Properties

Label 1323.2.h.d.226.3
Level $1323$
Weight $2$
Character 1323.226
Analytic conductor $10.564$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(226,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 226.3
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 1323.226
Dual form 1323.2.h.d.802.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46050 q^{2} +4.05408 q^{4} +(-1.29679 - 2.24611i) q^{5} +5.05408 q^{8} +O(q^{10})\) \(q+2.46050 q^{2} +4.05408 q^{4} +(-1.29679 - 2.24611i) q^{5} +5.05408 q^{8} +(-3.19076 - 5.52655i) q^{10} +(2.25729 - 3.90975i) q^{11} +(-0.500000 + 0.866025i) q^{13} +4.32743 q^{16} +(-0.472958 - 0.819187i) q^{17} +(2.02704 - 3.51094i) q^{19} +(-5.25729 - 9.10590i) q^{20} +(5.55408 - 9.61996i) q^{22} +(-0.136673 - 0.236725i) q^{23} +(-0.863327 + 1.49533i) q^{25} +(-1.23025 + 2.13086i) q^{26} +(1.23025 + 2.13086i) q^{29} +2.32743 q^{31} +0.539495 q^{32} +(-1.16372 - 2.01561i) q^{34} +(-0.890369 + 1.54216i) q^{37} +(4.98755 - 8.63868i) q^{38} +(-6.55408 - 11.3520i) q^{40} +(-3.20321 + 5.54812i) q^{41} +(5.21780 + 9.03749i) q^{43} +(9.15126 - 15.8505i) q^{44} +(-0.336285 - 0.582462i) q^{46} +12.1623 q^{47} +(-2.12422 + 3.67926i) q^{50} +(-2.02704 + 3.51094i) q^{52} +(-3.13667 - 5.43288i) q^{53} -11.7089 q^{55} +(3.02704 + 5.24299i) q^{58} +2.72665 q^{59} -2.27335 q^{61} +5.72665 q^{62} -7.32743 q^{64} +2.59358 q^{65} -15.8171 q^{67} +(-1.91741 - 3.32105i) q^{68} -3.27335 q^{71} +(0.753696 + 1.30544i) q^{73} +(-2.19076 + 3.79450i) q^{74} +(8.21780 - 14.2336i) q^{76} +14.7089 q^{79} +(-5.61177 - 9.71987i) q^{80} +(-7.88151 + 13.6512i) q^{82} +(-0.472958 - 0.819187i) q^{83} +(-1.22665 + 2.12463i) q^{85} +(12.8384 + 22.2368i) q^{86} +(11.4086 - 19.7602i) q^{88} +(-7.17830 + 12.4332i) q^{89} +(-0.554084 - 0.959702i) q^{92} +29.9253 q^{94} -10.5146 q^{95} +(5.74484 + 9.95036i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 6 q^{4} - 5 q^{5} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} + 6 q^{4} - 5 q^{5} + 12 q^{8} - 2 q^{11} - 3 q^{13} + 6 q^{16} - 12 q^{17} + 3 q^{19} - 16 q^{20} + 15 q^{22} - 6 q^{25} - q^{26} + q^{29} - 6 q^{31} + 16 q^{32} + 3 q^{34} + 3 q^{37} + 8 q^{38} - 21 q^{40} - 22 q^{41} + 3 q^{43} + 23 q^{44} - 12 q^{46} + 18 q^{47} + 10 q^{50} - 3 q^{52} - 18 q^{53} - 12 q^{55} + 9 q^{58} + 18 q^{59} - 12 q^{61} + 36 q^{62} - 24 q^{64} + 10 q^{65} + 6 q^{68} - 18 q^{71} - 3 q^{73} + 6 q^{74} + 21 q^{76} + 30 q^{79} + 11 q^{80} - 9 q^{82} - 12 q^{83} - 9 q^{85} + 34 q^{86} + 21 q^{88} - 2 q^{89} + 15 q^{92} + 48 q^{94} - 32 q^{95} - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.46050 1.73984 0.869920 0.493193i \(-0.164170\pi\)
0.869920 + 0.493193i \(0.164170\pi\)
\(3\) 0 0
\(4\) 4.05408 2.02704
\(5\) −1.29679 2.24611i −0.579942 1.00449i −0.995485 0.0949156i \(-0.969742\pi\)
0.415543 0.909573i \(-0.363591\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 5.05408 1.78689
\(9\) 0 0
\(10\) −3.19076 5.52655i −1.00901 1.74765i
\(11\) 2.25729 3.90975i 0.680600 1.17883i −0.294198 0.955744i \(-0.595053\pi\)
0.974798 0.223089i \(-0.0716141\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i −0.926995 0.375073i \(-0.877618\pi\)
0.788320 + 0.615265i \(0.210951\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.32743 1.08186
\(17\) −0.472958 0.819187i −0.114709 0.198682i 0.802954 0.596041i \(-0.203260\pi\)
−0.917663 + 0.397359i \(0.869927\pi\)
\(18\) 0 0
\(19\) 2.02704 3.51094i 0.465035 0.805465i −0.534168 0.845378i \(-0.679375\pi\)
0.999203 + 0.0399136i \(0.0127083\pi\)
\(20\) −5.25729 9.10590i −1.17557 2.03614i
\(21\) 0 0
\(22\) 5.55408 9.61996i 1.18413 2.05098i
\(23\) −0.136673 0.236725i −0.0284983 0.0493605i 0.851425 0.524477i \(-0.175739\pi\)
−0.879923 + 0.475117i \(0.842406\pi\)
\(24\) 0 0
\(25\) −0.863327 + 1.49533i −0.172665 + 0.299065i
\(26\) −1.23025 + 2.13086i −0.241272 + 0.417896i
\(27\) 0 0
\(28\) 0 0
\(29\) 1.23025 + 2.13086i 0.228452 + 0.395691i 0.957350 0.288932i \(-0.0933002\pi\)
−0.728897 + 0.684623i \(0.759967\pi\)
\(30\) 0 0
\(31\) 2.32743 0.418019 0.209009 0.977914i \(-0.432976\pi\)
0.209009 + 0.977914i \(0.432976\pi\)
\(32\) 0.539495 0.0953702
\(33\) 0 0
\(34\) −1.16372 2.01561i −0.199576 0.345675i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.890369 + 1.54216i −0.146376 + 0.253530i −0.929885 0.367849i \(-0.880094\pi\)
0.783510 + 0.621380i \(0.213428\pi\)
\(38\) 4.98755 8.63868i 0.809087 1.40138i
\(39\) 0 0
\(40\) −6.55408 11.3520i −1.03629 1.79491i
\(41\) −3.20321 + 5.54812i −0.500257 + 0.866471i 0.499743 + 0.866174i \(0.333428\pi\)
−1.00000 0.000297253i \(0.999905\pi\)
\(42\) 0 0
\(43\) 5.21780 + 9.03749i 0.795707 + 1.37820i 0.922389 + 0.386262i \(0.126234\pi\)
−0.126682 + 0.991943i \(0.540433\pi\)
\(44\) 9.15126 15.8505i 1.37960 2.38955i
\(45\) 0 0
\(46\) −0.336285 0.582462i −0.0495825 0.0858794i
\(47\) 12.1623 1.77405 0.887023 0.461724i \(-0.152769\pi\)
0.887023 + 0.461724i \(0.152769\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.12422 + 3.67926i −0.300410 + 0.520326i
\(51\) 0 0
\(52\) −2.02704 + 3.51094i −0.281100 + 0.486880i
\(53\) −3.13667 5.43288i −0.430855 0.746263i 0.566092 0.824342i \(-0.308455\pi\)
−0.996947 + 0.0780790i \(0.975121\pi\)
\(54\) 0 0
\(55\) −11.7089 −1.57883
\(56\) 0 0
\(57\) 0 0
\(58\) 3.02704 + 5.24299i 0.397470 + 0.688438i
\(59\) 2.72665 0.354980 0.177490 0.984123i \(-0.443202\pi\)
0.177490 + 0.984123i \(0.443202\pi\)
\(60\) 0 0
\(61\) −2.27335 −0.291072 −0.145536 0.989353i \(-0.546491\pi\)
−0.145536 + 0.989353i \(0.546491\pi\)
\(62\) 5.72665 0.727286
\(63\) 0 0
\(64\) −7.32743 −0.915929
\(65\) 2.59358 0.321694
\(66\) 0 0
\(67\) −15.8171 −1.93237 −0.966184 0.257854i \(-0.916985\pi\)
−0.966184 + 0.257854i \(0.916985\pi\)
\(68\) −1.91741 3.32105i −0.232520 0.402737i
\(69\) 0 0
\(70\) 0 0
\(71\) −3.27335 −0.388475 −0.194237 0.980955i \(-0.562223\pi\)
−0.194237 + 0.980955i \(0.562223\pi\)
\(72\) 0 0
\(73\) 0.753696 + 1.30544i 0.0882134 + 0.152790i 0.906756 0.421656i \(-0.138551\pi\)
−0.818543 + 0.574446i \(0.805218\pi\)
\(74\) −2.19076 + 3.79450i −0.254670 + 0.441102i
\(75\) 0 0
\(76\) 8.21780 14.2336i 0.942646 1.63271i
\(77\) 0 0
\(78\) 0 0
\(79\) 14.7089 1.65489 0.827443 0.561550i \(-0.189795\pi\)
0.827443 + 0.561550i \(0.189795\pi\)
\(80\) −5.61177 9.71987i −0.627415 1.08671i
\(81\) 0 0
\(82\) −7.88151 + 13.6512i −0.870368 + 1.50752i
\(83\) −0.472958 0.819187i −0.0519139 0.0899175i 0.838901 0.544285i \(-0.183199\pi\)
−0.890815 + 0.454367i \(0.849865\pi\)
\(84\) 0 0
\(85\) −1.22665 + 2.12463i −0.133049 + 0.230448i
\(86\) 12.8384 + 22.2368i 1.38440 + 2.39786i
\(87\) 0 0
\(88\) 11.4086 19.7602i 1.21616 2.10644i
\(89\) −7.17830 + 12.4332i −0.760899 + 1.31792i 0.181489 + 0.983393i \(0.441908\pi\)
−0.942388 + 0.334522i \(0.891425\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.554084 0.959702i −0.0577673 0.100056i
\(93\) 0 0
\(94\) 29.9253 3.08656
\(95\) −10.5146 −1.07877
\(96\) 0 0
\(97\) 5.74484 + 9.95036i 0.583300 + 1.01031i 0.995085 + 0.0990246i \(0.0315722\pi\)
−0.411785 + 0.911281i \(0.635094\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.50000 + 6.06218i −0.350000 + 0.606218i
\(101\) −1.83988 + 3.18677i −0.183075 + 0.317096i −0.942926 0.333002i \(-0.891939\pi\)
0.759851 + 0.650097i \(0.225272\pi\)
\(102\) 0 0
\(103\) 4.86333 + 8.42353i 0.479198 + 0.829995i 0.999715 0.0238560i \(-0.00759431\pi\)
−0.520518 + 0.853851i \(0.674261\pi\)
\(104\) −2.52704 + 4.37697i −0.247797 + 0.429197i
\(105\) 0 0
\(106\) −7.71780 13.3676i −0.749619 1.29838i
\(107\) −0.687159 + 1.19019i −0.0664301 + 0.115060i −0.897327 0.441365i \(-0.854494\pi\)
0.830897 + 0.556426i \(0.187828\pi\)
\(108\) 0 0
\(109\) 1.69961 + 2.94381i 0.162793 + 0.281966i 0.935869 0.352347i \(-0.114616\pi\)
−0.773076 + 0.634313i \(0.781283\pi\)
\(110\) −28.8099 −2.74692
\(111\) 0 0
\(112\) 0 0
\(113\) 5.19436 8.99689i 0.488644 0.846356i −0.511271 0.859420i \(-0.670825\pi\)
0.999915 + 0.0130636i \(0.00415840\pi\)
\(114\) 0 0
\(115\) −0.354473 + 0.613964i −0.0330547 + 0.0572525i
\(116\) 4.98755 + 8.63868i 0.463082 + 0.802082i
\(117\) 0 0
\(118\) 6.70895 0.617608
\(119\) 0 0
\(120\) 0 0
\(121\) −4.69076 8.12463i −0.426432 0.738603i
\(122\) −5.59358 −0.506419
\(123\) 0 0
\(124\) 9.43560 0.847342
\(125\) −8.48968 −0.759340
\(126\) 0 0
\(127\) 0.672570 0.0596809 0.0298405 0.999555i \(-0.490500\pi\)
0.0298405 + 0.999555i \(0.490500\pi\)
\(128\) −19.1082 −1.68894
\(129\) 0 0
\(130\) 6.38151 0.559696
\(131\) 3.95691 + 6.85356i 0.345717 + 0.598799i 0.985484 0.169770i \(-0.0543026\pi\)
−0.639767 + 0.768569i \(0.720969\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −38.9181 −3.36201
\(135\) 0 0
\(136\) −2.39037 4.14024i −0.204972 0.355023i
\(137\) −1.83628 + 3.18054i −0.156884 + 0.271732i −0.933744 0.357943i \(-0.883478\pi\)
0.776859 + 0.629674i \(0.216812\pi\)
\(138\) 0 0
\(139\) 1.02704 1.77889i 0.0871126 0.150883i −0.819177 0.573541i \(-0.805569\pi\)
0.906289 + 0.422658i \(0.138903\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.05408 −0.675884
\(143\) 2.25729 + 3.90975i 0.188764 + 0.326950i
\(144\) 0 0
\(145\) 3.19076 5.52655i 0.264978 0.458955i
\(146\) 1.85447 + 3.21204i 0.153477 + 0.265830i
\(147\) 0 0
\(148\) −3.60963 + 6.25206i −0.296710 + 0.513917i
\(149\) −6.77188 11.7292i −0.554774 0.960897i −0.997921 0.0644482i \(-0.979471\pi\)
0.443147 0.896449i \(-0.353862\pi\)
\(150\) 0 0
\(151\) −4.96410 + 8.59808i −0.403973 + 0.699702i −0.994201 0.107535i \(-0.965704\pi\)
0.590228 + 0.807236i \(0.299038\pi\)
\(152\) 10.2448 17.7446i 0.830966 1.43928i
\(153\) 0 0
\(154\) 0 0
\(155\) −3.01819 5.22765i −0.242427 0.419895i
\(156\) 0 0
\(157\) 6.05408 0.483169 0.241584 0.970380i \(-0.422333\pi\)
0.241584 + 0.970380i \(0.422333\pi\)
\(158\) 36.1914 2.87924
\(159\) 0 0
\(160\) −0.699612 1.21176i −0.0553092 0.0957983i
\(161\) 0 0
\(162\) 0 0
\(163\) −8.90856 + 15.4301i −0.697772 + 1.20858i 0.271465 + 0.962448i \(0.412492\pi\)
−0.969237 + 0.246128i \(0.920842\pi\)
\(164\) −12.9861 + 22.4926i −1.01404 + 1.75637i
\(165\) 0 0
\(166\) −1.16372 2.01561i −0.0903218 0.156442i
\(167\) −4.23385 + 7.33325i −0.327625 + 0.567464i −0.982040 0.188672i \(-0.939582\pi\)
0.654415 + 0.756136i \(0.272915\pi\)
\(168\) 0 0
\(169\) 6.00000 + 10.3923i 0.461538 + 0.799408i
\(170\) −3.01819 + 5.22765i −0.231484 + 0.400943i
\(171\) 0 0
\(172\) 21.1534 + 36.6388i 1.61293 + 2.79368i
\(173\) −17.3566 −1.31960 −0.659799 0.751442i \(-0.729359\pi\)
−0.659799 + 0.751442i \(0.729359\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 9.76829 16.9192i 0.736312 1.27533i
\(177\) 0 0
\(178\) −17.6623 + 30.5919i −1.32384 + 2.29296i
\(179\) −5.67471 9.82888i −0.424147 0.734645i 0.572193 0.820119i \(-0.306093\pi\)
−0.996340 + 0.0854741i \(0.972759\pi\)
\(180\) 0 0
\(181\) 21.8889 1.62699 0.813495 0.581572i \(-0.197562\pi\)
0.813495 + 0.581572i \(0.197562\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −0.690757 1.19643i −0.0509233 0.0882018i
\(185\) 4.61849 0.339558
\(186\) 0 0
\(187\) −4.27042 −0.312284
\(188\) 49.3068 3.59607
\(189\) 0 0
\(190\) −25.8712 −1.87689
\(191\) 0.701748 0.0507767 0.0253883 0.999678i \(-0.491918\pi\)
0.0253883 + 0.999678i \(0.491918\pi\)
\(192\) 0 0
\(193\) 12.1445 0.874183 0.437092 0.899417i \(-0.356009\pi\)
0.437092 + 0.899417i \(0.356009\pi\)
\(194\) 14.1352 + 24.4829i 1.01485 + 1.75777i
\(195\) 0 0
\(196\) 0 0
\(197\) 16.4107 1.16921 0.584607 0.811317i \(-0.301249\pi\)
0.584607 + 0.811317i \(0.301249\pi\)
\(198\) 0 0
\(199\) −11.3530 19.6640i −0.804794 1.39394i −0.916430 0.400194i \(-0.868943\pi\)
0.111637 0.993749i \(-0.464391\pi\)
\(200\) −4.36333 + 7.55750i −0.308534 + 0.534396i
\(201\) 0 0
\(202\) −4.52704 + 7.84107i −0.318522 + 0.551696i
\(203\) 0 0
\(204\) 0 0
\(205\) 16.6156 1.16048
\(206\) 11.9662 + 20.7261i 0.833727 + 1.44406i
\(207\) 0 0
\(208\) −2.16372 + 3.74766i −0.150027 + 0.259854i
\(209\) −9.15126 15.8505i −0.633006 1.09640i
\(210\) 0 0
\(211\) −2.28074 + 3.95035i −0.157012 + 0.271954i −0.933790 0.357822i \(-0.883520\pi\)
0.776778 + 0.629775i \(0.216853\pi\)
\(212\) −12.7163 22.0253i −0.873362 1.51271i
\(213\) 0 0
\(214\) −1.69076 + 2.92848i −0.115578 + 0.200187i
\(215\) 13.5328 23.4395i 0.922928 1.59856i
\(216\) 0 0
\(217\) 0 0
\(218\) 4.18190 + 7.24327i 0.283234 + 0.490576i
\(219\) 0 0
\(220\) −47.4690 −3.20036
\(221\) 0.945916 0.0636292
\(222\) 0 0
\(223\) −6.66225 11.5394i −0.446137 0.772733i 0.551993 0.833849i \(-0.313867\pi\)
−0.998131 + 0.0611159i \(0.980534\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 12.7807 22.1369i 0.850162 1.47252i
\(227\) 0.690757 1.19643i 0.0458472 0.0794096i −0.842191 0.539179i \(-0.818735\pi\)
0.888038 + 0.459769i \(0.152068\pi\)
\(228\) 0 0
\(229\) 8.98968 + 15.5706i 0.594055 + 1.02893i 0.993679 + 0.112254i \(0.0358072\pi\)
−0.399625 + 0.916679i \(0.630859\pi\)
\(230\) −0.872181 + 1.51066i −0.0575099 + 0.0996101i
\(231\) 0 0
\(232\) 6.21780 + 10.7695i 0.408219 + 0.707055i
\(233\) −9.49115 + 16.4391i −0.621786 + 1.07696i 0.367367 + 0.930076i \(0.380259\pi\)
−0.989153 + 0.146888i \(0.953074\pi\)
\(234\) 0 0
\(235\) −15.7719 27.3177i −1.02884 1.78201i
\(236\) 11.0541 0.719560
\(237\) 0 0
\(238\) 0 0
\(239\) 2.44592 4.23645i 0.158213 0.274033i −0.776011 0.630719i \(-0.782760\pi\)
0.934224 + 0.356686i \(0.116093\pi\)
\(240\) 0 0
\(241\) 13.0797 22.6546i 0.842535 1.45931i −0.0452094 0.998978i \(-0.514396\pi\)
0.887745 0.460336i \(-0.152271\pi\)
\(242\) −11.5416 19.9907i −0.741924 1.28505i
\(243\) 0 0
\(244\) −9.21634 −0.590016
\(245\) 0 0
\(246\) 0 0
\(247\) 2.02704 + 3.51094i 0.128978 + 0.223396i
\(248\) 11.7630 0.746953
\(249\) 0 0
\(250\) −20.8889 −1.32113
\(251\) −18.4576 −1.16503 −0.582516 0.812819i \(-0.697932\pi\)
−0.582516 + 0.812819i \(0.697932\pi\)
\(252\) 0 0
\(253\) −1.23405 −0.0775838
\(254\) 1.65486 0.103835
\(255\) 0 0
\(256\) −32.3609 −2.02256
\(257\) −5.86693 10.1618i −0.365969 0.633876i 0.622962 0.782252i \(-0.285929\pi\)
−0.988931 + 0.148375i \(0.952596\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 10.5146 0.652087
\(261\) 0 0
\(262\) 9.73599 + 16.8632i 0.601491 + 1.04181i
\(263\) −3.76089 + 6.51406i −0.231907 + 0.401674i −0.958369 0.285532i \(-0.907830\pi\)
0.726463 + 0.687206i \(0.241163\pi\)
\(264\) 0 0
\(265\) −8.13521 + 14.0906i −0.499742 + 0.865579i
\(266\) 0 0
\(267\) 0 0
\(268\) −64.1239 −3.91699
\(269\) −9.41741 16.3114i −0.574190 0.994526i −0.996129 0.0879017i \(-0.971984\pi\)
0.421939 0.906624i \(-0.361349\pi\)
\(270\) 0 0
\(271\) 11.9911 20.7693i 0.728410 1.26164i −0.229145 0.973392i \(-0.573593\pi\)
0.957555 0.288251i \(-0.0930738\pi\)
\(272\) −2.04669 3.54498i −0.124099 0.214946i
\(273\) 0 0
\(274\) −4.51819 + 7.82573i −0.272954 + 0.472770i
\(275\) 3.89757 + 6.75078i 0.235032 + 0.407088i
\(276\) 0 0
\(277\) −3.58113 + 6.20269i −0.215169 + 0.372684i −0.953325 0.301947i \(-0.902364\pi\)
0.738156 + 0.674630i \(0.235697\pi\)
\(278\) 2.52704 4.37697i 0.151562 0.262513i
\(279\) 0 0
\(280\) 0 0
\(281\) 7.44085 + 12.8879i 0.443884 + 0.768830i 0.997974 0.0636271i \(-0.0202668\pi\)
−0.554090 + 0.832457i \(0.686933\pi\)
\(282\) 0 0
\(283\) 19.9971 1.18870 0.594351 0.804205i \(-0.297409\pi\)
0.594351 + 0.804205i \(0.297409\pi\)
\(284\) −13.2704 −0.787455
\(285\) 0 0
\(286\) 5.55408 + 9.61996i 0.328420 + 0.568840i
\(287\) 0 0
\(288\) 0 0
\(289\) 8.05262 13.9475i 0.473684 0.820444i
\(290\) 7.85087 13.5981i 0.461019 0.798509i
\(291\) 0 0
\(292\) 3.05555 + 5.29236i 0.178812 + 0.309712i
\(293\) 7.53278 13.0472i 0.440070 0.762223i −0.557625 0.830093i \(-0.688287\pi\)
0.997694 + 0.0678705i \(0.0216205\pi\)
\(294\) 0 0
\(295\) −3.53590 6.12435i −0.205868 0.356574i
\(296\) −4.50000 + 7.79423i −0.261557 + 0.453030i
\(297\) 0 0
\(298\) −16.6623 28.8599i −0.965218 1.67181i
\(299\) 0.273346 0.0158080
\(300\) 0 0
\(301\) 0 0
\(302\) −12.2142 + 21.1556i −0.702848 + 1.21737i
\(303\) 0 0
\(304\) 8.77188 15.1933i 0.503102 0.871398i
\(305\) 2.94805 + 5.10618i 0.168805 + 0.292379i
\(306\) 0 0
\(307\) −27.2704 −1.55641 −0.778203 0.628013i \(-0.783868\pi\)
−0.778203 + 0.628013i \(0.783868\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −7.42627 12.8627i −0.421784 0.730551i
\(311\) 15.9823 0.906273 0.453136 0.891441i \(-0.350305\pi\)
0.453136 + 0.891441i \(0.350305\pi\)
\(312\) 0 0
\(313\) 11.5979 0.655549 0.327775 0.944756i \(-0.393701\pi\)
0.327775 + 0.944756i \(0.393701\pi\)
\(314\) 14.8961 0.840636
\(315\) 0 0
\(316\) 59.6313 3.35452
\(317\) 2.01771 0.113326 0.0566629 0.998393i \(-0.481954\pi\)
0.0566629 + 0.998393i \(0.481954\pi\)
\(318\) 0 0
\(319\) 11.1082 0.621938
\(320\) 9.50214 + 16.4582i 0.531186 + 0.920040i
\(321\) 0 0
\(322\) 0 0
\(323\) −3.83482 −0.213375
\(324\) 0 0
\(325\) −0.863327 1.49533i −0.0478888 0.0829458i
\(326\) −21.9195 + 37.9658i −1.21401 + 2.10273i
\(327\) 0 0
\(328\) −16.1893 + 28.0407i −0.893904 + 1.54829i
\(329\) 0 0
\(330\) 0 0
\(331\) −19.7089 −1.08330 −0.541651 0.840604i \(-0.682200\pi\)
−0.541651 + 0.840604i \(0.682200\pi\)
\(332\) −1.91741 3.32105i −0.105232 0.182266i
\(333\) 0 0
\(334\) −10.4174 + 18.0435i −0.570015 + 0.987296i
\(335\) 20.5115 + 35.5269i 1.12066 + 1.94104i
\(336\) 0 0
\(337\) 14.5256 25.1590i 0.791259 1.37050i −0.133929 0.990991i \(-0.542759\pi\)
0.925188 0.379509i \(-0.123907\pi\)
\(338\) 14.7630 + 25.5703i 0.803003 + 1.39084i
\(339\) 0 0
\(340\) −4.97296 + 8.61342i −0.269697 + 0.467128i
\(341\) 5.25370 9.09967i 0.284504 0.492775i
\(342\) 0 0
\(343\) 0 0
\(344\) 26.3712 + 45.6763i 1.42184 + 2.46270i
\(345\) 0 0
\(346\) −42.7060 −2.29589
\(347\) −29.0833 −1.56127 −0.780636 0.624986i \(-0.785105\pi\)
−0.780636 + 0.624986i \(0.785105\pi\)
\(348\) 0 0
\(349\) −12.3815 21.4454i −0.662767 1.14795i −0.979885 0.199561i \(-0.936049\pi\)
0.317118 0.948386i \(-0.397285\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.21780 2.10929i 0.0649089 0.112426i
\(353\) −16.6513 + 28.8408i −0.886257 + 1.53504i −0.0419914 + 0.999118i \(0.513370\pi\)
−0.844266 + 0.535925i \(0.819963\pi\)
\(354\) 0 0
\(355\) 4.24484 + 7.35228i 0.225293 + 0.390219i
\(356\) −29.1015 + 50.4052i −1.54237 + 2.67147i
\(357\) 0 0
\(358\) −13.9626 24.1840i −0.737949 1.27816i
\(359\) 12.7683 22.1153i 0.673884 1.16720i −0.302909 0.953019i \(-0.597958\pi\)
0.976794 0.214182i \(-0.0687087\pi\)
\(360\) 0 0
\(361\) 1.28220 + 2.22084i 0.0674842 + 0.116886i
\(362\) 53.8578 2.83070
\(363\) 0 0
\(364\) 0 0
\(365\) 1.95477 3.38576i 0.102317 0.177219i
\(366\) 0 0
\(367\) −13.7252 + 23.7727i −0.716449 + 1.24093i 0.245949 + 0.969283i \(0.420900\pi\)
−0.962398 + 0.271644i \(0.912433\pi\)
\(368\) −0.591443 1.02441i −0.0308311 0.0534011i
\(369\) 0 0
\(370\) 11.3638 0.590776
\(371\) 0 0
\(372\) 0 0
\(373\) −8.16372 14.1400i −0.422701 0.732140i 0.573502 0.819204i \(-0.305585\pi\)
−0.996203 + 0.0870646i \(0.972251\pi\)
\(374\) −10.5074 −0.543324
\(375\) 0 0
\(376\) 61.4690 3.17002
\(377\) −2.46050 −0.126722
\(378\) 0 0
\(379\) 12.0364 0.618267 0.309134 0.951019i \(-0.399961\pi\)
0.309134 + 0.951019i \(0.399961\pi\)
\(380\) −42.6270 −2.18672
\(381\) 0 0
\(382\) 1.72665 0.0883433
\(383\) −6.21780 10.7695i −0.317715 0.550298i 0.662296 0.749242i \(-0.269582\pi\)
−0.980011 + 0.198944i \(0.936249\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 29.8817 1.52094
\(387\) 0 0
\(388\) 23.2901 + 40.3396i 1.18237 + 2.04793i
\(389\) 10.3004 17.8408i 0.522250 0.904564i −0.477414 0.878678i \(-0.658426\pi\)
0.999665 0.0258860i \(-0.00824070\pi\)
\(390\) 0 0
\(391\) −0.129281 + 0.223922i −0.00653803 + 0.0113242i
\(392\) 0 0
\(393\) 0 0
\(394\) 40.3786 2.03424
\(395\) −19.0744 33.0378i −0.959738 1.66231i
\(396\) 0 0
\(397\) 11.8186 20.4704i 0.593157 1.02738i −0.400647 0.916233i \(-0.631215\pi\)
0.993804 0.111146i \(-0.0354521\pi\)
\(398\) −27.9341 48.3833i −1.40021 2.42524i
\(399\) 0 0
\(400\) −3.73599 + 6.47092i −0.186799 + 0.323546i
\(401\) −1.28220 2.22084i −0.0640300 0.110903i 0.832233 0.554426i \(-0.187062\pi\)
−0.896263 + 0.443522i \(0.853729\pi\)
\(402\) 0 0
\(403\) −1.16372 + 2.01561i −0.0579688 + 0.100405i
\(404\) −7.45904 + 12.9194i −0.371101 + 0.642766i
\(405\) 0 0
\(406\) 0 0
\(407\) 4.01965 + 6.96224i 0.199247 + 0.345105i
\(408\) 0 0
\(409\) −34.3245 −1.69724 −0.848619 0.529005i \(-0.822565\pi\)
−0.848619 + 0.529005i \(0.822565\pi\)
\(410\) 40.8827 2.01905
\(411\) 0 0
\(412\) 19.7163 + 34.1497i 0.971354 + 1.68243i
\(413\) 0 0
\(414\) 0 0
\(415\) −1.22665 + 2.12463i −0.0602141 + 0.104294i
\(416\) −0.269748 + 0.467216i −0.0132255 + 0.0229072i
\(417\) 0 0
\(418\) −22.5167 39.0001i −1.10133 1.90756i
\(419\) 2.02850 3.51347i 0.0990989 0.171644i −0.812213 0.583361i \(-0.801737\pi\)
0.911312 + 0.411717i \(0.135071\pi\)
\(420\) 0 0
\(421\) 10.5344 + 18.2462i 0.513417 + 0.889264i 0.999879 + 0.0155624i \(0.00495387\pi\)
−0.486462 + 0.873702i \(0.661713\pi\)
\(422\) −5.61177 + 9.71987i −0.273177 + 0.473156i
\(423\) 0 0
\(424\) −15.8530 27.4582i −0.769890 1.33349i
\(425\) 1.63327 0.0792252
\(426\) 0 0
\(427\) 0 0
\(428\) −2.78580 + 4.82515i −0.134657 + 0.233232i
\(429\) 0 0
\(430\) 33.2975 57.6729i 1.60575 2.78123i
\(431\) 11.3092 + 19.5882i 0.544747 + 0.943530i 0.998623 + 0.0524646i \(0.0167077\pi\)
−0.453876 + 0.891065i \(0.649959\pi\)
\(432\) 0 0
\(433\) 2.41789 0.116196 0.0580982 0.998311i \(-0.481496\pi\)
0.0580982 + 0.998311i \(0.481496\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.89037 + 11.9345i 0.329989 + 0.571557i
\(437\) −1.10817 −0.0530109
\(438\) 0 0
\(439\) −23.4897 −1.12110 −0.560551 0.828120i \(-0.689411\pi\)
−0.560551 + 0.828120i \(0.689411\pi\)
\(440\) −59.1780 −2.82120
\(441\) 0 0
\(442\) 2.32743 0.110705
\(443\) 13.4179 0.637503 0.318752 0.947838i \(-0.396736\pi\)
0.318752 + 0.947838i \(0.396736\pi\)
\(444\) 0 0
\(445\) 37.2350 1.76511
\(446\) −16.3925 28.3927i −0.776208 1.34443i
\(447\) 0 0
\(448\) 0 0
\(449\) 9.16225 0.432393 0.216197 0.976350i \(-0.430635\pi\)
0.216197 + 0.976350i \(0.430635\pi\)
\(450\) 0 0
\(451\) 14.4612 + 25.0475i 0.680950 + 1.17944i
\(452\) 21.0584 36.4741i 0.990502 1.71560i
\(453\) 0 0
\(454\) 1.69961 2.94381i 0.0797667 0.138160i
\(455\) 0 0
\(456\) 0 0
\(457\) 8.81711 0.412447 0.206224 0.978505i \(-0.433883\pi\)
0.206224 + 0.978505i \(0.433883\pi\)
\(458\) 22.1192 + 38.3115i 1.03356 + 1.79018i
\(459\) 0 0
\(460\) −1.43706 + 2.48906i −0.0670033 + 0.116053i
\(461\) −2.82957 4.90095i −0.131786 0.228260i 0.792579 0.609769i \(-0.208738\pi\)
−0.924365 + 0.381509i \(0.875405\pi\)
\(462\) 0 0
\(463\) −7.86333 + 13.6197i −0.365440 + 0.632960i −0.988847 0.148937i \(-0.952415\pi\)
0.623407 + 0.781898i \(0.285748\pi\)
\(464\) 5.32383 + 9.22115i 0.247153 + 0.428081i
\(465\) 0 0
\(466\) −23.3530 + 40.4486i −1.08181 + 1.87375i
\(467\) −10.9985 + 19.0500i −0.508952 + 0.881530i 0.490995 + 0.871163i \(0.336633\pi\)
−0.999946 + 0.0103675i \(0.996700\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −38.8068 67.2153i −1.79002 3.10041i
\(471\) 0 0
\(472\) 13.7807 0.634310
\(473\) 47.1124 2.16623
\(474\) 0 0
\(475\) 3.50000 + 6.06218i 0.160591 + 0.278152i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.01819 10.4238i 0.275265 0.476774i
\(479\) 12.4875 21.6291i 0.570571 0.988257i −0.425937 0.904753i \(-0.640055\pi\)
0.996507 0.0835043i \(-0.0266112\pi\)
\(480\) 0 0
\(481\) −0.890369 1.54216i −0.0405973 0.0703166i
\(482\) 32.1826 55.7419i 1.46588 2.53897i
\(483\) 0 0
\(484\) −19.0167 32.9379i −0.864397 1.49718i
\(485\) 14.8997 25.8070i 0.676561 1.17184i
\(486\) 0 0
\(487\) 8.79893 + 15.2402i 0.398717 + 0.690599i 0.993568 0.113238i \(-0.0361221\pi\)
−0.594851 + 0.803836i \(0.702789\pi\)
\(488\) −11.4897 −0.520114
\(489\) 0 0
\(490\) 0 0
\(491\) 6.89757 11.9469i 0.311283 0.539158i −0.667358 0.744737i \(-0.732575\pi\)
0.978640 + 0.205580i \(0.0659080\pi\)
\(492\) 0 0
\(493\) 1.16372 2.01561i 0.0524111 0.0907787i
\(494\) 4.98755 + 8.63868i 0.224400 + 0.388673i
\(495\) 0 0
\(496\) 10.0718 0.452237
\(497\) 0 0
\(498\) 0 0
\(499\) −6.54377 11.3341i −0.292939 0.507386i 0.681564 0.731758i \(-0.261300\pi\)
−0.974503 + 0.224373i \(0.927967\pi\)
\(500\) −34.4179 −1.53921
\(501\) 0 0
\(502\) −45.4150 −2.02697
\(503\) 22.3068 0.994611 0.497305 0.867576i \(-0.334323\pi\)
0.497305 + 0.867576i \(0.334323\pi\)
\(504\) 0 0
\(505\) 9.54377 0.424692
\(506\) −3.03638 −0.134983
\(507\) 0 0
\(508\) 2.72665 0.120976
\(509\) −7.94659 13.7639i −0.352226 0.610074i 0.634413 0.772994i \(-0.281242\pi\)
−0.986639 + 0.162920i \(0.947909\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −41.4078 −1.82998
\(513\) 0 0
\(514\) −14.4356 25.0032i −0.636727 1.10284i
\(515\) 12.6134 21.8471i 0.555814 0.962698i
\(516\) 0 0
\(517\) 27.4538 47.5514i 1.20742 2.09131i
\(518\) 0 0
\(519\) 0 0
\(520\) 13.1082 0.574831
\(521\) 2.20895 + 3.82600i 0.0967756 + 0.167620i 0.910348 0.413843i \(-0.135814\pi\)
−0.813573 + 0.581463i \(0.802480\pi\)
\(522\) 0 0
\(523\) −12.6367 + 21.8874i −0.552563 + 0.957067i 0.445526 + 0.895269i \(0.353017\pi\)
−0.998089 + 0.0617982i \(0.980316\pi\)
\(524\) 16.0416 + 27.7849i 0.700782 + 1.21379i
\(525\) 0 0
\(526\) −9.25370 + 16.0279i −0.403480 + 0.698848i
\(527\) −1.10078 1.90660i −0.0479506 0.0830528i
\(528\) 0 0
\(529\) 11.4626 19.8539i 0.498376 0.863212i
\(530\) −20.0167 + 34.6700i −0.869471 + 1.50597i
\(531\) 0 0
\(532\) 0 0
\(533\) −3.20321 5.54812i −0.138746 0.240316i
\(534\) 0 0
\(535\) 3.56440 0.154103
\(536\) −79.9410 −3.45293
\(537\) 0 0
\(538\) −23.1716 40.1344i −0.998998 1.73032i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.71926 2.97785i 0.0739168 0.128028i −0.826698 0.562646i \(-0.809783\pi\)
0.900615 + 0.434618i \(0.143117\pi\)
\(542\) 29.5043 51.1029i 1.26732 2.19506i
\(543\) 0 0
\(544\) −0.255158 0.441947i −0.0109398 0.0189483i
\(545\) 4.40808 7.63501i 0.188821 0.327048i
\(546\) 0 0
\(547\) 3.46410 + 6.00000i 0.148114 + 0.256542i 0.930531 0.366214i \(-0.119346\pi\)
−0.782416 + 0.622756i \(0.786013\pi\)
\(548\) −7.44445 + 12.8942i −0.318011 + 0.550812i
\(549\) 0 0
\(550\) 9.58998 + 16.6103i 0.408918 + 0.708267i
\(551\) 9.97509 0.424953
\(552\) 0 0
\(553\) 0 0
\(554\) −8.81138 + 15.2618i −0.374360 + 0.648410i
\(555\) 0 0
\(556\) 4.16372 7.21177i 0.176581 0.305847i
\(557\) 16.7917 + 29.0841i 0.711488 + 1.23233i 0.964298 + 0.264818i \(0.0853119\pi\)
−0.252810 + 0.967516i \(0.581355\pi\)
\(558\) 0 0
\(559\) −10.4356 −0.441379
\(560\) 0 0
\(561\) 0 0
\(562\) 18.3083 + 31.7108i 0.772287 + 1.33764i
\(563\) −42.4792 −1.79028 −0.895142 0.445781i \(-0.852926\pi\)
−0.895142 + 0.445781i \(0.852926\pi\)
\(564\) 0 0
\(565\) −26.9439 −1.13354
\(566\) 49.2029 2.06815
\(567\) 0 0
\(568\) −16.5438 −0.694161
\(569\) −10.4035 −0.436137 −0.218069 0.975933i \(-0.569976\pi\)
−0.218069 + 0.975933i \(0.569976\pi\)
\(570\) 0 0
\(571\) 17.8496 0.746983 0.373491 0.927634i \(-0.378161\pi\)
0.373491 + 0.927634i \(0.378161\pi\)
\(572\) 9.15126 + 15.8505i 0.382633 + 0.662741i
\(573\) 0 0
\(574\) 0 0
\(575\) 0.471974 0.0196827
\(576\) 0 0
\(577\) −5.97150 10.3429i −0.248597 0.430582i 0.714540 0.699595i \(-0.246636\pi\)
−0.963137 + 0.269013i \(0.913303\pi\)
\(578\) 19.8135 34.3180i 0.824134 1.42744i
\(579\) 0 0
\(580\) 12.9356 22.4051i 0.537122 0.930322i
\(581\) 0 0
\(582\) 0 0
\(583\) −28.3216 −1.17296
\(584\) 3.80924 + 6.59780i 0.157628 + 0.273019i
\(585\) 0 0
\(586\) 18.5344 32.1026i 0.765650 1.32615i
\(587\) 11.9299 + 20.6631i 0.492398 + 0.852859i 0.999962 0.00875568i \(-0.00278706\pi\)
−0.507563 + 0.861614i \(0.669454\pi\)
\(588\) 0 0
\(589\) 4.71780 8.17147i 0.194394 0.336699i
\(590\) −8.70009 15.0690i −0.358177 0.620381i
\(591\) 0 0
\(592\) −3.85301 + 6.67361i −0.158358 + 0.274284i
\(593\) 9.79007 16.9569i 0.402030 0.696336i −0.591941 0.805981i \(-0.701638\pi\)
0.993971 + 0.109645i \(0.0349714\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −27.4538 47.5514i −1.12455 1.94778i
\(597\) 0 0
\(598\) 0.672570 0.0275034
\(599\) −18.5467 −0.757797 −0.378899 0.925438i \(-0.623697\pi\)
−0.378899 + 0.925438i \(0.623697\pi\)
\(600\) 0 0
\(601\) 9.09931 + 15.7605i 0.371169 + 0.642883i 0.989746 0.142841i \(-0.0456238\pi\)
−0.618577 + 0.785724i \(0.712290\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −20.1249 + 34.8573i −0.818870 + 1.41832i
\(605\) −12.1659 + 21.0719i −0.494612 + 0.856693i
\(606\) 0 0
\(607\) 11.1549 + 19.3208i 0.452762 + 0.784206i 0.998556 0.0537125i \(-0.0171055\pi\)
−0.545795 + 0.837919i \(0.683772\pi\)
\(608\) 1.09358 1.89413i 0.0443505 0.0768173i
\(609\) 0 0
\(610\) 7.25370 + 12.5638i 0.293694 + 0.508692i
\(611\) −6.08113 + 10.5328i −0.246016 + 0.426112i
\(612\) 0 0
\(613\) −5.11849 8.86548i −0.206734 0.358073i 0.743950 0.668235i \(-0.232950\pi\)
−0.950684 + 0.310162i \(0.899617\pi\)
\(614\) −67.0990 −2.70790
\(615\) 0 0
\(616\) 0 0
\(617\) −5.66372 + 9.80984i −0.228013 + 0.394929i −0.957219 0.289364i \(-0.906556\pi\)
0.729206 + 0.684294i \(0.239889\pi\)
\(618\) 0 0
\(619\) −4.31663 + 7.47663i −0.173500 + 0.300511i −0.939641 0.342161i \(-0.888841\pi\)
0.766141 + 0.642672i \(0.222174\pi\)
\(620\) −12.2360 21.1934i −0.491409 0.851145i
\(621\) 0 0
\(622\) 39.3245 1.57677
\(623\) 0 0
\(624\) 0 0
\(625\) 15.3260 + 26.5454i 0.613039 + 1.06181i
\(626\) 28.5366 1.14055
\(627\) 0 0
\(628\) 24.5438 0.979403
\(629\) 1.68443 0.0671626
\(630\) 0 0
\(631\) −14.8535 −0.591308 −0.295654 0.955295i \(-0.595538\pi\)
−0.295654 + 0.955295i \(0.595538\pi\)
\(632\) 74.3402 2.95710
\(633\) 0 0
\(634\) 4.96458 0.197169
\(635\) −0.872181 1.51066i −0.0346115 0.0599488i
\(636\) 0 0
\(637\) 0 0
\(638\) 27.3317 1.08207
\(639\) 0 0
\(640\) 24.7793 + 42.9190i 0.979487 + 1.69652i
\(641\) −17.0797 + 29.5828i −0.674606 + 1.16845i 0.301978 + 0.953315i \(0.402353\pi\)
−0.976584 + 0.215137i \(0.930980\pi\)
\(642\) 0 0
\(643\) 5.41741 9.38323i 0.213642 0.370039i −0.739210 0.673475i \(-0.764801\pi\)
0.952852 + 0.303437i \(0.0981341\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −9.43560 −0.371239
\(647\) 16.4846 + 28.5522i 0.648077 + 1.12250i 0.983582 + 0.180464i \(0.0577600\pi\)
−0.335504 + 0.942039i \(0.608907\pi\)
\(648\) 0 0
\(649\) 6.15486 10.6605i 0.241599 0.418462i
\(650\) −2.12422 3.67926i −0.0833188 0.144312i
\(651\) 0 0
\(652\) −36.1160 + 62.5548i −1.41441 + 2.44984i
\(653\) −1.96557 3.40446i −0.0769185 0.133227i 0.825000 0.565132i \(-0.191175\pi\)
−0.901919 + 0.431905i \(0.857841\pi\)
\(654\) 0 0
\(655\) 10.2626 17.7753i 0.400991 0.694537i
\(656\) −13.8617 + 24.0091i −0.541207 + 0.937399i
\(657\) 0 0
\(658\) 0 0
\(659\) 8.40856 + 14.5640i 0.327551 + 0.567335i 0.982025 0.188749i \(-0.0604434\pi\)
−0.654474 + 0.756084i \(0.727110\pi\)
\(660\) 0 0
\(661\) −17.0216 −0.662063 −0.331032 0.943620i \(-0.607397\pi\)
−0.331032 + 0.943620i \(0.607397\pi\)
\(662\) −48.4940 −1.88477
\(663\) 0 0
\(664\) −2.39037 4.14024i −0.0927643 0.160672i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.336285 0.582462i 0.0130210 0.0225530i
\(668\) −17.1644 + 29.7296i −0.664110 + 1.15027i
\(669\) 0 0
\(670\) 50.4686 + 87.4141i 1.94977 + 3.37710i
\(671\) −5.13161 + 8.88821i −0.198104 + 0.343126i
\(672\) 0 0
\(673\) −14.3727 24.8942i −0.554025 0.959600i −0.997979 0.0635501i \(-0.979758\pi\)
0.443953 0.896050i \(-0.353576\pi\)
\(674\) 35.7403 61.9039i 1.37666 2.38445i
\(675\) 0 0
\(676\) 24.3245 + 42.1313i 0.935558 + 1.62043i
\(677\) 6.03638 0.231997 0.115998 0.993249i \(-0.462993\pi\)
0.115998 + 0.993249i \(0.462993\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.19961 + 10.7380i −0.237744 + 0.411785i
\(681\) 0 0
\(682\) 12.9267 22.3898i 0.494991 0.857349i
\(683\) 10.2556 + 17.7633i 0.392421 + 0.679693i 0.992768 0.120046i \(-0.0383043\pi\)
−0.600347 + 0.799739i \(0.704971\pi\)
\(684\) 0 0
\(685\) 9.52510 0.363935
\(686\) 0 0
\(687\) 0 0
\(688\) 22.5797 + 39.1091i 0.860842 + 1.49102i
\(689\) 6.27335 0.238995
\(690\) 0 0
\(691\) −15.0029 −0.570738 −0.285369 0.958418i \(-0.592116\pi\)
−0.285369 + 0.958418i \(0.592116\pi\)
\(692\) −70.3652 −2.67488
\(693\) 0 0
\(694\) −71.5595 −2.71636
\(695\) −5.32743 −0.202081
\(696\) 0 0
\(697\) 6.05993 0.229536
\(698\) −30.4648 52.7665i −1.15311 1.99724i
\(699\) 0 0
\(700\) 0 0
\(701\) −38.5113 −1.45455 −0.727275 0.686346i \(-0.759214\pi\)
−0.727275 + 0.686346i \(0.759214\pi\)
\(702\) 0 0
\(703\) 3.60963 + 6.25206i 0.136140 + 0.235801i
\(704\) −16.5402 + 28.6484i −0.623381 + 1.07973i
\(705\) 0 0
\(706\) −40.9705 + 70.9630i −1.54195 + 2.67073i
\(707\) 0 0
\(708\) 0 0
\(709\) 7.64008 0.286929 0.143465 0.989655i \(-0.454176\pi\)
0.143465 + 0.989655i \(0.454176\pi\)
\(710\) 10.4445 + 18.0903i 0.391973 + 0.678918i
\(711\) 0 0
\(712\) −36.2798 + 62.8384i −1.35964 + 2.35497i
\(713\) −0.318097 0.550960i −0.0119128 0.0206336i
\(714\) 0 0
\(715\) 5.85447 10.1402i 0.218945 0.379224i
\(716\) −23.0057 39.8471i −0.859765 1.48916i
\(717\) 0 0
\(718\) 31.4164 54.4148i 1.17245 2.03074i
\(719\) −15.0182 + 26.0123i −0.560084 + 0.970094i 0.437405 + 0.899265i \(0.355898\pi\)
−0.997488 + 0.0708289i \(0.977436\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.15486 + 5.46438i 0.117412 + 0.203363i
\(723\) 0 0
\(724\) 88.7395 3.29798
\(725\) −4.24844 −0.157783
\(726\) 0 0
\(727\) −1.72812 2.99319i −0.0640923 0.111011i 0.832199 0.554478i \(-0.187082\pi\)
−0.896291 + 0.443466i \(0.853749\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 4.80972 8.33068i 0.178016 0.308332i
\(731\) 4.93560 8.54871i 0.182550 0.316185i
\(732\) 0 0
\(733\) −19.2630 33.3645i −0.711496 1.23235i −0.964295 0.264829i \(-0.914685\pi\)
0.252799 0.967519i \(-0.418649\pi\)
\(734\) −33.7709 + 58.4929i −1.24651 + 2.15901i
\(735\) 0 0
\(736\) −0.0737345 0.127712i −0.00271789 0.00470752i
\(737\) −35.7039 + 61.8409i −1.31517 + 2.27794i
\(738\) 0 0
\(739\) −22.5620 39.0785i −0.829955 1.43752i −0.898073 0.439847i \(-0.855033\pi\)
0.0681179 0.997677i \(-0.478301\pi\)
\(740\) 18.7237 0.688298
\(741\) 0 0
\(742\) 0 0
\(743\) 4.74338 8.21577i 0.174018 0.301407i −0.765803 0.643075i \(-0.777658\pi\)
0.939821 + 0.341668i \(0.110992\pi\)
\(744\) 0 0
\(745\) −17.5634 + 30.4207i −0.643474 + 1.11453i
\(746\) −20.0869 34.7915i −0.735432 1.27381i
\(747\) 0 0
\(748\) −17.3126 −0.633013
\(749\) 0 0
\(750\) 0 0
\(751\) 4.91595 + 8.51467i 0.179386 + 0.310705i 0.941670 0.336537i \(-0.109256\pi\)
−0.762285 + 0.647242i \(0.775922\pi\)
\(752\) 52.6313 1.91927
\(753\) 0 0
\(754\) −6.05408 −0.220477
\(755\) 25.7496 0.937124
\(756\) 0 0
\(757\) −41.8171 −1.51987 −0.759934 0.650000i \(-0.774769\pi\)
−0.759934 + 0.650000i \(0.774769\pi\)
\(758\) 29.6156 1.07569
\(759\) 0 0
\(760\) −53.1416 −1.92765
\(761\) 11.4897 + 19.9007i 0.416501 + 0.721400i 0.995585 0.0938675i \(-0.0299230\pi\)
−0.579084 + 0.815268i \(0.696590\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 2.84494 0.102926
\(765\) 0 0
\(766\) −15.2989 26.4985i −0.552773 0.957430i
\(767\) −1.36333 + 2.36135i −0.0492269 + 0.0852635i
\(768\) 0 0
\(769\) −3.04329 + 5.27113i −0.109744 + 0.190082i −0.915666 0.401939i \(-0.868336\pi\)
0.805923 + 0.592021i \(0.201670\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 49.2350 1.77201
\(773\) −20.9107 36.2184i −0.752105 1.30268i −0.946801 0.321821i \(-0.895705\pi\)
0.194695 0.980864i \(-0.437628\pi\)
\(774\) 0 0
\(775\) −2.00933 + 3.48027i −0.0721774 + 0.125015i
\(776\) 29.0349 + 50.2899i 1.04229 + 1.80530i
\(777\) 0 0
\(778\) 25.3442 43.8974i 0.908632 1.57380i
\(779\) 12.9861 + 22.4926i 0.465275 + 0.805880i
\(780\) 0 0
\(781\) −7.38891 + 12.7980i −0.264396 + 0.457947i
\(782\) −0.318097 + 0.550960i −0.0113751 + 0.0197023i
\(783\) 0 0
\(784\) 0 0
\(785\) −7.85087 13.5981i −0.280210 0.485337i
\(786\) 0 0
\(787\) 32.2920 1.15109 0.575543 0.817772i \(-0.304791\pi\)