Properties

Label 1323.2.g.h.361.11
Level $1323$
Weight $2$
Character 1323.361
Analytic conductor $10.564$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.11
Character \(\chi\) \(=\) 1323.361
Dual form 1323.2.g.h.667.11

$q$-expansion

\(f(q)\) \(=\) \(q+(1.08816 - 1.88474i) q^{2} +(-1.36816 - 2.36973i) q^{4} -1.26829 q^{5} -1.60248 q^{8} +O(q^{10})\) \(q+(1.08816 - 1.88474i) q^{2} +(-1.36816 - 2.36973i) q^{4} -1.26829 q^{5} -1.60248 q^{8} +(-1.38010 + 2.39040i) q^{10} +5.47733 q^{11} +(2.37268 - 4.10960i) q^{13} +(0.992580 - 1.71920i) q^{16} +(-2.40822 + 4.17116i) q^{17} +(-2.69059 - 4.66025i) q^{19} +(1.73523 + 3.00550i) q^{20} +(5.96019 - 10.3233i) q^{22} +5.17631 q^{23} -3.39144 q^{25} +(-5.16368 - 8.94376i) q^{26} +(-2.01656 - 3.49278i) q^{29} +(0.732093 + 1.26802i) q^{31} +(-3.76264 - 6.51709i) q^{32} +(5.24103 + 9.07773i) q^{34} +(-0.959170 - 1.66133i) q^{37} -11.7111 q^{38} +2.03241 q^{40} +(1.94808 - 3.37418i) q^{41} +(-1.66016 - 2.87549i) q^{43} +(-7.49389 - 12.9798i) q^{44} +(5.63263 - 9.75600i) q^{46} +(1.57773 - 2.73271i) q^{47} +(-3.69042 + 6.39199i) q^{50} -12.9849 q^{52} +(-3.57149 + 6.18601i) q^{53} -6.94684 q^{55} -8.77732 q^{58} +(0.154341 + 0.267327i) q^{59} +(-5.17143 + 8.95719i) q^{61} +3.18652 q^{62} -12.4070 q^{64} +(-3.00924 + 5.21216i) q^{65} +(-2.23655 - 3.87382i) q^{67} +13.1794 q^{68} +1.96688 q^{71} +(5.27515 - 9.13683i) q^{73} -4.17491 q^{74} +(-7.36235 + 12.7520i) q^{76} +(4.50822 - 7.80846i) q^{79} +(-1.25888 + 2.18044i) q^{80} +(-4.23963 - 7.34326i) q^{82} +(5.08023 + 8.79921i) q^{83} +(3.05432 - 5.29023i) q^{85} -7.22607 q^{86} -8.77732 q^{88} +(2.59776 + 4.49945i) q^{89} +(-7.08205 - 12.2665i) q^{92} +(-3.43363 - 5.94722i) q^{94} +(3.41245 + 5.91054i) q^{95} +(-2.48521 - 4.30451i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q - 4q^{2} - 12q^{4} + 24q^{8} + O(q^{10}) \) \( 24q - 4q^{2} - 12q^{4} + 24q^{8} + 40q^{11} - 12q^{16} + 64q^{23} + 24q^{25} - 16q^{29} - 48q^{32} - 12q^{37} - 56q^{44} + 24q^{46} + 4q^{50} - 32q^{53} + 96q^{64} - 60q^{65} - 12q^{67} + 112q^{71} + 136q^{74} + 12q^{79} + 12q^{85} + 152q^{86} - 16q^{92} - 64q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.08816 1.88474i 0.769442 1.33271i −0.168424 0.985715i \(-0.553868\pi\)
0.937866 0.346998i \(-0.112799\pi\)
\(3\) 0 0
\(4\) −1.36816 2.36973i −0.684082 1.18487i
\(5\) −1.26829 −0.567196 −0.283598 0.958943i \(-0.591528\pi\)
−0.283598 + 0.958943i \(0.591528\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.60248 −0.566563
\(9\) 0 0
\(10\) −1.38010 + 2.39040i −0.436425 + 0.755910i
\(11\) 5.47733 1.65148 0.825739 0.564053i \(-0.190759\pi\)
0.825739 + 0.564053i \(0.190759\pi\)
\(12\) 0 0
\(13\) 2.37268 4.10960i 0.658062 1.13980i −0.323054 0.946380i \(-0.604710\pi\)
0.981117 0.193417i \(-0.0619570\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.992580 1.71920i 0.248145 0.429800i
\(17\) −2.40822 + 4.17116i −0.584079 + 1.01165i 0.410911 + 0.911676i \(0.365211\pi\)
−0.994990 + 0.0999785i \(0.968123\pi\)
\(18\) 0 0
\(19\) −2.69059 4.66025i −0.617265 1.06913i −0.989983 0.141189i \(-0.954907\pi\)
0.372718 0.927945i \(-0.378426\pi\)
\(20\) 1.73523 + 3.00550i 0.388009 + 0.672051i
\(21\) 0 0
\(22\) 5.96019 10.3233i 1.27072 2.20095i
\(23\) 5.17631 1.07934 0.539668 0.841878i \(-0.318550\pi\)
0.539668 + 0.841878i \(0.318550\pi\)
\(24\) 0 0
\(25\) −3.39144 −0.678288
\(26\) −5.16368 8.94376i −1.01268 1.75402i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.01656 3.49278i −0.374466 0.648594i 0.615781 0.787917i \(-0.288841\pi\)
−0.990247 + 0.139324i \(0.955507\pi\)
\(30\) 0 0
\(31\) 0.732093 + 1.26802i 0.131488 + 0.227744i 0.924250 0.381787i \(-0.124691\pi\)
−0.792763 + 0.609531i \(0.791358\pi\)
\(32\) −3.76264 6.51709i −0.665148 1.15207i
\(33\) 0 0
\(34\) 5.24103 + 9.07773i 0.898830 + 1.55682i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.959170 1.66133i −0.157687 0.273121i 0.776347 0.630305i \(-0.217070\pi\)
−0.934034 + 0.357184i \(0.883737\pi\)
\(38\) −11.7111 −1.89980
\(39\) 0 0
\(40\) 2.03241 0.321352
\(41\) 1.94808 3.37418i 0.304239 0.526958i −0.672852 0.739777i \(-0.734931\pi\)
0.977092 + 0.212819i \(0.0682644\pi\)
\(42\) 0 0
\(43\) −1.66016 2.87549i −0.253173 0.438508i 0.711225 0.702964i \(-0.248141\pi\)
−0.964398 + 0.264457i \(0.914807\pi\)
\(44\) −7.49389 12.9798i −1.12975 1.95678i
\(45\) 0 0
\(46\) 5.63263 9.75600i 0.830486 1.43844i
\(47\) 1.57773 2.73271i 0.230135 0.398606i −0.727712 0.685882i \(-0.759416\pi\)
0.957848 + 0.287276i \(0.0927498\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −3.69042 + 6.39199i −0.521904 + 0.903964i
\(51\) 0 0
\(52\) −12.9849 −1.80068
\(53\) −3.57149 + 6.18601i −0.490582 + 0.849714i −0.999941 0.0108405i \(-0.996549\pi\)
0.509359 + 0.860554i \(0.329883\pi\)
\(54\) 0 0
\(55\) −6.94684 −0.936712
\(56\) 0 0
\(57\) 0 0
\(58\) −8.77732 −1.15252
\(59\) 0.154341 + 0.267327i 0.0200935 + 0.0348030i 0.875897 0.482498i \(-0.160270\pi\)
−0.855804 + 0.517301i \(0.826937\pi\)
\(60\) 0 0
\(61\) −5.17143 + 8.95719i −0.662134 + 1.14685i 0.317920 + 0.948118i \(0.397016\pi\)
−0.980054 + 0.198732i \(0.936318\pi\)
\(62\) 3.18652 0.404689
\(63\) 0 0
\(64\) −12.4070 −1.55088
\(65\) −3.00924 + 5.21216i −0.373250 + 0.646489i
\(66\) 0 0
\(67\) −2.23655 3.87382i −0.273238 0.473262i 0.696451 0.717604i \(-0.254761\pi\)
−0.969689 + 0.244342i \(0.921428\pi\)
\(68\) 13.1794 1.59823
\(69\) 0 0
\(70\) 0 0
\(71\) 1.96688 0.233426 0.116713 0.993166i \(-0.462764\pi\)
0.116713 + 0.993166i \(0.462764\pi\)
\(72\) 0 0
\(73\) 5.27515 9.13683i 0.617409 1.06938i −0.372547 0.928013i \(-0.621516\pi\)
0.989957 0.141371i \(-0.0451512\pi\)
\(74\) −4.17491 −0.485323
\(75\) 0 0
\(76\) −7.36235 + 12.7520i −0.844520 + 1.46275i
\(77\) 0 0
\(78\) 0 0
\(79\) 4.50822 7.80846i 0.507214 0.878520i −0.492751 0.870170i \(-0.664009\pi\)
0.999965 0.00835000i \(-0.00265792\pi\)
\(80\) −1.25888 + 2.18044i −0.140747 + 0.243781i
\(81\) 0 0
\(82\) −4.23963 7.34326i −0.468189 0.810927i
\(83\) 5.08023 + 8.79921i 0.557627 + 0.965839i 0.997694 + 0.0678739i \(0.0216216\pi\)
−0.440066 + 0.897965i \(0.645045\pi\)
\(84\) 0 0
\(85\) 3.05432 5.29023i 0.331287 0.573806i
\(86\) −7.22607 −0.779207
\(87\) 0 0
\(88\) −8.77732 −0.935666
\(89\) 2.59776 + 4.49945i 0.275362 + 0.476941i 0.970226 0.242200i \(-0.0778690\pi\)
−0.694864 + 0.719141i \(0.744536\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.08205 12.2665i −0.738354 1.27887i
\(93\) 0 0
\(94\) −3.43363 5.94722i −0.354152 0.613409i
\(95\) 3.41245 + 5.91054i 0.350110 + 0.606409i
\(96\) 0 0
\(97\) −2.48521 4.30451i −0.252335 0.437057i 0.711833 0.702348i \(-0.247865\pi\)
−0.964168 + 0.265291i \(0.914532\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.64005 + 8.03680i 0.464005 + 0.803680i
\(101\) −0.00533808 −0.000531159 −0.000265580 1.00000i \(-0.500085\pi\)
−0.000265580 1.00000i \(0.500085\pi\)
\(102\) 0 0
\(103\) 13.0348 1.28436 0.642180 0.766554i \(-0.278030\pi\)
0.642180 + 0.766554i \(0.278030\pi\)
\(104\) −3.80217 + 6.58555i −0.372834 + 0.645767i
\(105\) 0 0
\(106\) 7.77268 + 13.4627i 0.754950 + 1.30761i
\(107\) 4.71081 + 8.15936i 0.455411 + 0.788795i 0.998712 0.0507430i \(-0.0161589\pi\)
−0.543301 + 0.839538i \(0.682826\pi\)
\(108\) 0 0
\(109\) −8.44513 + 14.6274i −0.808896 + 1.40105i 0.104732 + 0.994500i \(0.466601\pi\)
−0.913629 + 0.406549i \(0.866732\pi\)
\(110\) −7.55924 + 13.0930i −0.720746 + 1.24837i
\(111\) 0 0
\(112\) 0 0
\(113\) 3.07313 5.32281i 0.289095 0.500728i −0.684499 0.729014i \(-0.739979\pi\)
0.973594 + 0.228286i \(0.0733122\pi\)
\(114\) 0 0
\(115\) −6.56506 −0.612195
\(116\) −5.51797 + 9.55741i −0.512331 + 0.887383i
\(117\) 0 0
\(118\) 0.671790 0.0618432
\(119\) 0 0
\(120\) 0 0
\(121\) 19.0012 1.72738
\(122\) 11.2546 + 19.4936i 1.01895 + 1.76487i
\(123\) 0 0
\(124\) 2.00325 3.46973i 0.179897 0.311591i
\(125\) 10.6428 0.951919
\(126\) 0 0
\(127\) −13.9305 −1.23613 −0.618065 0.786127i \(-0.712083\pi\)
−0.618065 + 0.786127i \(0.712083\pi\)
\(128\) −5.97551 + 10.3499i −0.528165 + 0.914809i
\(129\) 0 0
\(130\) 6.54905 + 11.3433i 0.574389 + 0.994871i
\(131\) 0.179156 0.0156529 0.00782645 0.999969i \(-0.497509\pi\)
0.00782645 + 0.999969i \(0.497509\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −9.73486 −0.840964
\(135\) 0 0
\(136\) 3.85913 6.68420i 0.330917 0.573166i
\(137\) −3.15206 −0.269299 −0.134649 0.990893i \(-0.542991\pi\)
−0.134649 + 0.990893i \(0.542991\pi\)
\(138\) 0 0
\(139\) 9.42857 16.3308i 0.799721 1.38516i −0.120077 0.992765i \(-0.538314\pi\)
0.919798 0.392392i \(-0.128352\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.14027 3.70706i 0.179608 0.311090i
\(143\) 12.9959 22.5096i 1.08677 1.88235i
\(144\) 0 0
\(145\) 2.55758 + 4.42986i 0.212396 + 0.367880i
\(146\) −11.4804 19.8846i −0.950122 1.64566i
\(147\) 0 0
\(148\) −2.62461 + 4.54595i −0.215741 + 0.373675i
\(149\) 21.2740 1.74284 0.871418 0.490541i \(-0.163201\pi\)
0.871418 + 0.490541i \(0.163201\pi\)
\(150\) 0 0
\(151\) 6.36561 0.518026 0.259013 0.965874i \(-0.416603\pi\)
0.259013 + 0.965874i \(0.416603\pi\)
\(152\) 4.31163 + 7.46796i 0.349719 + 0.605731i
\(153\) 0 0
\(154\) 0 0
\(155\) −0.928506 1.60822i −0.0745794 0.129175i
\(156\) 0 0
\(157\) −0.697976 1.20893i −0.0557045 0.0964830i 0.836828 0.547465i \(-0.184407\pi\)
−0.892533 + 0.450982i \(0.851074\pi\)
\(158\) −9.81128 16.9936i −0.780543 1.35194i
\(159\) 0 0
\(160\) 4.77212 + 8.26556i 0.377269 + 0.653450i
\(161\) 0 0
\(162\) 0 0
\(163\) 9.53086 + 16.5079i 0.746515 + 1.29300i 0.949484 + 0.313816i \(0.101608\pi\)
−0.202969 + 0.979185i \(0.565059\pi\)
\(164\) −10.6612 −0.832499
\(165\) 0 0
\(166\) 22.1123 1.71625
\(167\) −0.872003 + 1.51035i −0.0674776 + 0.116875i −0.897790 0.440423i \(-0.854828\pi\)
0.830313 + 0.557298i \(0.188162\pi\)
\(168\) 0 0
\(169\) −4.75919 8.24317i −0.366092 0.634090i
\(170\) −6.64715 11.5132i −0.509813 0.883022i
\(171\) 0 0
\(172\) −4.54276 + 7.86828i −0.346382 + 0.599951i
\(173\) −5.03794 + 8.72598i −0.383028 + 0.663424i −0.991493 0.130157i \(-0.958452\pi\)
0.608466 + 0.793580i \(0.291785\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 5.43669 9.41662i 0.409806 0.709805i
\(177\) 0 0
\(178\) 11.3071 0.847500
\(179\) −9.27118 + 16.0582i −0.692961 + 1.20024i 0.277902 + 0.960609i \(0.410361\pi\)
−0.970863 + 0.239634i \(0.922973\pi\)
\(180\) 0 0
\(181\) −8.80982 −0.654829 −0.327414 0.944881i \(-0.606177\pi\)
−0.327414 + 0.944881i \(0.606177\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −8.29494 −0.611511
\(185\) 1.21651 + 2.10705i 0.0894393 + 0.154913i
\(186\) 0 0
\(187\) −13.1906 + 22.8468i −0.964593 + 1.67072i
\(188\) −8.63437 −0.629726
\(189\) 0 0
\(190\) 14.8531 1.07756
\(191\) 2.45469 4.25165i 0.177615 0.307639i −0.763448 0.645869i \(-0.776495\pi\)
0.941063 + 0.338231i \(0.109828\pi\)
\(192\) 0 0
\(193\) 4.88380 + 8.45899i 0.351544 + 0.608892i 0.986520 0.163640i \(-0.0523235\pi\)
−0.634976 + 0.772531i \(0.718990\pi\)
\(194\) −10.8172 −0.776629
\(195\) 0 0
\(196\) 0 0
\(197\) −3.31445 −0.236145 −0.118073 0.993005i \(-0.537672\pi\)
−0.118073 + 0.993005i \(0.537672\pi\)
\(198\) 0 0
\(199\) −5.54432 + 9.60304i −0.393026 + 0.680742i −0.992847 0.119393i \(-0.961905\pi\)
0.599821 + 0.800134i \(0.295239\pi\)
\(200\) 5.43472 0.384293
\(201\) 0 0
\(202\) −0.00580866 + 0.0100609i −0.000408696 + 0.000707883i
\(203\) 0 0
\(204\) 0 0
\(205\) −2.47073 + 4.27943i −0.172563 + 0.298889i
\(206\) 14.1839 24.5673i 0.988240 1.71168i
\(207\) 0 0
\(208\) −4.71014 8.15821i −0.326590 0.565670i
\(209\) −14.7373 25.5257i −1.01940 1.76565i
\(210\) 0 0
\(211\) −3.66118 + 6.34135i −0.252046 + 0.436557i −0.964089 0.265579i \(-0.914437\pi\)
0.712043 + 0.702136i \(0.247770\pi\)
\(212\) 19.5456 1.34240
\(213\) 0 0
\(214\) 20.5044 1.40165
\(215\) 2.10557 + 3.64695i 0.143599 + 0.248720i
\(216\) 0 0
\(217\) 0 0
\(218\) 18.3792 + 31.8337i 1.24480 + 2.15605i
\(219\) 0 0
\(220\) 9.50442 + 16.4621i 0.640788 + 1.10988i
\(221\) 11.4278 + 19.7936i 0.768720 + 1.33146i
\(222\) 0 0
\(223\) 2.02765 + 3.51199i 0.135782 + 0.235181i 0.925896 0.377779i \(-0.123312\pi\)
−0.790114 + 0.612960i \(0.789979\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6.68808 11.5841i −0.444884 0.770562i
\(227\) −1.33417 −0.0885522 −0.0442761 0.999019i \(-0.514098\pi\)
−0.0442761 + 0.999019i \(0.514098\pi\)
\(228\) 0 0
\(229\) −15.9966 −1.05709 −0.528544 0.848906i \(-0.677262\pi\)
−0.528544 + 0.848906i \(0.677262\pi\)
\(230\) −7.14381 + 12.3734i −0.471049 + 0.815880i
\(231\) 0 0
\(232\) 3.23150 + 5.59712i 0.212158 + 0.367469i
\(233\) 4.06542 + 7.04151i 0.266334 + 0.461305i 0.967912 0.251288i \(-0.0808542\pi\)
−0.701578 + 0.712593i \(0.747521\pi\)
\(234\) 0 0
\(235\) −2.00102 + 3.46586i −0.130532 + 0.226088i
\(236\) 0.422329 0.731495i 0.0274913 0.0476163i
\(237\) 0 0
\(238\) 0 0
\(239\) −11.0509 + 19.1407i −0.714823 + 1.23811i 0.248204 + 0.968708i \(0.420160\pi\)
−0.963028 + 0.269403i \(0.913174\pi\)
\(240\) 0 0
\(241\) 27.5947 1.77753 0.888765 0.458362i \(-0.151564\pi\)
0.888765 + 0.458362i \(0.151564\pi\)
\(242\) 20.6762 35.8122i 1.32912 2.30210i
\(243\) 0 0
\(244\) 28.3015 1.81182
\(245\) 0 0
\(246\) 0 0
\(247\) −25.5356 −1.62479
\(248\) −1.17317 2.03198i −0.0744961 0.129031i
\(249\) 0 0
\(250\) 11.5810 20.0589i 0.732447 1.26863i
\(251\) 16.5610 1.04532 0.522661 0.852541i \(-0.324939\pi\)
0.522661 + 0.852541i \(0.324939\pi\)
\(252\) 0 0
\(253\) 28.3524 1.78250
\(254\) −15.1585 + 26.2553i −0.951130 + 1.64741i
\(255\) 0 0
\(256\) 0.597516 + 1.03493i 0.0373448 + 0.0646831i
\(257\) −2.06573 −0.128857 −0.0644285 0.997922i \(-0.520522\pi\)
−0.0644285 + 0.997922i \(0.520522\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 16.4686 1.02134
\(261\) 0 0
\(262\) 0.194949 0.337662i 0.0120440 0.0208608i
\(263\) −10.1296 −0.624620 −0.312310 0.949980i \(-0.601103\pi\)
−0.312310 + 0.949980i \(0.601103\pi\)
\(264\) 0 0
\(265\) 4.52969 7.84565i 0.278257 0.481954i
\(266\) 0 0
\(267\) 0 0
\(268\) −6.11994 + 10.6000i −0.373835 + 0.647501i
\(269\) −7.54972 + 13.0765i −0.460315 + 0.797289i −0.998976 0.0452336i \(-0.985597\pi\)
0.538662 + 0.842522i \(0.318930\pi\)
\(270\) 0 0
\(271\) 14.4026 + 24.9459i 0.874893 + 1.51536i 0.856877 + 0.515521i \(0.172402\pi\)
0.0180156 + 0.999838i \(0.494265\pi\)
\(272\) 4.78070 + 8.28041i 0.289872 + 0.502074i
\(273\) 0 0
\(274\) −3.42993 + 5.94082i −0.207210 + 0.358898i
\(275\) −18.5760 −1.12018
\(276\) 0 0
\(277\) −2.69963 −0.162205 −0.0811026 0.996706i \(-0.525844\pi\)
−0.0811026 + 0.996706i \(0.525844\pi\)
\(278\) −20.5195 35.5408i −1.23068 2.13160i
\(279\) 0 0
\(280\) 0 0
\(281\) 2.46312 + 4.26626i 0.146938 + 0.254503i 0.930094 0.367321i \(-0.119725\pi\)
−0.783157 + 0.621825i \(0.786392\pi\)
\(282\) 0 0
\(283\) −1.79079 3.10173i −0.106451 0.184379i 0.807879 0.589348i \(-0.200615\pi\)
−0.914330 + 0.404969i \(0.867282\pi\)
\(284\) −2.69102 4.66098i −0.159682 0.276578i
\(285\) 0 0
\(286\) −28.2832 48.9879i −1.67242 2.89672i
\(287\) 0 0
\(288\) 0 0
\(289\) −3.09903 5.36768i −0.182296 0.315746i
\(290\) 11.1322 0.653704
\(291\) 0 0
\(292\) −28.8691 −1.68944
\(293\) −12.1955 + 21.1232i −0.712469 + 1.23403i 0.251459 + 0.967868i \(0.419090\pi\)
−0.963928 + 0.266164i \(0.914244\pi\)
\(294\) 0 0
\(295\) −0.195750 0.339048i −0.0113970 0.0197401i
\(296\) 1.53705 + 2.66225i 0.0893394 + 0.154740i
\(297\) 0 0
\(298\) 23.1494 40.0960i 1.34101 2.32270i
\(299\) 12.2817 21.2726i 0.710270 1.23022i
\(300\) 0 0
\(301\) 0 0
\(302\) 6.92678 11.9975i 0.398591 0.690380i
\(303\) 0 0
\(304\) −10.6825 −0.612685
\(305\) 6.55887 11.3603i 0.375560 0.650489i
\(306\) 0 0
\(307\) −23.9025 −1.36419 −0.682094 0.731265i \(-0.738930\pi\)
−0.682094 + 0.731265i \(0.738930\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −4.04143 −0.229538
\(311\) −6.47082 11.2078i −0.366926 0.635535i 0.622157 0.782893i \(-0.286257\pi\)
−0.989083 + 0.147357i \(0.952923\pi\)
\(312\) 0 0
\(313\) 13.4340 23.2684i 0.759336 1.31521i −0.183853 0.982954i \(-0.558857\pi\)
0.943189 0.332255i \(-0.107810\pi\)
\(314\) −3.03802 −0.171446
\(315\) 0 0
\(316\) −24.6719 −1.38790
\(317\) 4.15584 7.19813i 0.233415 0.404287i −0.725396 0.688332i \(-0.758343\pi\)
0.958811 + 0.284045i \(0.0916765\pi\)
\(318\) 0 0
\(319\) −11.0454 19.1311i −0.618422 1.07114i
\(320\) 15.7357 0.879654
\(321\) 0 0
\(322\) 0 0
\(323\) 25.9182 1.44212
\(324\) 0 0
\(325\) −8.04680 + 13.9375i −0.446356 + 0.773111i
\(326\) 41.4842 2.29760
\(327\) 0 0
\(328\) −3.12177 + 5.40706i −0.172371 + 0.298555i
\(329\) 0 0
\(330\) 0 0
\(331\) −6.19889 + 10.7368i −0.340722 + 0.590147i −0.984567 0.175009i \(-0.944005\pi\)
0.643845 + 0.765156i \(0.277338\pi\)
\(332\) 13.9012 24.0775i 0.762926 1.32143i
\(333\) 0 0
\(334\) 1.89775 + 3.28700i 0.103840 + 0.179857i
\(335\) 2.83659 + 4.91312i 0.154980 + 0.268433i
\(336\) 0 0
\(337\) −12.9588 + 22.4454i −0.705913 + 1.22268i 0.260448 + 0.965488i \(0.416130\pi\)
−0.966361 + 0.257189i \(0.917204\pi\)
\(338\) −20.7150 −1.12675
\(339\) 0 0
\(340\) −16.7152 −0.906511
\(341\) 4.00992 + 6.94538i 0.217149 + 0.376113i
\(342\) 0 0
\(343\) 0 0
\(344\) 2.66038 + 4.60792i 0.143438 + 0.248442i
\(345\) 0 0
\(346\) 10.9641 + 18.9904i 0.589435 + 1.02093i
\(347\) −8.42415 14.5911i −0.452232 0.783289i 0.546292 0.837595i \(-0.316039\pi\)
−0.998524 + 0.0543058i \(0.982705\pi\)
\(348\) 0 0
\(349\) 15.5503 + 26.9340i 0.832390 + 1.44174i 0.896138 + 0.443776i \(0.146361\pi\)
−0.0637477 + 0.997966i \(0.520305\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −20.6092 35.6963i −1.09848 1.90262i
\(353\) −2.65938 −0.141544 −0.0707722 0.997493i \(-0.522546\pi\)
−0.0707722 + 0.997493i \(0.522546\pi\)
\(354\) 0 0
\(355\) −2.49457 −0.132398
\(356\) 7.10833 12.3120i 0.376741 0.652534i
\(357\) 0 0
\(358\) 20.1770 + 34.9476i 1.06639 + 1.84704i
\(359\) −16.2715 28.1830i −0.858775 1.48744i −0.873098 0.487545i \(-0.837893\pi\)
0.0143230 0.999897i \(-0.495441\pi\)
\(360\) 0 0
\(361\) −4.97859 + 8.62318i −0.262031 + 0.453852i
\(362\) −9.58646 + 16.6042i −0.503853 + 0.872699i
\(363\) 0 0
\(364\) 0 0
\(365\) −6.69042 + 11.5881i −0.350192 + 0.606551i
\(366\) 0 0
\(367\) 14.1536 0.738809 0.369405 0.929269i \(-0.379562\pi\)
0.369405 + 0.929269i \(0.379562\pi\)
\(368\) 5.13790 8.89911i 0.267832 0.463898i
\(369\) 0 0
\(370\) 5.29499 0.275273
\(371\) 0 0
\(372\) 0 0
\(373\) 2.67628 0.138573 0.0692863 0.997597i \(-0.477928\pi\)
0.0692863 + 0.997597i \(0.477928\pi\)
\(374\) 28.7069 + 49.7217i 1.48440 + 2.57105i
\(375\) 0 0
\(376\) −2.52828 + 4.37911i −0.130386 + 0.225835i
\(377\) −19.1386 −0.985687
\(378\) 0 0
\(379\) −0.312929 −0.0160741 −0.00803705 0.999968i \(-0.502558\pi\)
−0.00803705 + 0.999968i \(0.502558\pi\)
\(380\) 9.33759 16.1732i 0.479008 0.829667i
\(381\) 0 0
\(382\) −5.34218 9.25292i −0.273330 0.473421i
\(383\) 8.98880 0.459306 0.229653 0.973273i \(-0.426241\pi\)
0.229653 + 0.973273i \(0.426241\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 21.2573 1.08197
\(387\) 0 0
\(388\) −6.80036 + 11.7786i −0.345236 + 0.597966i
\(389\) 26.9869 1.36829 0.684144 0.729347i \(-0.260176\pi\)
0.684144 + 0.729347i \(0.260176\pi\)
\(390\) 0 0
\(391\) −12.4657 + 21.5912i −0.630417 + 1.09191i
\(392\) 0 0
\(393\) 0 0
\(394\) −3.60664 + 6.24689i −0.181700 + 0.314714i
\(395\) −5.71772 + 9.90339i −0.287690 + 0.498293i
\(396\) 0 0
\(397\) −14.7503 25.5482i −0.740295 1.28223i −0.952361 0.304973i \(-0.901352\pi\)
0.212066 0.977255i \(-0.431981\pi\)
\(398\) 12.0662 + 20.8992i 0.604822 + 1.04758i
\(399\) 0 0
\(400\) −3.36628 + 5.83056i −0.168314 + 0.291528i
\(401\) 34.2784 1.71178 0.855891 0.517156i \(-0.173009\pi\)
0.855891 + 0.517156i \(0.173009\pi\)
\(402\) 0 0
\(403\) 6.94808 0.346109
\(404\) 0.00730338 + 0.0126498i 0.000363357 + 0.000629352i
\(405\) 0 0
\(406\) 0 0
\(407\) −5.25369 9.09966i −0.260416 0.451054i
\(408\) 0 0
\(409\) −5.49225 9.51286i −0.271574 0.470381i 0.697691 0.716399i \(-0.254211\pi\)
−0.969265 + 0.246018i \(0.920878\pi\)
\(410\) 5.37708 + 9.31338i 0.265555 + 0.459955i
\(411\) 0 0
\(412\) −17.8338 30.8890i −0.878608 1.52179i
\(413\) 0 0
\(414\) 0 0
\(415\) −6.44320 11.1599i −0.316284 0.547820i
\(416\) −35.7102 −1.75083
\(417\) 0 0
\(418\) −64.1458 −3.13747
\(419\) 3.33207 5.77132i 0.162782 0.281947i −0.773083 0.634305i \(-0.781286\pi\)
0.935866 + 0.352357i \(0.114620\pi\)
\(420\) 0 0
\(421\) −17.0430 29.5193i −0.830625 1.43868i −0.897543 0.440926i \(-0.854650\pi\)
0.0669186 0.997758i \(-0.478683\pi\)
\(422\) 7.96787 + 13.8008i 0.387870 + 0.671810i
\(423\) 0 0
\(424\) 5.72325 9.91297i 0.277946 0.481416i
\(425\) 8.16733 14.1462i 0.396174 0.686193i
\(426\) 0 0
\(427\) 0 0
\(428\) 12.8903 22.3267i 0.623077 1.07920i
\(429\) 0 0
\(430\) 9.16474 0.441963
\(431\) 1.12969 1.95669i 0.0544155 0.0942504i −0.837535 0.546384i \(-0.816004\pi\)
0.891950 + 0.452134i \(0.149337\pi\)
\(432\) 0 0
\(433\) 34.3904 1.65270 0.826348 0.563160i \(-0.190415\pi\)
0.826348 + 0.563160i \(0.190415\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 46.2173 2.21341
\(437\) −13.9274 24.1229i −0.666236 1.15395i
\(438\) 0 0
\(439\) −2.99569 + 5.18869i −0.142977 + 0.247643i −0.928616 0.371042i \(-0.879001\pi\)
0.785640 + 0.618684i \(0.212334\pi\)
\(440\) 11.1322 0.530706
\(441\) 0 0
\(442\) 49.7411 2.36594
\(443\) −19.7190 + 34.1543i −0.936879 + 1.62272i −0.165630 + 0.986188i \(0.552966\pi\)
−0.771249 + 0.636534i \(0.780368\pi\)
\(444\) 0 0
\(445\) −3.29471 5.70661i −0.156184 0.270519i
\(446\) 8.82560 0.417904
\(447\) 0 0
\(448\) 0 0
\(449\) −2.45092 −0.115666 −0.0578330 0.998326i \(-0.518419\pi\)
−0.0578330 + 0.998326i \(0.518419\pi\)
\(450\) 0 0
\(451\) 10.6703 18.4815i 0.502444 0.870259i
\(452\) −16.8182 −0.791060
\(453\) 0 0
\(454\) −1.45179 + 2.51457i −0.0681358 + 0.118015i
\(455\) 0 0
\(456\) 0 0
\(457\) −5.51058 + 9.54461i −0.257774 + 0.446478i −0.965645 0.259864i \(-0.916322\pi\)
0.707871 + 0.706342i \(0.249656\pi\)
\(458\) −17.4068 + 30.1495i −0.813368 + 1.40879i
\(459\) 0 0
\(460\) 8.98208 + 15.5574i 0.418792 + 0.725369i
\(461\) −14.6540 25.3814i −0.682503 1.18213i −0.974215 0.225624i \(-0.927558\pi\)
0.291711 0.956506i \(-0.405775\pi\)
\(462\) 0 0
\(463\) 0.593566 1.02809i 0.0275853 0.0477792i −0.851903 0.523699i \(-0.824552\pi\)
0.879489 + 0.475920i \(0.157885\pi\)
\(464\) −8.00639 −0.371687
\(465\) 0 0
\(466\) 17.6952 0.819715
\(467\) 11.0573 + 19.1519i 0.511673 + 0.886243i 0.999908 + 0.0135313i \(0.00430729\pi\)
−0.488236 + 0.872712i \(0.662359\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4.35483 + 7.54280i 0.200874 + 0.347923i
\(471\) 0 0
\(472\) −0.247329 0.428387i −0.0113842 0.0197181i
\(473\) −9.09327 15.7500i −0.418109 0.724186i
\(474\) 0 0
\(475\) 9.12499 + 15.8050i 0.418683 + 0.725181i
\(476\) 0 0
\(477\) 0 0
\(478\) 24.0502 + 41.6562i 1.10003 + 1.90531i
\(479\) 25.1428 1.14880 0.574402 0.818573i \(-0.305234\pi\)
0.574402 + 0.818573i \(0.305234\pi\)
\(480\) 0 0
\(481\) −9.10321 −0.415071
\(482\) 30.0273 52.0088i 1.36771 2.36894i
\(483\) 0 0
\(484\) −25.9967 45.0276i −1.18167 2.04671i
\(485\) 3.15197 + 5.45937i 0.143123 + 0.247897i
\(486\) 0 0
\(487\) −6.78904 + 11.7590i −0.307641 + 0.532849i −0.977846 0.209327i \(-0.932873\pi\)
0.670205 + 0.742176i \(0.266206\pi\)
\(488\) 8.28713 14.3537i 0.375141 0.649763i
\(489\) 0 0
\(490\) 0 0
\(491\) −7.25177 + 12.5604i −0.327268 + 0.566844i −0.981969 0.189044i \(-0.939461\pi\)
0.654701 + 0.755888i \(0.272795\pi\)
\(492\) 0 0
\(493\) 19.4253 0.874870
\(494\) −27.7868 + 48.1281i −1.25019 + 2.16538i
\(495\) 0 0
\(496\) 2.90664 0.130512
\(497\) 0 0
\(498\) 0 0
\(499\) 13.9915 0.626345 0.313172 0.949696i \(-0.398608\pi\)
0.313172 + 0.949696i \(0.398608\pi\)
\(500\) −14.5611 25.2205i −0.651191 1.12790i
\(501\) 0 0
\(502\) 18.0209 31.2132i 0.804314 1.39311i
\(503\) −28.4011 −1.26634 −0.633171 0.774012i \(-0.718247\pi\)
−0.633171 + 0.774012i \(0.718247\pi\)
\(504\) 0 0
\(505\) 0.00677023 0.000301271
\(506\) 30.8518 53.4369i 1.37153 2.37556i
\(507\) 0 0
\(508\) 19.0592 + 33.0115i 0.845615 + 1.46465i
\(509\) 3.45993 0.153359 0.0766794 0.997056i \(-0.475568\pi\)
0.0766794 + 0.997056i \(0.475568\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −21.3013 −0.941392
\(513\) 0 0
\(514\) −2.24784 + 3.89337i −0.0991480 + 0.171729i
\(515\) −16.5319 −0.728484
\(516\) 0 0
\(517\) 8.64174 14.9679i 0.380063 0.658289i
\(518\) 0 0
\(519\) 0 0
\(520\) 4.82225 8.35239i 0.211470 0.366276i
\(521\) 3.56797 6.17991i 0.156316 0.270747i −0.777222 0.629227i \(-0.783372\pi\)
0.933537 + 0.358480i \(0.116705\pi\)
\(522\) 0 0
\(523\) 6.53235 + 11.3144i 0.285640 + 0.494743i 0.972764 0.231797i \(-0.0744606\pi\)
−0.687124 + 0.726540i \(0.741127\pi\)
\(524\) −0.245114 0.424551i −0.0107079 0.0185466i
\(525\) 0 0
\(526\) −11.0226 + 19.0917i −0.480609 + 0.832439i
\(527\) −7.05216 −0.307197
\(528\) 0 0
\(529\) 3.79420 0.164965
\(530\) −9.85801 17.0746i −0.428205 0.741672i
\(531\) 0 0
\(532\) 0 0
\(533\) −9.24434 16.0117i −0.400417 0.693542i
\(534\) 0 0
\(535\) −5.97467 10.3484i −0.258308 0.447402i
\(536\) 3.58403 + 6.20772i 0.154807 + 0.268133i
\(537\) 0 0
\(538\) 16.4305 + 28.4585i 0.708371 + 1.22693i
\(539\) 0 0
\(540\) 0 0
\(541\) −2.46788 4.27450i −0.106103 0.183775i 0.808086 0.589065i \(-0.200504\pi\)
−0.914188 + 0.405290i \(0.867171\pi\)
\(542\) 62.6889 2.69272
\(543\) 0 0
\(544\) 36.2451 1.55399
\(545\) 10.7109 18.5518i 0.458803 0.794670i
\(546\) 0 0
\(547\) 0.559964 + 0.969887i 0.0239423 + 0.0414694i 0.877748 0.479122i \(-0.159045\pi\)
−0.853806 + 0.520591i \(0.825712\pi\)
\(548\) 4.31254 + 7.46954i 0.184223 + 0.319083i
\(549\) 0 0
\(550\) −20.2136 + 35.0110i −0.861912 + 1.49288i
\(551\) −10.8515 + 18.7953i −0.462289 + 0.800708i
\(552\) 0 0
\(553\) 0 0
\(554\) −2.93762 + 5.08811i −0.124808 + 0.216173i
\(555\) 0 0
\(556\) −51.5993 −2.18830
\(557\) −5.47832 + 9.48873i −0.232124 + 0.402050i −0.958433 0.285318i \(-0.907901\pi\)
0.726309 + 0.687368i \(0.241234\pi\)
\(558\) 0 0
\(559\) −15.7561 −0.666413
\(560\) 0 0
\(561\) 0 0
\(562\) 10.7210 0.452240
\(563\) −2.38048 4.12311i −0.100325 0.173768i 0.811493 0.584361i \(-0.198655\pi\)
−0.911819 + 0.410593i \(0.865322\pi\)
\(564\) 0 0
\(565\) −3.89761 + 6.75087i −0.163974 + 0.284011i
\(566\) −7.79462 −0.327632
\(567\) 0 0
\(568\) −3.15189 −0.132250
\(569\) 1.74988 3.03088i 0.0733588 0.127061i −0.827013 0.562183i \(-0.809962\pi\)
0.900371 + 0.435122i \(0.143295\pi\)
\(570\) 0 0
\(571\) −3.53051 6.11501i −0.147747 0.255905i 0.782647 0.622465i \(-0.213869\pi\)
−0.930394 + 0.366560i \(0.880535\pi\)
\(572\) −71.1223 −2.97377
\(573\) 0 0
\(574\) 0 0
\(575\) −17.5552 −0.732101
\(576\) 0 0
\(577\) −6.44149 + 11.1570i −0.268163 + 0.464472i −0.968387 0.249451i \(-0.919750\pi\)
0.700225 + 0.713923i \(0.253083\pi\)
\(578\) −13.4889 −0.561064
\(579\) 0 0
\(580\) 6.99838 12.1216i 0.290592 0.503320i
\(581\) 0 0
\(582\) 0 0
\(583\) −19.5623 + 33.8828i −0.810186 + 1.40328i
\(584\) −8.45333 + 14.6416i −0.349801 + 0.605874i
\(585\) 0 0
\(586\) 26.5412 + 45.9707i 1.09641 + 1.89903i
\(587\) 19.5044 + 33.7826i 0.805034 + 1.39436i 0.916268 + 0.400565i \(0.131186\pi\)
−0.111235 + 0.993794i \(0.535481\pi\)
\(588\) 0 0
\(589\) 3.93953 6.82347i 0.162326 0.281156i
\(590\) −0.852024 −0.0350773
\(591\) 0 0
\(592\) −3.80821 −0.156517
\(593\) 20.1513 + 34.9031i 0.827515 + 1.43330i 0.899982 + 0.435927i \(0.143579\pi\)
−0.0724676 + 0.997371i \(0.523087\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −29.1064 50.4137i −1.19224 2.06503i
\(597\) 0 0
\(598\) −26.7288 46.2957i −1.09302 1.89317i
\(599\) −6.39103 11.0696i −0.261130 0.452291i 0.705412 0.708797i \(-0.250762\pi\)
−0.966543 + 0.256506i \(0.917429\pi\)
\(600\) 0 0
\(601\) −4.86311 8.42316i −0.198371 0.343588i 0.749630 0.661858i \(-0.230232\pi\)
−0.948000 + 0.318270i \(0.896898\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8.70921 15.0848i −0.354373 0.613792i
\(605\) −24.0990 −0.979762
\(606\) 0 0
\(607\) 41.4873 1.68392 0.841959 0.539541i \(-0.181402\pi\)
0.841959 + 0.539541i \(0.181402\pi\)
\(608\) −20.2475 + 35.0697i −0.821145 + 1.42226i
\(609\) 0 0
\(610\) −14.2742 24.7236i −0.577943 1.00103i
\(611\) −7.48688 12.9677i −0.302887 0.524615i
\(612\) 0 0
\(613\) −7.64783 + 13.2464i −0.308893 + 0.535018i −0.978120 0.208039i \(-0.933292\pi\)
0.669228 + 0.743057i \(0.266625\pi\)
\(614\) −26.0096 + 45.0500i −1.04966 + 1.81807i
\(615\) 0 0
\(616\) 0 0
\(617\) 2.66563 4.61700i 0.107314 0.185873i −0.807367 0.590049i \(-0.799108\pi\)
0.914681 + 0.404176i \(0.132442\pi\)
\(618\) 0 0
\(619\) −12.6841 −0.509817 −0.254908 0.966965i \(-0.582045\pi\)
−0.254908 + 0.966965i \(0.582045\pi\)
\(620\) −2.54070 + 4.40062i −0.102037 + 0.176733i
\(621\) 0 0
\(622\) −28.1650 −1.12931
\(623\) 0 0
\(624\) 0 0
\(625\) 3.45909 0.138363
\(626\) −29.2366 50.6393i −1.16853 2.02395i
\(627\) 0 0
\(628\) −1.90989 + 3.30803i −0.0762129 + 0.132005i
\(629\) 9.23957 0.368406
\(630\) 0 0
\(631\) 0.123764 0.00492698 0.00246349 0.999997i \(-0.499216\pi\)
0.00246349 + 0.999997i \(0.499216\pi\)
\(632\) −7.22433 + 12.5129i −0.287369 + 0.497737i
\(633\) 0 0
\(634\) −9.04441 15.6654i −0.359199 0.622151i
\(635\) 17.6679 0.701128
\(636\) 0 0
\(637\) 0 0
\(638\) −48.0763 −1.90336
\(639\) 0 0
\(640\) 7.57868 13.1267i 0.299573 0.518876i
\(641\) −5.93177 −0.234291 −0.117145 0.993115i \(-0.537374\pi\)
−0.117145 + 0.993115i \(0.537374\pi\)
\(642\) 0 0
\(643\) −23.4140 + 40.5542i −0.923358 + 1.59930i −0.129178 + 0.991621i \(0.541234\pi\)
−0.794180 + 0.607682i \(0.792100\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 28.2030 48.8490i 1.10963 1.92194i
\(647\) −19.5701 + 33.8964i −0.769379 + 1.33260i 0.168521 + 0.985698i \(0.446101\pi\)
−0.937900 + 0.346905i \(0.887233\pi\)
\(648\) 0 0
\(649\) 0.845379 + 1.46424i 0.0331840 + 0.0574764i
\(650\) 17.5123 + 30.3322i 0.686890 + 1.18973i
\(651\) 0 0
\(652\) 26.0796 45.1711i 1.02135 1.76904i
\(653\) −43.3281 −1.69556 −0.847779 0.530350i \(-0.822061\pi\)
−0.847779 + 0.530350i \(0.822061\pi\)
\(654\) 0 0
\(655\) −0.227221 −0.00887827
\(656\) −3.86726 6.69828i −0.150991 0.261524i
\(657\) 0 0
\(658\) 0 0
\(659\) −3.43895 5.95643i −0.133962 0.232030i 0.791238 0.611508i \(-0.209437\pi\)
−0.925201 + 0.379478i \(0.876103\pi\)
\(660\) 0 0
\(661\) −19.3835 33.5733i −0.753932 1.30585i −0.945903 0.324449i \(-0.894821\pi\)
0.191971 0.981401i \(-0.438512\pi\)
\(662\) 13.4907 + 23.3666i 0.524331 + 0.908168i
\(663\) 0 0
\(664\) −8.14097 14.1006i −0.315931 0.547209i
\(665\) 0 0
\(666\) 0 0
\(667\) −10.4383 18.0797i −0.404174 0.700050i
\(668\) 4.77217 0.184641
\(669\) 0 0
\(670\) 12.3466 0.476991
\(671\) −28.3257 + 49.0615i −1.09350 + 1.89400i
\(672\) 0 0
\(673\) 17.9897 + 31.1591i 0.693452 + 1.20109i 0.970700 + 0.240295i \(0.0772443\pi\)
−0.277248 + 0.960798i \(0.589422\pi\)
\(674\) 28.2025 + 48.8481i 1.08632 + 1.88156i
\(675\) 0 0
\(676\) −13.0227 + 22.5560i −0.500874 + 0.867539i
\(677\) 2.23329 3.86817i 0.0858322 0.148666i −0.819913 0.572488i \(-0.805978\pi\)
0.905746 + 0.423822i \(0.139312\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4.89449 + 8.47750i −0.187695 + 0.325097i
\(681\) 0 0
\(682\) 17.4536 0.668335
\(683\) −13.3356 + 23.0980i −0.510274 + 0.883821i 0.489655 + 0.871916i \(0.337123\pi\)
−0.999929 + 0.0119046i \(0.996211\pi\)
\(684\) 0 0
\(685\) 3.99773 0.152745
\(686\) 0 0
\(687\) 0 0
\(688\) −6.59138 −0.251294
\(689\) 16.9480 + 29.3548i 0.645668 + 1.11833i
\(690\) 0 0
\(691\) 20.5220 35.5452i 0.780694 1.35220i −0.150844 0.988558i \(-0.548199\pi\)
0.931538 0.363644i \(-0.118468\pi\)
\(692\) 27.5709 1.04809
\(693\) 0 0
\(694\) −36.6671 −1.39187
\(695\) −11.9582 + 20.7121i −0.453599 + 0.785656i
\(696\) 0 0
\(697\) 9.38281 + 16.2515i 0.355399 + 0.615570i
\(698\) 67.6847 2.56190
\(699\) 0 0
\(700\) 0 0
\(701\) −9.63355 −0.363854 −0.181927 0.983312i \(-0.558233\pi\)
−0.181927 + 0.983312i \(0.558233\pi\)
\(702\) 0 0
\(703\) −5.16148 + 8.93994i −0.194669 + 0.337176i
\(704\) −67.9575 −2.56125
\(705\) 0 0
\(706\) −2.89382 + 5.01224i −0.108910 + 0.188638i
\(707\) 0 0
\(708\) 0 0
\(709\) 5.07131 8.78376i 0.190457 0.329881i −0.754945 0.655788i \(-0.772336\pi\)
0.945402 + 0.325907i \(0.105670\pi\)
\(710\) −2.71448 + 4.70162i −0.101873 + 0.176449i
\(711\) 0 0
\(712\) −4.16286 7.21029i −0.156010 0.270217i
\(713\) 3.78954 + 6.56368i 0.141919 + 0.245812i
\(714\) 0 0
\(715\) −16.4826 + 28.5487i −0.616415 + 1.06766i
\(716\) 50.7380 1.89617
\(717\) 0 0
\(718\) −70.8235 −2.64311
\(719\) −20.6844 35.8264i −0.771397 1.33610i −0.936797 0.349873i \(-0.886225\pi\)
0.165400 0.986227i \(-0.447109\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 10.8350 + 18.7667i 0.403236 + 0.698425i
\(723\) 0 0
\(724\) 12.0533 + 20.8769i 0.447957 + 0.775884i
\(725\) 6.83904 + 11.8456i 0.253996 + 0.439934i
\(726\) 0 0
\(727\) −4.86372 8.42422i −0.180386 0.312437i 0.761626 0.648016i \(-0.224401\pi\)
−0.942012 + 0.335580i \(0.891068\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 14.5604 + 25.2194i 0.538906 + 0.933412i
\(731\) 15.9921 0.591491
\(732\) 0 0
\(733\) 28.9108 1.06784 0.533922 0.845534i \(-0.320718\pi\)
0.533922 + 0.845534i \(0.320718\pi\)
\(734\) 15.4013 26.6758i 0.568471 0.984621i
\(735\) 0 0
\(736\) −19.4766 33.7345i −0.717918 1.24347i
\(737\) −12.2503 21.2182i −0.451247 0.781582i
\(738\) 0 0
\(739\) 6.67467 11.5609i 0.245532 0.425273i −0.716749 0.697331i \(-0.754371\pi\)
0.962281 + 0.272058i \(0.0877041\pi\)
\(740\) 3.32876 5.76558i 0.122368 0.211947i
\(741\) 0 0
\(742\) 0 0
\(743\) −19.9100 + 34.4851i −0.730425 + 1.26513i 0.226276 + 0.974063i \(0.427345\pi\)
−0.956702 + 0.291071i \(0.905988\pi\)
\(744\) 0 0
\(745\) −26.9816 −0.988530
\(746\) 2.91221 5.04410i 0.106624 0.184678i
\(747\) 0 0
\(748\) 72.1877 2.63944
\(749\) 0 0
\(750\) 0 0
\(751\) −38.4345 −1.40250 −0.701248 0.712917i \(-0.747374\pi\)
−0.701248 + 0.712917i \(0.747374\pi\)
\(752\) −3.13204 5.42486i −0.114214 0.197824i
\(753\) 0 0
\(754\) −20.8258 + 36.0713i −0.758429 + 1.31364i
\(755\) −8.07344 −0.293823
\(756\) 0 0
\(757\) −5.66698 −0.205970 −0.102985 0.994683i \(-0.532839\pi\)
−0.102985 + 0.994683i \(0.532839\pi\)
\(758\) −0.340516 + 0.589791i −0.0123681 + 0.0214222i
\(759\) 0 0
\(760\) −5.46839 9.47153i −0.198359 0.343569i
\(761\) −52.3321 −1.89704 −0.948519 0.316719i \(-0.897419\pi\)
−0.948519 + 0.316719i \(0.897419\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −13.4337 −0.486014
\(765\) 0 0
\(766\) 9.78121 16.9416i 0.353410 0.612123i
\(767\) 1.46481 0.0528912
\(768\) 0 0
\(769\) 1.17360 2.03274i 0.0423212 0.0733025i −0.844089 0.536203i \(-0.819858\pi\)
0.886410 + 0.462901i \(0.153191\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 13.3637 23.1466i 0.480970 0.833064i
\(773\) 18.1814 31.4912i 0.653941 1.13266i −0.328217 0.944602i \(-0.606448\pi\)
0.982158 0.188057i \(-0.0602189\pi\)
\(774\) 0 0
\(775\) −2.48285 4.30042i −0.0891866 0.154476i
\(776\) 3.98251 + 6.89790i 0.142964 + 0.247620i
\(777\) 0 0
\(778\) 29.3659 50.8633i 1.05282 1.82354i
\(779\) −20.9660 −0.751185
\(780\) 0 0
\(781\) 10.7733 0.385497
\(782\) 27.1292 + 46.9892i 0.970139 + 1.68033i
\(783\) 0 0
\(784\) 0 0
\(785\) 0.885235 + 1.53327i 0.0315954 + 0.0547248i
\(786\) 0 0
\(787\) 15.8846 + 27.5129i 0.566224 + 0.980729i 0.996935 + 0.0782386i \(0.0249296\pi\)
−0.430711 + 0.902490i \(0.641737\pi\)
\(788\) 4.53472 + 7.85437i 0.161543 + 0.279800i
\(789\) 0 0
\(790\) 12.4435 + 21.5528i 0.442721 + 0.766816i
\(791\) 0 0
\(792\) 0 0
\(793\) 24.5403 + 42.5050i 0.871451 + 1.50940i
\(794\) −64.2024 −2.27846
\(795\) 0 0
\(796\) 30.3422 1.07545