621i \(0.882223\pi\)
\(54\) 0 0
\(55\) 4.15533 0.560304
\(56\) 0 0
\(57\) 0 0
\(58\) 1.76965 + 3.06512i 0.232366 + 0.402471i
\(59\) −8.21304 −1.06925 −0.534623 0.845091i \(-0.679546\pi\)
−0.534623 + 0.845091i \(0.679546\pi\)
\(60\) 0 0
\(61\) −9.65916 −1.23673 −0.618364 0.785892i \(-0.712204\pi\)
−0.618364 + 0.785892i \(0.712204\pi\)
\(62\) 2.49680 0.317093
\(63\) 0 0
\(64\) 8.82622 1.10328
\(65\) 11.3553 1.40846
\(66\) 0 0
\(67\) 5.33301 0.651531 0.325766 0.945451i \(-0.394378\pi\)
0.325766 + 0.945451i \(0.394378\pi\)
\(68\) 0.760807 + 1.31776i 0.0922614 + 0.159801i
\(69\) 0 0
\(70\) 0 0
\(71\) 3.27719 0.388931 0.194466 0.980909i \(-0.437703\pi\)
0.194466 + 0.980909i \(0.437703\pi\)
\(72\) 0 0
\(73\) −0.519036 0.898997i −0.0607486 0.105220i 0.834052 0.551686i \(-0.186015\pi\)
−0.894800 + 0.446467i \(0.852682\pi\)
\(74\) −6.34635 + 10.9922i −0.737748 + 1.27782i
\(75\) 0 0
\(76\) −1.06543 + 1.84538i −0.122213 + 0.211679i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.00408 0.112968 0.0564838 0.998404i \(-0.482011\pi\)
0.0564838 + 0.998404i \(0.482011\pi\)
\(80\) −5.78772 10.0246i −0.647087 1.12079i
\(81\) 0 0
\(82\) −4.32432 + 7.48994i −0.477541 + 0.827126i
\(83\) 3.65598 + 6.33234i 0.401296 + 0.695064i 0.993883 0.110442i \(-0.0352267\pi\)
−0.592587 + 0.805506i \(0.701893\pi\)
\(84\) 0 0
\(85\) 8.64391 14.9717i 0.937563 1.62391i
\(86\) −6.28411 10.8844i −0.677633 1.17369i
\(87\) 0 0
\(88\) 1.76965 3.06512i 0.188645 0.326743i
\(89\) 6.02144 10.4294i 0.638271 1.10552i −0.347541 0.937665i \(-0.612983\pi\)
0.985812 0.167853i \(-0.0536834\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.667195 + 1.15562i 0.0695599 + 0.120481i
\(93\) 0 0
\(94\) 0.823103 0.0848966
\(95\) 24.2097 2.48387
\(96\) 0 0
\(97\) −5.46454 9.46487i −0.554840 0.961012i −0.997916 0.0645275i \(-0.979446\pi\)
0.443076 0.896484i \(-0.353887\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.15313 1.99728i 0.115313 0.199728i
\(101\) −0.797546 + 1.38139i −0.0793588 + 0.137453i −0.902973 0.429696i \(-0.858621\pi\)
0.823615 + 0.567150i \(0.191954\pi\)
\(102\) 0 0
\(103\) −1.16778 2.02265i −0.115065 0.199298i 0.802741 0.596328i \(-0.203374\pi\)
−0.917806 + 0.397030i \(0.870041\pi\)
\(104\) 4.83596 8.37613i 0.474205 0.821347i
\(105\) 0 0
\(106\) 1.44777 + 2.50761i 0.140620 + 0.243561i
\(107\) −1.11181 + 1.92571i −0.107483 + 0.186166i −0.914750 0.404021i \(-0.867612\pi\)
0.807267 + 0.590186i \(0.200946\pi\)
\(108\) 0 0
\(109\) 0.459782 + 0.796366i 0.0440391 + 0.0762780i 0.887205 0.461376i \(-0.152644\pi\)
−0.843166 + 0.537654i \(0.819311\pi\)
\(110\) −5.40139 −0.515003
\(111\) 0 0
\(112\) 0 0
\(113\) −1.19327 + 2.06681i −0.112254 + 0.194429i −0.916679 0.399625i \(-0.869140\pi\)
0.804425 + 0.594054i \(0.202474\pi\)
\(114\) 0 0
\(115\) 7.58033 13.1295i 0.706870 1.22433i
\(116\) 0.422488 + 0.731770i 0.0392270 + 0.0679432i
\(117\) 0 0
\(118\) 10.6759 0.982796
\(119\) 0 0
\(120\) 0 0
\(121\) 4.80553 + 8.32342i 0.436866 + 0.756674i
\(122\) 12.5557 1.13674
\(123\) 0 0
\(124\) 0.596087 0.0535302
\(125\) −8.57330 −0.766819
\(126\) 0 0
\(127\) −3.04170 −0.269907 −0.134954 0.990852i \(-0.543089\pi\)
−0.134954 + 0.990852i \(0.543089\pi\)
\(128\) −7.99544 −0.706704
\(129\) 0 0
\(130\) −14.7605 −1.29458
\(131\) −1.63088 2.82476i −0.142490 0.246801i 0.785943 0.618298i \(-0.212178\pi\)
−0.928434 + 0.371498i \(0.878844\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −6.93223 −0.598854
\(135\) 0 0
\(136\) −7.36245 12.7521i −0.631325 1.09349i
\(137\) 10.4669 18.1292i 0.894246 1.54888i 0.0595120 0.998228i \(-0.481046\pi\)
0.834734 0.550653i \(-0.185621\pi\)
\(138\) 0 0
\(139\) −8.31195 + 14.3967i −0.705010 + 1.22111i 0.261677 + 0.965155i \(0.415724\pi\)
−0.966688 + 0.255958i \(0.917609\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.25993 −0.357486
\(143\) −1.89780 3.28708i −0.158702 0.274880i
\(144\) 0 0
\(145\) 4.80009 8.31401i 0.398626 0.690441i
\(146\) 0.674681 + 1.16858i 0.0558370 + 0.0967124i
\(147\) 0 0
\(148\) −1.51513 + 2.62429i −0.124543 + 0.215715i
\(149\) 0.564221 + 0.977260i 0.0462228 + 0.0800602i 0.888211 0.459435i \(-0.151948\pi\)
−0.841988 + 0.539496i \(0.818615\pi\)
\(150\) 0 0
\(151\) 9.81476 16.9997i 0.798714 1.38341i −0.121740 0.992562i \(-0.538847\pi\)
0.920454 0.390851i \(-0.127819\pi\)
\(152\) 10.3103 17.8580i 0.836278 1.44848i
\(153\) 0 0
\(154\) 0 0
\(155\) −3.38622 5.86511i −0.271988 0.471097i
\(156\) 0 0
\(157\) 9.33237 0.744804 0.372402 0.928071i \(-0.378534\pi\)
0.372402 + 0.928071i \(0.378534\pi\)
\(158\) −1.30517 −0.103834
\(159\) 0 0
\(160\) −3.06529 5.30924i −0.242332 0.419732i
\(161\) 0 0
\(162\) 0 0
\(163\) −8.45056 + 14.6368i −0.661899 + 1.14644i 0.318217 + 0.948018i \(0.396916\pi\)
−0.980116 + 0.198425i \(0.936417\pi\)
\(164\) −1.03239 + 1.78815i −0.0806162 + 0.139631i
\(165\) 0 0
\(166\) −4.75230 8.23123i −0.368850 0.638867i
\(167\) −2.57319 + 4.45689i −0.199119 + 0.344885i −0.948243 0.317545i \(-0.897141\pi\)
0.749124 + 0.662430i \(0.230475\pi\)
\(168\) 0 0
\(169\) 1.31385 + 2.27566i 0.101066 + 0.175051i
\(170\) −11.2360 + 19.4613i −0.861760 + 1.49261i
\(171\) 0 0
\(172\) −1.50027 2.59855i −0.114395 0.198138i
\(173\) −9.73669 −0.740266 −0.370133 0.928979i \(-0.620688\pi\)
−0.370133 + 0.928979i \(0.620688\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.93458 + 3.35079i −0.145825 + 0.252576i
\(177\) 0 0
\(178\) −7.82710 + 13.5569i −0.586666 + 1.01613i
\(179\) 0.687990 + 1.19163i 0.0514228 + 0.0890668i 0.890591 0.454805i \(-0.150291\pi\)
−0.839168 + 0.543872i \(0.816958\pi\)
\(180\) 0 0
\(181\) −5.66560 −0.421120 −0.210560 0.977581i \(-0.567529\pi\)
−0.210560 + 0.977581i \(0.567529\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.45655 11.1831i −0.475983 0.824427i
\(185\) 34.4283 2.53122
\(186\) 0 0
\(187\) −5.77856 −0.422570
\(188\) 0.196508 0.0143318
\(189\) 0 0
\(190\) −31.4696 −2.28304
\(191\) 25.0129 1.80987 0.904936 0.425547i \(-0.139918\pi\)
0.904936 + 0.425547i \(0.139918\pi\)
\(192\) 0 0
\(193\) 17.5338 1.26211 0.631054 0.775739i \(-0.282623\pi\)
0.631054 + 0.775739i \(0.282623\pi\)
\(194\) 7.10321 + 12.3031i 0.509981 + 0.883312i
\(195\) 0 0
\(196\) 0 0
\(197\) 19.7540 1.40741 0.703707 0.710490i \(-0.251527\pi\)
0.703707 + 0.710490i \(0.251527\pi\)
\(198\) 0 0
\(199\) 9.51110 + 16.4737i 0.674224 + 1.16779i 0.976695 + 0.214631i \(0.0688550\pi\)
−0.302471 + 0.953158i \(0.597812\pi\)
\(200\) −11.1590 + 19.3279i −0.789060 + 1.36669i
\(201\) 0 0
\(202\) 1.03671 1.79563i 0.0729425 0.126340i
\(203\) 0 0
\(204\) 0 0
\(205\) 23.4590 1.63845
\(206\) 1.51796 + 2.62919i 0.105761 + 0.183184i
\(207\) 0 0
\(208\) −5.28667 + 9.15678i −0.366565 + 0.634908i
\(209\) −4.04613 7.00810i −0.279876 0.484760i
\(210\) 0 0
\(211\) 3.71809 6.43993i 0.255964 0.443343i −0.709193 0.705015i \(-0.750940\pi\)
0.965157 + 0.261672i \(0.0842738\pi\)
\(212\) 0.345642 + 0.598669i 0.0237388 + 0.0411168i
\(213\) 0 0
\(214\) 1.44521 2.50318i 0.0987927 0.171114i
\(215\) −17.0454 + 29.5234i −1.16248 + 2.01348i
\(216\) 0 0
\(217\) 0 0
\(218\) −0.597658 1.03517i −0.0404785 0.0701108i
\(219\) 0 0
\(220\) −1.28953 −0.0869403
\(221\) −15.7912 −1.06223
\(222\) 0 0
\(223\) 1.64565 + 2.85034i 0.110201 + 0.190873i 0.915851 0.401518i \(-0.131517\pi\)
−0.805650 + 0.592391i \(0.798184\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.55110 2.68659i 0.103178 0.178709i
\(227\) −9.00847 + 15.6031i −0.597913 + 1.03562i 0.395215 + 0.918589i \(0.370670\pi\)
−0.993129 + 0.117028i \(0.962663\pi\)
\(228\) 0 0
\(229\) −2.12746 3.68486i −0.140586 0.243503i 0.787131 0.616785i \(-0.211565\pi\)
−0.927718 + 0.373283i \(0.878232\pi\)
\(230\) −9.85347 + 17.0667i −0.649718 + 1.12535i
\(231\) 0 0
\(232\) −4.08848 7.08146i −0.268422 0.464920i
\(233\) −7.35275 + 12.7353i −0.481695 + 0.834320i −0.999779 0.0210095i \(-0.993312\pi\)
0.518084 + 0.855330i \(0.326645\pi\)
\(234\) 0 0
\(235\) −1.11631 1.93351i −0.0728203 0.126128i
\(236\) 2.54877 0.165911
\(237\) 0 0
\(238\) 0 0
\(239\) −7.08187 + 12.2662i −0.458088 + 0.793432i −0.998860 0.0477377i \(-0.984799\pi\)
0.540772 + 0.841169i \(0.318132\pi\)
\(240\) 0 0
\(241\) −3.96752 + 6.87194i −0.255570 + 0.442661i −0.965050 0.262065i \(-0.915597\pi\)
0.709480 + 0.704726i \(0.248930\pi\)
\(242\) −6.24657 10.8194i −0.401545 0.695496i
\(243\) 0 0
\(244\) 2.99755 0.191899
\(245\) 0 0
\(246\) 0 0
\(247\) −11.0569 19.1512i −0.703536 1.21856i
\(248\) −5.76843 −0.366296
\(249\) 0 0
\(250\) 11.1442 0.704821
\(251\) −8.05097 −0.508173 −0.254087 0.967181i \(-0.581775\pi\)
−0.254087 + 0.967181i \(0.581775\pi\)
\(252\) 0 0
\(253\) −5.06755 −0.318594
\(254\) 3.95382 0.248085
\(255\) 0 0
\(256\) −7.25938 −0.453712
\(257\) −8.77687 15.2020i −0.547486 0.948273i −0.998446 0.0557293i \(-0.982252\pi\)
0.450960 0.892544i \(-0.351082\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −3.52393 −0.218545
\(261\) 0 0
\(262\) 2.11993 + 3.67183i 0.130970 + 0.226846i
\(263\) −11.6743 + 20.2205i −0.719867 + 1.24685i 0.241185 + 0.970479i \(0.422464\pi\)
−0.961052 + 0.276367i \(0.910869\pi\)
\(264\) 0 0
\(265\) 3.92701 6.80177i 0.241234 0.417830i
\(266\) 0 0
\(267\) 0 0
\(268\) −1.65501 −0.101096
\(269\) 0.269244 + 0.466344i 0.0164161 + 0.0284335i 0.874117 0.485716i \(-0.161441\pi\)
−0.857701 + 0.514149i \(0.828108\pi\)
\(270\) 0 0
\(271\) 7.20749 12.4837i 0.437824 0.758334i −0.559697 0.828697i \(-0.689083\pi\)
0.997521 + 0.0703635i \(0.0224159\pi\)
\(272\) 8.04863 + 13.9406i 0.488020 + 0.845275i
\(273\) 0 0
\(274\) −13.6056 + 23.5656i −0.821945 + 1.42365i
\(275\) 4.37918 + 7.58495i 0.264074 + 0.457390i
\(276\) 0 0
\(277\) −10.9533 + 18.9717i −0.658121 + 1.13990i 0.322980 + 0.946406i \(0.395315\pi\)
−0.981101 + 0.193494i \(0.938018\pi\)
\(278\) 10.8045 18.7139i 0.648009 1.12238i
\(279\) 0 0
\(280\) 0 0
\(281\) 0.776622 + 1.34515i 0.0463294 + 0.0802449i 0.888260 0.459341i \(-0.151914\pi\)
−0.841931 + 0.539586i \(0.818581\pi\)
\(282\) 0 0
\(283\) −2.65142 −0.157610 −0.0788051 0.996890i \(-0.525110\pi\)
−0.0788051 + 0.996890i \(0.525110\pi\)
\(284\) −1.01702 −0.0603490
\(285\) 0 0
\(286\) 2.46689 + 4.27279i 0.145870 + 0.252655i
\(287\) 0 0
\(288\) 0 0
\(289\) −3.52056 + 6.09778i −0.207091 + 0.358693i
\(290\) −6.23951 + 10.8071i −0.366396 + 0.634617i
\(291\) 0 0
\(292\) 0.161074 + 0.278988i 0.00942613 + 0.0163265i
\(293\) 5.19314 8.99478i 0.303386 0.525481i −0.673514 0.739174i \(-0.735216\pi\)
0.976901 + 0.213694i \(0.0685494\pi\)
\(294\) 0 0
\(295\) −14.4789 25.0783i −0.842996 1.46011i
\(296\) 14.6622 25.3956i 0.852221 1.47609i
\(297\) 0 0
\(298\) −0.733415 1.27031i −0.0424856 0.0735872i
\(299\) −13.8482 −0.800861
\(300\) 0 0
\(301\) 0 0
\(302\) −12.7579 + 22.0974i −0.734137 + 1.27156i
\(303\) 0 0
\(304\) −11.2712 + 19.5224i −0.646450 + 1.11968i
\(305\) −17.0283 29.4939i −0.975039 1.68882i
\(306\) 0 0
\(307\) −10.6425 −0.607400 −0.303700 0.952768i \(-0.598222\pi\)
−0.303700 + 0.952768i \(0.598222\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.40165 + 7.62389i 0.249997 + 0.433008i
\(311\) 13.7096 0.777399 0.388699 0.921365i \(-0.372925\pi\)
0.388699 + 0.921365i \(0.372925\pi\)
\(312\) 0 0
\(313\) 21.2179 1.19931 0.599653 0.800260i \(-0.295305\pi\)
0.599653 + 0.800260i \(0.295305\pi\)
\(314\) −12.1309 −0.684586
\(315\) 0 0
\(316\) −0.311598 −0.0175288
\(317\) −3.57043 −0.200535 −0.100268 0.994961i \(-0.531970\pi\)
−0.100268 + 0.994961i \(0.531970\pi\)
\(318\) 0 0
\(319\) −3.20892 −0.179665
\(320\) 15.5599 + 26.9506i 0.869826 + 1.50658i
\(321\) 0 0
\(322\) 0 0
\(323\) −33.6670 −1.87328
\(324\) 0 0
\(325\) 11.9671 + 20.7276i 0.663813 + 1.14976i
\(326\) 10.9846 19.0260i 0.608383 1.05375i
\(327\) 0 0
\(328\) 9.99062 17.3043i 0.551639 0.955468i
\(329\) 0 0
\(330\) 0 0
\(331\) −23.9456 −1.31617 −0.658085 0.752944i \(-0.728633\pi\)
−0.658085 + 0.752944i \(0.728633\pi\)
\(332\) −1.13457 1.96513i −0.0622675 0.107851i
\(333\) 0 0
\(334\) 3.34482 5.79339i 0.183020 0.317000i
\(335\) 9.40168 + 16.2842i 0.513669 + 0.889700i
\(336\) 0 0
\(337\) −13.7468 + 23.8102i −0.748838 + 1.29703i 0.199542 + 0.979889i \(0.436055\pi\)
−0.948380 + 0.317137i \(0.897279\pi\)
\(338\) −1.70784 2.95806i −0.0928942 0.160897i
\(339\) 0 0
\(340\) −2.68249 + 4.64620i −0.145478 + 0.251976i
\(341\) −1.13187 + 1.96045i −0.0612940 + 0.106164i
\(342\) 0 0
\(343\) 0 0
\(344\) 14.5184 + 25.1466i 0.782779 + 1.35581i
\(345\) 0 0
\(346\) 12.6564 0.680415
\(347\) 5.12824 0.275299 0.137649 0.990481i \(-0.456045\pi\)
0.137649 + 0.990481i \(0.456045\pi\)
\(348\) 0 0
\(349\) −7.56980 13.1113i −0.405202 0.701830i 0.589143 0.808029i \(-0.299465\pi\)
−0.994345 + 0.106198i \(0.966132\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.02459 + 1.77465i −0.0546110 + 0.0945889i
\(353\) 16.4878 28.5578i 0.877559 1.51998i 0.0235477 0.999723i \(-0.492504\pi\)
0.854011 0.520254i \(-0.174163\pi\)
\(354\) 0 0
\(355\) 5.77743 + 10.0068i 0.306634 + 0.531106i
\(356\) −1.86865 + 3.23659i −0.0990381 + 0.171539i
\(357\) 0 0
\(358\) −0.894299 1.54897i −0.0472651 0.0818656i
\(359\) −12.0178 + 20.8154i −0.634274 + 1.09859i 0.352395 + 0.935851i \(0.385367\pi\)
−0.986669 + 0.162743i \(0.947966\pi\)
\(360\) 0 0
\(361\) −14.0735 24.3760i −0.740711 1.28295i
\(362\) 7.36455 0.387072
\(363\) 0 0
\(364\) 0 0
\(365\) 1.83004 3.16972i 0.0957886 0.165911i
\(366\) 0 0
\(367\) 1.32751 2.29931i 0.0692952 0.120023i −0.829296 0.558810i \(-0.811258\pi\)
0.898591 + 0.438787i \(0.144592\pi\)
\(368\) 7.05830 + 12.2253i 0.367939 + 0.637290i
\(369\) 0 0
\(370\) −44.7524 −2.32657
\(371\) 0 0
\(372\) 0 0
\(373\) 15.9592 + 27.6421i 0.826334 + 1.43125i 0.900896 + 0.434036i \(0.142911\pi\)
−0.0745621 + 0.997216i \(0.523756\pi\)
\(374\) 7.51139 0.388405
\(375\) 0 0
\(376\) −1.90164 −0.0980697
\(377\) −8.76909 −0.451631
\(378\) 0 0
\(379\) 30.2681 1.55477 0.777384 0.629027i \(-0.216546\pi\)
0.777384 + 0.629027i \(0.216546\pi\)
\(380\) −7.51307 −0.385412
\(381\) 0 0
\(382\) −32.5136 −1.66354
\(383\) 0.866526 + 1.50087i 0.0442774 + 0.0766907i 0.887315 0.461164i \(-0.152568\pi\)
−0.843037 + 0.537855i \(0.819235\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −22.7917 −1.16006
\(387\) 0 0
\(388\) 1.69583 + 2.93726i 0.0860925 + 0.149117i
\(389\) −5.54175 + 9.59859i −0.280978 + 0.486668i −0.971626 0.236523i \(-0.923992\pi\)
0.690648 + 0.723191i \(0.257325\pi\)
\(390\) 0 0
\(391\) −10.5415 + 18.2584i −0.533107 + 0.923368i
\(392\) 0 0
\(393\) 0 0
\(394\) −25.6777 −1.29362
\(395\) 1.77011 + 3.06592i 0.0890639 + 0.154263i
\(396\) 0 0
\(397\) −12.6696 + 21.9443i −0.635867 + 1.10135i 0.350464 + 0.936576i \(0.386024\pi\)
−0.986331 + 0.164777i \(0.947310\pi\)
\(398\) −12.3632 21.4137i −0.619712 1.07337i
\(399\) 0 0
\(400\) 12.1990 21.1293i 0.609951 1.05647i
\(401\) −17.4122 30.1588i −0.869524 1.50606i −0.862483 0.506085i \(-0.831092\pi\)
−0.00704089 0.999975i \(-0.502241\pi\)
\(402\) 0 0
\(403\) −3.09307 + 5.35736i −0.154077 + 0.266869i
\(404\) 0.247505 0.428690i 0.0123138 0.0213281i
\(405\) 0 0
\(406\) 0 0
\(407\) −5.75394 9.96612i −0.285212 0.494002i
\(408\) 0 0
\(409\) −18.2462 −0.902215 −0.451107 0.892470i \(-0.648971\pi\)
−0.451107 + 0.892470i \(0.648971\pi\)
\(410\) −30.4937 −1.50598
\(411\) 0 0
\(412\) 0.362400 + 0.627695i 0.0178541 + 0.0309243i
\(413\) 0 0
\(414\) 0 0
\(415\) −12.8904 + 22.3268i −0.632765 + 1.09598i
\(416\) −2.79992 + 4.84961i −0.137278 + 0.237772i
\(417\) 0 0
\(418\) 5.25945 + 9.10963i 0.257248 + 0.445567i
\(419\) 4.20719 7.28708i 0.205535 0.355997i −0.744768 0.667323i \(-0.767440\pi\)
0.950303 + 0.311326i \(0.100773\pi\)
\(420\) 0 0
\(421\) 0.144291 + 0.249919i 0.00703230 + 0.0121803i 0.869520 0.493897i \(-0.164428\pi\)
−0.862488 + 0.506078i \(0.831095\pi\)
\(422\) −4.83304 + 8.37108i −0.235269 + 0.407498i
\(423\) 0 0
\(424\) −3.34483 5.79341i −0.162439 0.281353i
\(425\) 36.4382 1.76751
\(426\) 0 0
\(427\) 0 0
\(428\) 0.345031 0.597612i 0.0166777 0.0288866i
\(429\) 0 0
\(430\) 22.1568 38.3767i 1.06849 1.85069i
\(431\) −6.74795 11.6878i −0.325037 0.562981i 0.656482 0.754341i \(-0.272044\pi\)
−0.981520 + 0.191360i \(0.938710\pi\)
\(432\) 0 0
\(433\) −4.85211 −0.233177 −0.116589 0.993180i \(-0.537196\pi\)
−0.116589 + 0.993180i \(0.537196\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.142685 0.247138i −0.00683339 0.0118358i
\(437\) −29.5245 −1.41235
\(438\) 0 0
\(439\) 2.54793 0.121606 0.0608031 0.998150i \(-0.480634\pi\)
0.0608031 + 0.998150i \(0.480634\pi\)
\(440\) 12.4790 0.594914
\(441\) 0 0
\(442\) 20.5265 0.976347
\(443\) 0.645506 0.0306689 0.0153345 0.999882i \(-0.495119\pi\)
0.0153345 + 0.999882i \(0.495119\pi\)
\(444\) 0 0
\(445\) 42.4613 2.01286
\(446\) −2.13913 3.70508i −0.101291 0.175441i
\(447\) 0 0
\(448\) 0 0
\(449\) 5.22658 0.246658 0.123329 0.992366i \(-0.460643\pi\)
0.123329 + 0.992366i \(0.460643\pi\)
\(450\) 0 0
\(451\) −3.92066 6.79079i −0.184617 0.319766i
\(452\) 0.370312 0.641399i 0.0174180 0.0301689i
\(453\) 0 0
\(454\) 11.7099 20.2821i 0.549571 0.951885i
\(455\) 0 0
\(456\) 0 0
\(457\) −2.86075 −0.133820 −0.0669101 0.997759i \(-0.521314\pi\)
−0.0669101 + 0.997759i \(0.521314\pi\)
\(458\) 2.76542 + 4.78985i 0.129220 + 0.223815i
\(459\) 0 0
\(460\) −2.35242 + 4.07452i −0.109682 + 0.189975i
\(461\) −1.82624 3.16314i −0.0850566 0.147322i 0.820359 0.571849i \(-0.193774\pi\)
−0.905415 + 0.424527i \(0.860440\pi\)
\(462\) 0 0
\(463\) −15.4052 + 26.6825i −0.715939 + 1.24004i 0.246657 + 0.969103i \(0.420668\pi\)
−0.962596 + 0.270940i \(0.912666\pi\)
\(464\) 4.46953 + 7.74145i 0.207493 + 0.359388i
\(465\) 0 0
\(466\) 9.55764 16.5543i 0.442749 0.766864i
\(467\) 10.2885 17.8202i 0.476096 0.824622i −0.523529 0.852008i \(-0.675385\pi\)
0.999625 + 0.0273858i \(0.00871825\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.45107 + 2.51332i 0.0669327 + 0.115931i
\(471\) 0 0
\(472\) −24.6649 −1.13529
\(473\) 11.3950 0.523944
\(474\) 0 0
\(475\) 25.5139 + 44.1914i 1.17066 + 2.02764i
\(476\) 0 0
\(477\) 0 0
\(478\) 9.20552 15.9444i 0.421051 0.729281i
\(479\) 12.5916 21.8093i 0.575325 0.996492i −0.420682 0.907208i \(-0.638209\pi\)
0.996006 0.0892833i \(-0.0284577\pi\)
\(480\) 0 0
\(481\) −15.7239 27.2346i −0.716949 1.24179i
\(482\) 5.15726 8.93264i 0.234907 0.406871i
\(483\) 0 0
\(484\) −1.49131 2.58303i −0.0677869 0.117410i
\(485\) 19.2671 33.3716i 0.874875 1.51533i
\(486\) 0 0
\(487\) 16.3807 + 28.3723i 0.742282 + 1.28567i 0.951454 + 0.307791i \(0.0995896\pi\)
−0.209173 + 0.977879i \(0.567077\pi\)
\(488\) −29.0078 −1.31312
\(489\) 0 0
\(490\) 0 0
\(491\) −1.76000 + 3.04841i −0.0794278 + 0.137573i −0.903003 0.429634i \(-0.858643\pi\)
0.823575 + 0.567207i \(0.191976\pi\)
\(492\) 0 0
\(493\) −6.67520 + 11.5618i −0.300636 + 0.520716i
\(494\) 14.3726 + 24.8941i 0.646654 + 1.12004i
\(495\) 0 0
\(496\) 6.30605 0.283150
\(497\) 0 0
\(498\) 0 0
\(499\) −7.82082 13.5461i −0.350108 0.606405i 0.636160 0.771557i \(-0.280522\pi\)
−0.986268 + 0.165152i \(0.947188\pi\)
\(500\) 2.66057 0.118984
\(501\) 0 0
\(502\) 10.4652 0.467086
\(503\) 36.5427 1.62936 0.814678 0.579913i \(-0.196914\pi\)
0.814678 + 0.579913i \(0.196914\pi\)
\(504\) 0 0
\(505\) −5.62404 −0.250267
\(506\) 6.58716 0.292835
\(507\) 0 0
\(508\) 0.943938 0.0418805
\(509\) −18.8229 32.6023i −0.834311 1.44507i −0.894590 0.446888i \(-0.852532\pi\)
0.0602789 0.998182i \(-0.480801\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 25.4272 1.12373
\(513\) 0 0
\(514\) 11.4088 + 19.7606i 0.503221 + 0.871604i
\(515\) 4.11740 7.13155i 0.181434 0.314254i
\(516\) 0 0
\(517\) −0.373135 + 0.646289i −0.0164105 + 0.0284237i
\(518\) 0 0
\(519\) 0 0
\(520\) 34.1017 1.49546
\(521\) −7.17115 12.4208i −0.314174 0.544165i 0.665088 0.746765i \(-0.268394\pi\)
−0.979262 + 0.202600i \(0.935061\pi\)
\(522\) 0 0
\(523\) −5.24222 + 9.07980i −0.229226 + 0.397032i −0.957579 0.288171i \(-0.906953\pi\)
0.728353 + 0.685202i \(0.240286\pi\)
\(524\) 0.506114 + 0.876616i 0.0221097 + 0.0382951i
\(525\) 0 0
\(526\) 15.1751 26.2840i 0.661665 1.14604i
\(527\) 4.70901 + 8.15625i 0.205128 + 0.355292i
\(528\) 0 0
\(529\) 2.25555 3.90673i 0.0980674 0.169858i
\(530\) −5.10461 + 8.84144i −0.221730 + 0.384047i
\(531\) 0 0
\(532\) 0 0
\(533\) −10.7141 18.5573i −0.464078 0.803807i
\(534\) 0 0
\(535\) −7.84014 −0.338959
\(536\) 16.0158 0.691776
\(537\) 0 0
\(538\) −0.349983 0.606188i −0.0150888 0.0261346i
\(539\) 0 0
\(540\) 0 0
\(541\) 23.0461 39.9170i 0.990830 1.71617i 0.378399 0.925643i \(-0.376475\pi\)
0.612430 0.790524i \(-0.290192\pi\)
\(542\) −9.36882 + 16.2273i −0.402425 + 0.697021i
\(543\) 0 0
\(544\) 4.26271 + 7.38323i 0.182762 + 0.316554i
\(545\) −1.62112 + 2.80786i −0.0694411 + 0.120275i
\(546\) 0 0
\(547\) −12.1793 21.0951i −0.520747 0.901961i −0.999709 0.0241250i \(-0.992320\pi\)
0.478962 0.877836i \(-0.341013\pi\)
\(548\) −3.24822 + 5.62607i −0.138757 + 0.240334i
\(549\) 0 0
\(550\) −5.69237 9.85947i −0.242723 0.420409i
\(551\) −18.6958 −0.796468
\(552\) 0 0
\(553\) 0 0
\(554\) 14.2379 24.6608i 0.604911 1.04774i
\(555\) 0 0
\(556\) 2.57947 4.46777i 0.109394 0.189476i
\(557\) 15.2888 + 26.4809i 0.647806 + 1.12203i 0.983646 + 0.180114i \(0.0576466\pi\)
−0.335840 + 0.941919i \(0.609020\pi\)
\(558\) 0 0
\(559\) 31.1394 1.31706
\(560\) 0 0
\(561\) 0 0
\(562\) −1.00951 1.74852i −0.0425836 0.0737570i
\(563\) −8.82714 −0.372019 −0.186010 0.982548i \(-0.559556\pi\)
−0.186010 + 0.982548i \(0.559556\pi\)
\(564\) 0 0
\(565\) −8.41459 −0.354005
\(566\) 3.44650 0.144867
\(567\) 0 0
\(568\) 9.84186 0.412955
\(569\) −7.12055 −0.298509 −0.149254 0.988799i \(-0.547687\pi\)
−0.149254 + 0.988799i \(0.547687\pi\)
\(570\) 0 0
\(571\) 6.66361 0.278863 0.139432 0.990232i \(-0.455472\pi\)
0.139432 + 0.990232i \(0.455472\pi\)
\(572\) 0.588948 + 1.02009i 0.0246252 + 0.0426520i
\(573\) 0 0
\(574\) 0 0
\(575\) 31.9548 1.33261
\(576\) 0 0
\(577\) −3.95629 6.85250i −0.164703 0.285273i 0.771847 0.635808i \(-0.219333\pi\)
−0.936550 + 0.350535i \(0.886000\pi\)
\(578\) 4.57627 7.92633i 0.190348 0.329692i
\(579\) 0 0
\(580\) −1.48963 + 2.58011i −0.0618533 + 0.107133i
\(581\) 0 0
\(582\) 0 0
\(583\) −2.62525 −0.108727
\(584\) −1.55874 2.69981i −0.0645010 0.111719i
\(585\) 0 0
\(586\) −6.75042 + 11.6921i −0.278857 + 0.482995i
\(587\) 9.13891 + 15.8291i 0.377203 + 0.653335i 0.990654 0.136398i \(-0.0435525\pi\)
−0.613451 + 0.789733i \(0.710219\pi\)
\(588\) 0 0
\(589\) −6.59447 + 11.4220i −0.271720 + 0.470633i
\(590\) 18.8208 + 32.5985i 0.774839 + 1.34206i
\(591\) 0 0
\(592\) −16.0287 + 27.7625i −0.658775 + 1.14103i
\(593\) −14.1908 + 24.5792i −0.582745 + 1.00934i 0.412407 + 0.911000i \(0.364688\pi\)
−0.995152 + 0.0983450i \(0.968645\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.175096 0.303275i −0.00717222 0.0124226i
\(597\) 0 0
\(598\) 18.0009 0.736111
\(599\) −9.38902 −0.383625 −0.191813 0.981432i \(-0.561437\pi\)
−0.191813 + 0.981432i \(0.561437\pi\)
\(600\) 0 0
\(601\) −6.31432 10.9367i −0.257566 0.446118i 0.708023 0.706189i \(-0.249587\pi\)
−0.965589 + 0.260071i \(0.916254\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.04584 + 5.27555i −0.123934 + 0.214659i
\(605\) −16.9435 + 29.3471i −0.688853 + 1.19313i
\(606\) 0 0
\(607\) −12.0133 20.8076i −0.487604 0.844554i 0.512295 0.858810i \(-0.328796\pi\)
−0.999898 + 0.0142555i \(0.995462\pi\)
\(608\) −5.96947 + 10.3394i −0.242094 + 0.419319i
\(609\) 0 0
\(610\) 22.1347 + 38.3383i 0.896206 + 1.55227i
\(611\) −1.01967 + 1.76613i −0.0412516 + 0.0714498i
\(612\) 0 0
\(613\) 14.2708 + 24.7177i 0.576390 + 0.998337i 0.995889 + 0.0905814i \(0.0288725\pi\)
−0.419499 + 0.907756i \(0.637794\pi\)
\(614\) 13.8339 0.558291
\(615\) 0 0
\(616\) 0 0
\(617\) 6.05549 10.4884i 0.243785 0.422248i −0.718004 0.696039i \(-0.754944\pi\)
0.961789 + 0.273791i \(0.0882776\pi\)
\(618\) 0 0
\(619\) 13.2870 23.0137i 0.534048 0.924998i −0.465161 0.885226i \(-0.654003\pi\)
0.999209 0.0397721i \(-0.0126632\pi\)
\(620\) 1.05085 + 1.82013i 0.0422033 + 0.0730983i
\(621\) 0 0
\(622\) −17.8207 −0.714545
\(623\) 0 0
\(624\) 0 0
\(625\) 3.46486 + 6.00131i 0.138594 + 0.240052i
\(626\) −27.5806 −1.10234
\(627\) 0 0
\(628\) −2.89614 −0.115569
\(629\) −47.8774 −1.90900
\(630\) 0 0
\(631\) 3.30962 0.131754 0.0658770 0.997828i \(-0.479015\pi\)
0.0658770 + 0.997828i \(0.479015\pi\)
\(632\) 3.01538 0.119945
\(633\) 0 0
\(634\) 4.64110 0.184322
\(635\) −5.36227 9.28773i −0.212795 0.368572i
\(636\) 0 0
\(637\) 0 0
\(638\) 4.17119 0.165139
\(639\) 0 0
\(640\) −14.0953 24.4138i −0.557167 0.965041i
\(641\) 16.2922 28.2189i 0.643503 1.11458i −0.341142 0.940012i \(-0.610814\pi\)
0.984645 0.174568i \(-0.0558530\pi\)
\(642\) 0 0
\(643\) 21.5327 37.2957i 0.849166 1.47080i −0.0327873 0.999462i \(-0.510438\pi\)
0.881953 0.471337i \(-0.156228\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 43.7628 1.72182
\(647\) 23.0988 + 40.0082i 0.908106 + 1.57289i 0.816692 + 0.577074i \(0.195805\pi\)
0.0914143 + 0.995813i \(0.470861\pi\)
\(648\) 0 0
\(649\) −4.83968 + 8.38256i −0.189974 + 0.329044i
\(650\) −15.5556 26.9432i −0.610143 1.05680i
\(651\) 0 0
\(652\) 2.62248 4.54228i 0.102704 0.177889i
\(653\) 16.0002 + 27.7132i 0.626138 + 1.08450i 0.988320 + 0.152395i \(0.0486985\pi\)
−0.362182 + 0.932107i \(0.617968\pi\)
\(654\) 0 0
\(655\) 5.75022 9.95967i 0.224680 0.389156i
\(656\) −10.9217 + 18.9170i −0.426422 + 0.738585i
\(657\) 0 0
\(658\) 0 0
\(659\) −19.2070 33.2674i −0.748197 1.29591i −0.948686 0.316219i \(-0.897587\pi\)
0.200490 0.979696i \(-0.435747\pi\)
\(660\) 0 0
\(661\) 28.0260 1.09009 0.545043 0.838408i \(-0.316513\pi\)
0.545043 + 0.838408i \(0.316513\pi\)
\(662\) 31.1262 1.20976
\(663\) 0 0
\(664\) 10.9794 + 19.0169i 0.426083 + 0.737998i
\(665\) 0 0
\(666\) 0 0
\(667\) −5.85386 + 10.1392i −0.226662 + 0.392591i
\(668\) 0.798544 1.38312i 0.0308966 0.0535145i
\(669\) 0 0
\(670\) −12.2210 21.1674i −0.472138 0.817766i
\(671\) −5.69183 + 9.85853i −0.219730 + 0.380584i
\(672\) 0 0
\(673\) 0.796281 + 1.37920i 0.0306944 + 0.0531642i 0.880965 0.473182i \(-0.156895\pi\)
−0.850270 + 0.526347i \(0.823561\pi\)
\(674\) 17.8691 30.9503i 0.688293 1.19216i
\(675\) 0 0
\(676\) −0.407731 0.706211i −0.0156820 0.0271619i
\(677\) 42.0334 1.61547 0.807737 0.589543i \(-0.200692\pi\)
0.807737 + 0.589543i \(0.200692\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 25.9588 44.9620i 0.995476 1.72421i
\(681\) 0 0
\(682\) 1.47128 2.54833i 0.0563382 0.0975807i
\(683\) 17.8645 + 30.9422i 0.683565 + 1.18397i 0.973886 + 0.227039i \(0.0729046\pi\)
−0.290321 + 0.956929i \(0.593762\pi\)
\(684\) 0 0
\(685\) 73.8092 2.82010
\(686\) 0 0
\(687\) 0 0
\(688\) −15.8715 27.4902i −0.605095 1.04806i
\(689\) −7.17408 −0.273311
\(690\) 0 0
\(691\) −51.1349 −1.94526 −0.972632 0.232351i \(-0.925358\pi\)
−0.972632 + 0.232351i \(0.925358\pi\)
\(692\) 3.02161 0.114864
\(693\) 0 0
\(694\) −6.66606 −0.253040
\(695\) −58.6132 −2.22333
\(696\) 0 0
\(697\) −32.6230 −1.23569
\(698\) 9.83977 + 17.0430i 0.372441 + 0.645086i
\(699\) 0 0
\(700\) 0 0
\(701\) 24.5761 0.928226 0.464113 0.885776i \(-0.346373\pi\)
0.464113 + 0.885776i \(0.346373\pi\)
\(702\) 0 0
\(703\) −33.5236 58.0645i −1.26437 2.18995i
\(704\) 5.20100 9.00840i 0.196020 0.339517i
\(705\) 0 0
\(706\) −21.4321 + 37.1215i −0.806607 + 1.39708i
\(707\) 0 0
\(708\) 0 0
\(709\) 30.8976 1.16038 0.580192 0.814480i \(-0.302978\pi\)
0.580192 + 0.814480i \(0.302978\pi\)
\(710\) −7.50992 13.0076i −0.281842 0.488165i
\(711\) 0 0
\(712\) 18.0832 31.3210i 0.677697 1.17380i
\(713\) 4.12960 + 7.15268i 0.154655 + 0.267870i
\(714\) 0 0
\(715\) 6.69133 11.5897i 0.250242 0.433431i
\(716\) −0.213506 0.369803i −0.00797908 0.0138202i
\(717\) 0 0
\(718\) 15.6216 27.0573i 0.582992 1.00977i
\(719\) −3.05690 + 5.29471i −0.114003 + 0.197459i −0.917381 0.398011i \(-0.869701\pi\)
0.803378 + 0.595470i \(0.203034\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 18.2938 + 31.6857i 0.680823 + 1.17922i
\(723\) 0 0
\(724\) 1.75822 0.0653437
\(725\) 20.2347 0.751498
\(726\) 0 0
\(727\) −22.2492 38.5367i −0.825176 1.42925i −0.901785 0.432186i \(-0.857743\pi\)
0.0766087 0.997061i \(-0.475591\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2.37882 + 4.12023i −0.0880440 + 0.152497i
\(731\) 23.7039 41.0564i 0.876722 1.51853i
\(732\) 0 0
\(733\) 4.91854 + 8.51916i 0.181670 + 0.314662i 0.942449 0.334349i \(-0.108516\pi\)
−0.760779 + 0.649011i \(0.775183\pi\)
\(734\) −1.72559 + 2.98881i −0.0636926 + 0.110319i
\(735\) 0 0
\(736\) 3.73821 + 6.47478i 0.137792 + 0.238663i
\(737\) 3.14257 5.44309i 0.115758 0.200499i
\(738\) 0 0
\(739\) −7.42464 12.8598i −0.273120 0.473057i 0.696539 0.717519i \(-0.254722\pi\)
−0.969659 + 0.244461i \(0.921389\pi\)
\(740\) −10.6842 −0.392760
\(741\) 0 0
\(742\) 0 0
\(743\) 3.04201 5.26892i 0.111601 0.193298i −0.804815 0.593525i \(-0.797736\pi\)
0.916416 + 0.400228i \(0.131069\pi\)
\(744\) 0 0
\(745\) −1.98935 + 3.44566i −0.0728843 + 0.126239i
\(746\) −20.7449 35.9311i −0.759523 1.31553i
\(747\) 0 0
\(748\) 1.79328 0.0655686
\(749\) 0 0
\(750\) 0 0
\(751\) −11.1005 19.2266i −0.405063 0.701590i 0.589266 0.807939i \(-0.299417\pi\)
−0.994329 + 0.106349i \(0.966084\pi\)
\(752\) 2.07887 0.0758087
\(753\) 0 0
\(754\) 11.3987 0.415116
\(755\) 69.2106 2.51883
\(756\) 0 0
\(757\) 25.0464 0.910329 0.455164 0.890407i \(-0.349581\pi\)
0.455164 + 0.890407i \(0.349581\pi\)
\(758\) −39.3446 −1.42906
\(759\) 0 0
\(760\) 72.7051 2.63729
\(761\) −3.37632 5.84796i −0.122392 0.211988i 0.798319 0.602235i \(-0.205723\pi\)
−0.920710 + 0.390247i \(0.872390\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −7.76233 −0.280831
\(765\) 0 0
\(766\) −1.12637 1.95094i −0.0406975 0.0704902i
\(767\) −13.2255 + 22.9072i −0.477544 + 0.827131i
\(768\) 0 0
\(769\) −21.0805 + 36.5125i −0.760182 + 1.31667i 0.182575 + 0.983192i \(0.441557\pi\)
−0.942757 + 0.333482i \(0.891776\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.44130 −0.195837
\(773\) −1.64926 2.85660i −0.0593197 0.102745i 0.834841 0.550492i \(-0.185560\pi\)
−0.894160 + 0.447747i \(0.852226\pi\)
\(774\) 0 0
\(775\) 7.13728 12.3621i 0.256379 0.444061i
\(776\) −16.4108 28.4243i −0.589112 1.02037i
\(777\) 0 0
\(778\) 7.20356 12.4769i 0.258260 0.447320i
\(779\) −22.8425 39.5644i −0.818419 1.41754i
\(780\) 0 0
\(781\) 1.93114 3.34484i 0.0691017 0.119688i
\(782\) 13.7026 23.7336i 0.490004 0.848713i
\(783\) 0 0
\(784\) 0 0
\(785\) 16.4522 + 28.4961i 0.587205 + 1.01707i
\(786\) 0 0
\(787\) −6.72910 −0.239867 −0.119933 0.992782i \(-0.538268\pi\)
−0.119933 + 0.992782i \(0.538268\pi\)
\(788\) −6.13031 −0.218383
\(789\) 0 0
\(790\) −2.30092 3.98530i −0.0818629 0.141791i
\(791\) 0 0
\(792\) 0 0
\(793\) −15.5542 + 26.9406i −0.552345 + 0.956689i
\(794\) 16.4688 28.5248i 0.584456 1.01231i
\(795\) 0 0
\(796\) −2.95160 5.11233i