Properties

Label 1323.2.g.g.361.3
Level $1323$
Weight $2$
Character 1323.361
Analytic conductor $10.564$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 7 x^{10} + 37 x^{8} - 78 x^{6} + 123 x^{4} - 36 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: no (minimal twist has level 441)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.3
Root \(1.29589 - 0.748185i\) of defining polynomial
Character \(\chi\) \(=\) 1323.361
Dual form 1323.2.g.g.667.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.119562 - 0.207087i) q^{2} +(0.971410 + 1.68253i) q^{4} -2.59179 q^{5} +0.942820 q^{8} +O(q^{10})\) \(q+(0.119562 - 0.207087i) q^{2} +(0.971410 + 1.68253i) q^{4} -2.59179 q^{5} +0.942820 q^{8} +(-0.309879 + 0.536725i) q^{10} -4.18194 q^{11} +(1.84155 - 3.18966i) q^{13} +(-1.83009 + 3.16982i) q^{16} +(-0.855536 + 1.48183i) q^{17} +(-3.57780 - 6.19694i) q^{19} +(-2.51769 - 4.36077i) q^{20} +(-0.500000 + 0.866025i) q^{22} +5.12476 q^{23} +1.71737 q^{25} +(-0.440358 - 0.762722i) q^{26} +(-1.06238 - 1.84010i) q^{29} +(-3.26793 - 5.66021i) q^{31} +(1.38044 + 2.39099i) q^{32} +(0.204579 + 0.354341i) q^{34} +(-0.830095 - 1.43777i) q^{37} -1.71107 q^{38} -2.44359 q^{40} +(5.10948 - 8.84988i) q^{41} +(0.830095 + 1.43777i) q^{43} +(-4.06238 - 7.03625i) q^{44} +(0.612725 - 1.06127i) q^{46} +(-4.66912 + 8.08715i) q^{47} +(0.205332 - 0.355645i) q^{50} +7.15561 q^{52} +(5.32326 - 9.22015i) q^{53} +10.8387 q^{55} -0.508080 q^{58} +(-3.03215 - 5.25183i) q^{59} +(-3.99298 + 6.91605i) q^{61} -1.56287 q^{62} -6.66019 q^{64} +(-4.77292 + 8.26693i) q^{65} +(-4.13160 - 7.15614i) q^{67} -3.32431 q^{68} -6.23912 q^{71} +(3.57780 - 6.19694i) q^{73} -0.396990 q^{74} +(6.95103 - 12.0395i) q^{76} +(4.91423 - 8.51170i) q^{79} +(4.74322 - 8.21550i) q^{80} +(-1.22180 - 2.11621i) q^{82} +(-3.44733 - 5.97094i) q^{83} +(2.21737 - 3.84060i) q^{85} +0.396990 q^{86} -3.94282 q^{88} +(2.51769 + 4.36077i) q^{89} +(4.97825 + 8.62258i) q^{92} +(1.11650 + 1.93383i) q^{94} +(9.27292 + 16.0612i) q^{95} +(1.53167 + 2.65294i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 2q^{2} - 6q^{4} - 24q^{8} + O(q^{10}) \) \( 12q + 2q^{2} - 6q^{4} - 24q^{8} - 16q^{11} - 6q^{16} - 6q^{22} - 8q^{23} + 24q^{25} + 22q^{29} + 16q^{32} + 6q^{37} - 6q^{43} - 14q^{44} - 12q^{46} + 56q^{50} + 28q^{53} + 36q^{58} - 48q^{64} - 6q^{65} - 76q^{71} - 72q^{74} + 6q^{79} + 30q^{85} + 72q^{86} - 12q^{88} + 62q^{92} + 60q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.119562 0.207087i 0.0845428 0.146433i −0.820653 0.571426i \(-0.806390\pi\)
0.905196 + 0.424994i \(0.139724\pi\)
\(3\) 0 0
\(4\) 0.971410 + 1.68253i 0.485705 + 0.841266i
\(5\) −2.59179 −1.15908 −0.579542 0.814943i \(-0.696768\pi\)
−0.579542 + 0.814943i \(0.696768\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0.942820 0.333337
\(9\) 0 0
\(10\) −0.309879 + 0.536725i −0.0979922 + 0.169727i
\(11\) −4.18194 −1.26090 −0.630452 0.776228i \(-0.717130\pi\)
−0.630452 + 0.776228i \(0.717130\pi\)
\(12\) 0 0
\(13\) 1.84155 3.18966i 0.510755 0.884653i −0.489168 0.872190i \(-0.662699\pi\)
0.999922 0.0124633i \(-0.00396730\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.83009 + 3.16982i −0.457524 + 0.792454i
\(17\) −0.855536 + 1.48183i −0.207498 + 0.359397i −0.950926 0.309419i \(-0.899865\pi\)
0.743428 + 0.668816i \(0.233199\pi\)
\(18\) 0 0
\(19\) −3.57780 6.19694i −0.820805 1.42168i −0.905084 0.425233i \(-0.860192\pi\)
0.0842790 0.996442i \(-0.473141\pi\)
\(20\) −2.51769 4.36077i −0.562973 0.975097i
\(21\) 0 0
\(22\) −0.500000 + 0.866025i −0.106600 + 0.184637i
\(23\) 5.12476 1.06859 0.534294 0.845299i \(-0.320578\pi\)
0.534294 + 0.845299i \(0.320578\pi\)
\(24\) 0 0
\(25\) 1.71737 0.343474
\(26\) −0.440358 0.762722i −0.0863613 0.149582i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.06238 1.84010i −0.197279 0.341698i 0.750366 0.661023i \(-0.229877\pi\)
−0.947645 + 0.319325i \(0.896544\pi\)
\(30\) 0 0
\(31\) −3.26793 5.66021i −0.586937 1.01660i −0.994631 0.103486i \(-0.967000\pi\)
0.407694 0.913119i \(-0.366333\pi\)
\(32\) 1.38044 + 2.39099i 0.244029 + 0.422671i
\(33\) 0 0
\(34\) 0.204579 + 0.354341i 0.0350850 + 0.0607689i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.830095 1.43777i −0.136467 0.236367i 0.789690 0.613506i \(-0.210241\pi\)
−0.926157 + 0.377139i \(0.876908\pi\)
\(38\) −1.71107 −0.277573
\(39\) 0 0
\(40\) −2.44359 −0.386366
\(41\) 5.10948 8.84988i 0.797967 1.38212i −0.122972 0.992410i \(-0.539242\pi\)
0.920938 0.389708i \(-0.127424\pi\)
\(42\) 0 0
\(43\) 0.830095 + 1.43777i 0.126588 + 0.219257i 0.922353 0.386349i \(-0.126264\pi\)
−0.795764 + 0.605606i \(0.792931\pi\)
\(44\) −4.06238 7.03625i −0.612427 1.06075i
\(45\) 0 0
\(46\) 0.612725 1.06127i 0.0903414 0.156476i
\(47\) −4.66912 + 8.08715i −0.681061 + 1.17963i 0.293596 + 0.955930i \(0.405148\pi\)
−0.974657 + 0.223703i \(0.928185\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.205332 0.355645i 0.0290383 0.0502958i
\(51\) 0 0
\(52\) 7.15561 0.992305
\(53\) 5.32326 9.22015i 0.731206 1.26649i −0.225162 0.974321i \(-0.572291\pi\)
0.956368 0.292164i \(-0.0943754\pi\)
\(54\) 0 0
\(55\) 10.8387 1.46149
\(56\) 0 0
\(57\) 0 0
\(58\) −0.508080 −0.0667142
\(59\) −3.03215 5.25183i −0.394752 0.683730i 0.598318 0.801259i \(-0.295836\pi\)
−0.993069 + 0.117529i \(0.962503\pi\)
\(60\) 0 0
\(61\) −3.99298 + 6.91605i −0.511249 + 0.885509i 0.488666 + 0.872471i \(0.337484\pi\)
−0.999915 + 0.0130384i \(0.995850\pi\)
\(62\) −1.56287 −0.198485
\(63\) 0 0
\(64\) −6.66019 −0.832524
\(65\) −4.77292 + 8.26693i −0.592007 + 1.02539i
\(66\) 0 0
\(67\) −4.13160 7.15614i −0.504755 0.874262i −0.999985 0.00549964i \(-0.998249\pi\)
0.495230 0.868762i \(-0.335084\pi\)
\(68\) −3.32431 −0.403131
\(69\) 0 0
\(70\) 0 0
\(71\) −6.23912 −0.740448 −0.370224 0.928943i \(-0.620719\pi\)
−0.370224 + 0.928943i \(0.620719\pi\)
\(72\) 0 0
\(73\) 3.57780 6.19694i 0.418750 0.725297i −0.577064 0.816699i \(-0.695802\pi\)
0.995814 + 0.0914022i \(0.0291349\pi\)
\(74\) −0.396990 −0.0461492
\(75\) 0 0
\(76\) 6.95103 12.0395i 0.797338 1.38103i
\(77\) 0 0
\(78\) 0 0
\(79\) 4.91423 8.51170i 0.552894 0.957641i −0.445170 0.895446i \(-0.646857\pi\)
0.998064 0.0621945i \(-0.0198099\pi\)
\(80\) 4.74322 8.21550i 0.530308 0.918521i
\(81\) 0 0
\(82\) −1.22180 2.11621i −0.134925 0.233696i
\(83\) −3.44733 5.97094i −0.378393 0.655396i 0.612436 0.790521i \(-0.290190\pi\)
−0.990829 + 0.135124i \(0.956857\pi\)
\(84\) 0 0
\(85\) 2.21737 3.84060i 0.240508 0.416571i
\(86\) 0.396990 0.0428085
\(87\) 0 0
\(88\) −3.94282 −0.420306
\(89\) 2.51769 + 4.36077i 0.266875 + 0.462240i 0.968053 0.250745i \(-0.0806757\pi\)
−0.701178 + 0.712986i \(0.747342\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.97825 + 8.62258i 0.519018 + 0.898966i
\(93\) 0 0
\(94\) 1.11650 + 1.93383i 0.115158 + 0.199459i
\(95\) 9.27292 + 16.0612i 0.951381 + 1.64784i
\(96\) 0 0
\(97\) 1.53167 + 2.65294i 0.155518 + 0.269365i 0.933247 0.359234i \(-0.116962\pi\)
−0.777730 + 0.628599i \(0.783629\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.66827 + 2.88953i 0.166827 + 0.288953i
\(101\) −11.0997 −1.10446 −0.552229 0.833692i \(-0.686223\pi\)
−0.552229 + 0.833692i \(0.686223\pi\)
\(102\) 0 0
\(103\) −7.98597 −0.786881 −0.393440 0.919350i \(-0.628715\pi\)
−0.393440 + 0.919350i \(0.628715\pi\)
\(104\) 1.73625 3.00728i 0.170254 0.294888i
\(105\) 0 0
\(106\) −1.27292 2.20475i −0.123636 0.214145i
\(107\) 1.97825 + 3.42642i 0.191244 + 0.331245i 0.945663 0.325149i \(-0.105414\pi\)
−0.754419 + 0.656394i \(0.772081\pi\)
\(108\) 0 0
\(109\) −3.63160 + 6.29012i −0.347844 + 0.602484i −0.985866 0.167534i \(-0.946420\pi\)
0.638022 + 0.770018i \(0.279753\pi\)
\(110\) 1.29589 2.24456i 0.123559 0.214010i
\(111\) 0 0
\(112\) 0 0
\(113\) 3.46457 6.00082i 0.325920 0.564509i −0.655778 0.754953i \(-0.727659\pi\)
0.981698 + 0.190444i \(0.0609928\pi\)
\(114\) 0 0
\(115\) −13.2823 −1.23858
\(116\) 2.06402 3.57498i 0.191639 0.331929i
\(117\) 0 0
\(118\) −1.45011 −0.133494
\(119\) 0 0
\(120\) 0 0
\(121\) 6.48865 0.589877
\(122\) 0.954815 + 1.65379i 0.0864449 + 0.149727i
\(123\) 0 0
\(124\) 6.34899 10.9968i 0.570156 0.987540i
\(125\) 8.50788 0.760968
\(126\) 0 0
\(127\) 9.11109 0.808479 0.404239 0.914653i \(-0.367536\pi\)
0.404239 + 0.914653i \(0.367536\pi\)
\(128\) −3.55718 + 6.16122i −0.314413 + 0.544580i
\(129\) 0 0
\(130\) 1.14132 + 1.97682i 0.100100 + 0.173378i
\(131\) −4.30286 −0.375943 −0.187971 0.982175i \(-0.560191\pi\)
−0.187971 + 0.982175i \(0.560191\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.97592 −0.170694
\(135\) 0 0
\(136\) −0.806617 + 1.39710i −0.0691668 + 0.119800i
\(137\) −20.5893 −1.75907 −0.879533 0.475838i \(-0.842145\pi\)
−0.879533 + 0.475838i \(0.842145\pi\)
\(138\) 0 0
\(139\) −7.88067 + 13.6497i −0.668429 + 1.15775i 0.309914 + 0.950765i \(0.399700\pi\)
−0.978343 + 0.206989i \(0.933634\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.745960 + 1.29204i −0.0625996 + 0.108426i
\(143\) −7.70127 + 13.3390i −0.644012 + 1.11546i
\(144\) 0 0
\(145\) 2.75347 + 4.76915i 0.228663 + 0.396056i
\(146\) −0.855536 1.48183i −0.0708047 0.122637i
\(147\) 0 0
\(148\) 1.61273 2.79332i 0.132565 0.229610i
\(149\) −6.06758 −0.497076 −0.248538 0.968622i \(-0.579950\pi\)
−0.248538 + 0.968622i \(0.579950\pi\)
\(150\) 0 0
\(151\) 4.48865 0.365281 0.182641 0.983180i \(-0.441536\pi\)
0.182641 + 0.983180i \(0.441536\pi\)
\(152\) −3.37323 5.84260i −0.273605 0.473897i
\(153\) 0 0
\(154\) 0 0
\(155\) 8.46978 + 14.6701i 0.680309 + 1.17833i
\(156\) 0 0
\(157\) 0.514457 + 0.891066i 0.0410582 + 0.0711148i 0.885824 0.464021i \(-0.153594\pi\)
−0.844766 + 0.535136i \(0.820260\pi\)
\(158\) −1.17511 2.03534i −0.0934865 0.161923i
\(159\) 0 0
\(160\) −3.57780 6.19694i −0.282850 0.489911i
\(161\) 0 0
\(162\) 0 0
\(163\) −3.41423 5.91362i −0.267423 0.463190i 0.700772 0.713385i \(-0.252839\pi\)
−0.968196 + 0.250194i \(0.919505\pi\)
\(164\) 19.8536 1.55031
\(165\) 0 0
\(166\) −1.64867 −0.127962
\(167\) −8.99716 + 15.5835i −0.696221 + 1.20589i 0.273546 + 0.961859i \(0.411803\pi\)
−0.969767 + 0.244032i \(0.921530\pi\)
\(168\) 0 0
\(169\) −0.282630 0.489530i −0.0217408 0.0376561i
\(170\) −0.530225 0.918376i −0.0406664 0.0704362i
\(171\) 0 0
\(172\) −1.61273 + 2.79332i −0.122969 + 0.212989i
\(173\) 0.415178 0.719110i 0.0315654 0.0546729i −0.849811 0.527087i \(-0.823284\pi\)
0.881377 + 0.472414i \(0.156617\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 7.65335 13.2560i 0.576893 0.999208i
\(177\) 0 0
\(178\) 1.20408 0.0902493
\(179\) 3.78947 6.56355i 0.283238 0.490583i −0.688942 0.724816i \(-0.741925\pi\)
0.972180 + 0.234233i \(0.0752580\pi\)
\(180\) 0 0
\(181\) −0.409157 −0.0304124 −0.0152062 0.999884i \(-0.504840\pi\)
−0.0152062 + 0.999884i \(0.504840\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 4.83173 0.356200
\(185\) 2.15143 + 3.72639i 0.158176 + 0.273969i
\(186\) 0 0
\(187\) 3.57780 6.19694i 0.261635 0.453165i
\(188\) −18.1425 −1.32318
\(189\) 0 0
\(190\) 4.43474 0.321730
\(191\) 8.01204 13.8773i 0.579731 1.00412i −0.415779 0.909466i \(-0.636491\pi\)
0.995510 0.0946575i \(-0.0301756\pi\)
\(192\) 0 0
\(193\) 6.18715 + 10.7164i 0.445360 + 0.771387i 0.998077 0.0619822i \(-0.0197422\pi\)
−0.552717 + 0.833369i \(0.686409\pi\)
\(194\) 0.732518 0.0525917
\(195\) 0 0
\(196\) 0 0
\(197\) −23.1021 −1.64595 −0.822977 0.568075i \(-0.807688\pi\)
−0.822977 + 0.568075i \(0.807688\pi\)
\(198\) 0 0
\(199\) −3.37323 + 5.84260i −0.239122 + 0.414171i −0.960463 0.278409i \(-0.910193\pi\)
0.721341 + 0.692580i \(0.243526\pi\)
\(200\) 1.61917 0.114493
\(201\) 0 0
\(202\) −1.32710 + 2.29860i −0.0933741 + 0.161729i
\(203\) 0 0
\(204\) 0 0
\(205\) −13.2427 + 22.9370i −0.924910 + 1.60199i
\(206\) −0.954815 + 1.65379i −0.0665251 + 0.115225i
\(207\) 0 0
\(208\) 6.74043 + 11.6748i 0.467365 + 0.809500i
\(209\) 14.9622 + 25.9153i 1.03496 + 1.79260i
\(210\) 0 0
\(211\) −8.44282 + 14.6234i −0.581228 + 1.00672i 0.414106 + 0.910228i \(0.364094\pi\)
−0.995334 + 0.0964875i \(0.969239\pi\)
\(212\) 20.6843 1.42060
\(213\) 0 0
\(214\) 0.946090 0.0646734
\(215\) −2.15143 3.72639i −0.146726 0.254138i
\(216\) 0 0
\(217\) 0 0
\(218\) 0.868400 + 1.50411i 0.0588155 + 0.101871i
\(219\) 0 0
\(220\) 10.5288 + 18.2365i 0.709854 + 1.22950i
\(221\) 3.15103 + 5.45774i 0.211961 + 0.367128i
\(222\) 0 0
\(223\) −2.25071 3.89834i −0.150719 0.261052i 0.780773 0.624815i \(-0.214825\pi\)
−0.931492 + 0.363762i \(0.881492\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −0.828460 1.43494i −0.0551084 0.0954505i
\(227\) −6.06429 −0.402501 −0.201251 0.979540i \(-0.564501\pi\)
−0.201251 + 0.979540i \(0.564501\pi\)
\(228\) 0 0
\(229\) 11.0493 0.730159 0.365080 0.930976i \(-0.381042\pi\)
0.365080 + 0.930976i \(0.381042\pi\)
\(230\) −1.58805 + 2.75059i −0.104713 + 0.181369i
\(231\) 0 0
\(232\) −1.00163 1.73488i −0.0657605 0.113901i
\(233\) −4.06922 7.04809i −0.266583 0.461736i 0.701394 0.712774i \(-0.252561\pi\)
−0.967977 + 0.251038i \(0.919228\pi\)
\(234\) 0 0
\(235\) 12.1014 20.9602i 0.789407 1.36729i
\(236\) 5.89092 10.2034i 0.383466 0.664183i
\(237\) 0 0
\(238\) 0 0
\(239\) 10.5813 18.3273i 0.684445 1.18549i −0.289166 0.957279i \(-0.593378\pi\)
0.973611 0.228214i \(-0.0732886\pi\)
\(240\) 0 0
\(241\) −13.6915 −0.881945 −0.440972 0.897521i \(-0.645366\pi\)
−0.440972 + 0.897521i \(0.645366\pi\)
\(242\) 0.775794 1.34371i 0.0498699 0.0863772i
\(243\) 0 0
\(244\) −15.5153 −0.993265
\(245\) 0 0
\(246\) 0 0
\(247\) −26.3549 −1.67692
\(248\) −3.08107 5.33656i −0.195648 0.338872i
\(249\) 0 0
\(250\) 1.01722 1.76187i 0.0643344 0.111430i
\(251\) 15.2040 0.959667 0.479833 0.877360i \(-0.340697\pi\)
0.479833 + 0.877360i \(0.340697\pi\)
\(252\) 0 0
\(253\) −21.4315 −1.34738
\(254\) 1.08934 1.88679i 0.0683511 0.118388i
\(255\) 0 0
\(256\) −5.80959 10.0625i −0.363099 0.628906i
\(257\) 25.6215 1.59822 0.799112 0.601182i \(-0.205303\pi\)
0.799112 + 0.601182i \(0.205303\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −18.5458 −1.15016
\(261\) 0 0
\(262\) −0.514457 + 0.891066i −0.0317833 + 0.0550502i
\(263\) −7.10069 −0.437847 −0.218924 0.975742i \(-0.570255\pi\)
−0.218924 + 0.975742i \(0.570255\pi\)
\(264\) 0 0
\(265\) −13.7968 + 23.8967i −0.847528 + 1.46796i
\(266\) 0 0
\(267\) 0 0
\(268\) 8.02696 13.9031i 0.490324 0.849267i
\(269\) 8.21572 14.2301i 0.500922 0.867622i −0.499078 0.866557i \(-0.666328\pi\)
0.999999 0.00106448i \(-0.000338834\pi\)
\(270\) 0 0
\(271\) 6.34899 + 10.9968i 0.385674 + 0.668007i 0.991862 0.127314i \(-0.0406357\pi\)
−0.606189 + 0.795321i \(0.707302\pi\)
\(272\) −3.13143 5.42379i −0.189871 0.328865i
\(273\) 0 0
\(274\) −2.46169 + 4.26378i −0.148716 + 0.257584i
\(275\) −7.18194 −0.433087
\(276\) 0 0
\(277\) −0.828460 −0.0497773 −0.0248887 0.999690i \(-0.507923\pi\)
−0.0248887 + 0.999690i \(0.507923\pi\)
\(278\) 1.88445 + 3.26396i 0.113022 + 0.195760i
\(279\) 0 0
\(280\) 0 0
\(281\) 2.60985 + 4.52039i 0.155690 + 0.269664i 0.933310 0.359071i \(-0.116906\pi\)
−0.777620 + 0.628735i \(0.783573\pi\)
\(282\) 0 0
\(283\) −3.67708 6.36890i −0.218580 0.378592i 0.735794 0.677205i \(-0.236809\pi\)
−0.954374 + 0.298614i \(0.903476\pi\)
\(284\) −6.06075 10.4975i −0.359639 0.622913i
\(285\) 0 0
\(286\) 1.84155 + 3.18966i 0.108893 + 0.188609i
\(287\) 0 0
\(288\) 0 0
\(289\) 7.03611 + 12.1869i 0.413889 + 0.716877i
\(290\) 1.31684 0.0773273
\(291\) 0 0
\(292\) 13.9021 0.813557
\(293\) −3.91286 + 6.77728i −0.228592 + 0.395933i −0.957391 0.288795i \(-0.906745\pi\)
0.728799 + 0.684728i \(0.240079\pi\)
\(294\) 0 0
\(295\) 7.85868 + 13.6116i 0.457550 + 0.792500i
\(296\) −0.782630 1.35556i −0.0454895 0.0787900i
\(297\) 0 0
\(298\) −0.725450 + 1.25652i −0.0420242 + 0.0727881i
\(299\) 9.43752 16.3463i 0.545786 0.945329i
\(300\) 0 0
\(301\) 0 0
\(302\) 0.536670 0.929540i 0.0308819 0.0534890i
\(303\) 0 0
\(304\) 26.1909 1.50215
\(305\) 10.3490 17.9249i 0.592580 1.02638i
\(306\) 0 0
\(307\) −22.6709 −1.29390 −0.646948 0.762534i \(-0.723955\pi\)
−0.646948 + 0.762534i \(0.723955\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.05064 0.230061
\(311\) 16.1588 + 27.9879i 0.916281 + 1.58705i 0.805015 + 0.593255i \(0.202157\pi\)
0.111266 + 0.993791i \(0.464509\pi\)
\(312\) 0 0
\(313\) −12.1598 + 21.0614i −0.687312 + 1.19046i 0.285392 + 0.958411i \(0.407876\pi\)
−0.972704 + 0.232048i \(0.925457\pi\)
\(314\) 0.246037 0.0138847
\(315\) 0 0
\(316\) 19.0949 1.07417
\(317\) 2.56922 4.45002i 0.144302 0.249938i −0.784811 0.619736i \(-0.787240\pi\)
0.929112 + 0.369798i \(0.120573\pi\)
\(318\) 0 0
\(319\) 4.44282 + 7.69519i 0.248750 + 0.430848i
\(320\) 17.2618 0.964964
\(321\) 0 0
\(322\) 0 0
\(323\) 12.2438 0.681262
\(324\) 0 0
\(325\) 3.16263 5.47783i 0.175431 0.303855i
\(326\) −1.63284 −0.0904349
\(327\) 0 0
\(328\) 4.81732 8.34384i 0.265992 0.460712i
\(329\) 0 0
\(330\) 0 0
\(331\) 5.84897 10.1307i 0.321488 0.556834i −0.659307 0.751874i \(-0.729150\pi\)
0.980795 + 0.195040i \(0.0624835\pi\)
\(332\) 6.69753 11.6005i 0.367575 0.636658i
\(333\) 0 0
\(334\) 2.15143 + 3.72639i 0.117721 + 0.203899i
\(335\) 10.7082 + 18.5472i 0.585053 + 1.01334i
\(336\) 0 0
\(337\) 16.8473 29.1804i 0.917733 1.58956i 0.114883 0.993379i \(-0.463351\pi\)
0.802850 0.596181i \(-0.203316\pi\)
\(338\) −0.135167 −0.00735211
\(339\) 0 0
\(340\) 8.61590 0.467263
\(341\) 13.6663 + 23.6707i 0.740071 + 1.28184i
\(342\) 0 0
\(343\) 0 0
\(344\) 0.782630 + 1.35556i 0.0421966 + 0.0730866i
\(345\) 0 0
\(346\) −0.0992788 0.171956i −0.00533726 0.00924441i
\(347\) 13.6557 + 23.6523i 0.733075 + 1.26972i 0.955563 + 0.294788i \(0.0952490\pi\)
−0.222488 + 0.974936i \(0.571418\pi\)
\(348\) 0 0
\(349\) 11.4585 + 19.8467i 0.613358 + 1.06237i 0.990670 + 0.136281i \(0.0435150\pi\)
−0.377312 + 0.926086i \(0.623152\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.77292 9.99898i −0.307697 0.532948i
\(353\) 10.2693 0.546581 0.273290 0.961932i \(-0.411888\pi\)
0.273290 + 0.961932i \(0.411888\pi\)
\(354\) 0 0
\(355\) 16.1705 0.858241
\(356\) −4.89142 + 8.47218i −0.259245 + 0.449025i
\(357\) 0 0
\(358\) −0.906150 1.56950i −0.0478915 0.0829505i
\(359\) 5.05034 + 8.74745i 0.266547 + 0.461673i 0.967968 0.251075i \(-0.0807839\pi\)
−0.701421 + 0.712747i \(0.747451\pi\)
\(360\) 0 0
\(361\) −16.1014 + 27.8884i −0.847441 + 1.46781i
\(362\) −0.0489195 + 0.0847311i −0.00257115 + 0.00445337i
\(363\) 0 0
\(364\) 0 0
\(365\) −9.27292 + 16.0612i −0.485367 + 0.840680i
\(366\) 0 0
\(367\) 7.77537 0.405871 0.202935 0.979192i \(-0.434952\pi\)
0.202935 + 0.979192i \(0.434952\pi\)
\(368\) −9.37880 + 16.2446i −0.488904 + 0.846806i
\(369\) 0 0
\(370\) 1.02891 0.0534907
\(371\) 0 0
\(372\) 0 0
\(373\) 24.1111 1.24842 0.624212 0.781255i \(-0.285420\pi\)
0.624212 + 0.781255i \(0.285420\pi\)
\(374\) −0.855536 1.48183i −0.0442387 0.0766237i
\(375\) 0 0
\(376\) −4.40214 + 7.62473i −0.227023 + 0.393215i
\(377\) −7.82573 −0.403045
\(378\) 0 0
\(379\) −13.3581 −0.686161 −0.343081 0.939306i \(-0.611470\pi\)
−0.343081 + 0.939306i \(0.611470\pi\)
\(380\) −18.0156 + 31.2039i −0.924181 + 1.60073i
\(381\) 0 0
\(382\) −1.91586 3.31838i −0.0980242 0.169783i
\(383\) −9.24040 −0.472162 −0.236081 0.971733i \(-0.575863\pi\)
−0.236081 + 0.971733i \(0.575863\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.95898 0.150608
\(387\) 0 0
\(388\) −2.97577 + 5.15418i −0.151072 + 0.261664i
\(389\) −10.4484 −0.529756 −0.264878 0.964282i \(-0.585332\pi\)
−0.264878 + 0.964282i \(0.585332\pi\)
\(390\) 0 0
\(391\) −4.38442 + 7.59404i −0.221730 + 0.384047i
\(392\) 0 0
\(393\) 0 0
\(394\) −2.76212 + 4.78413i −0.139154 + 0.241021i
\(395\) −12.7366 + 22.0605i −0.640850 + 1.10999i
\(396\) 0 0
\(397\) −0.204579 0.354341i −0.0102675 0.0177838i 0.860846 0.508866i \(-0.169935\pi\)
−0.871114 + 0.491082i \(0.836602\pi\)
\(398\) 0.806617 + 1.39710i 0.0404321 + 0.0700304i
\(399\) 0 0
\(400\) −3.14295 + 5.44375i −0.157147 + 0.272187i
\(401\) −15.2528 −0.761688 −0.380844 0.924639i \(-0.624367\pi\)
−0.380844 + 0.924639i \(0.624367\pi\)
\(402\) 0 0
\(403\) −24.0722 −1.19912
\(404\) −10.7823 18.6756i −0.536441 0.929143i
\(405\) 0 0
\(406\) 0 0
\(407\) 3.47141 + 6.01266i 0.172071 + 0.298036i
\(408\) 0 0
\(409\) −3.06335 5.30587i −0.151473 0.262359i 0.780296 0.625410i \(-0.215068\pi\)
−0.931769 + 0.363051i \(0.881735\pi\)
\(410\) 3.16664 + 5.48477i 0.156389 + 0.270874i
\(411\) 0 0
\(412\) −7.75765 13.4366i −0.382192 0.661976i
\(413\) 0 0
\(414\) 0 0
\(415\) 8.93474 + 15.4754i 0.438589 + 0.759659i
\(416\) 10.1686 0.498557
\(417\) 0 0
\(418\) 7.15561 0.349992
\(419\) −0.781437 + 1.35349i −0.0381757 + 0.0661223i −0.884482 0.466574i \(-0.845488\pi\)
0.846306 + 0.532697i \(0.178821\pi\)
\(420\) 0 0
\(421\) −11.6316 20.1465i −0.566889 0.981881i −0.996871 0.0790438i \(-0.974813\pi\)
0.429982 0.902838i \(-0.358520\pi\)
\(422\) 2.01887 + 3.49679i 0.0982773 + 0.170221i
\(423\) 0 0
\(424\) 5.01887 8.69295i 0.243738 0.422167i
\(425\) −1.46927 + 2.54485i −0.0712702 + 0.123444i
\(426\) 0 0
\(427\) 0 0
\(428\) −3.84338 + 6.65692i −0.185777 + 0.321775i
\(429\) 0 0
\(430\) −1.02891 −0.0496187
\(431\) 0.502879 0.871011i 0.0242228 0.0419551i −0.853660 0.520831i \(-0.825622\pi\)
0.877883 + 0.478876i \(0.158956\pi\)
\(432\) 0 0
\(433\) −13.1071 −0.629889 −0.314945 0.949110i \(-0.601986\pi\)
−0.314945 + 0.949110i \(0.601986\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −14.1111 −0.675799
\(437\) −18.3354 31.7579i −0.877101 1.51918i
\(438\) 0 0
\(439\) 9.30704 16.1203i 0.444201 0.769378i −0.553795 0.832653i \(-0.686821\pi\)
0.997996 + 0.0632744i \(0.0201543\pi\)
\(440\) 10.2190 0.487170
\(441\) 0 0
\(442\) 1.50697 0.0716792
\(443\) −0.559503 + 0.969088i −0.0265828 + 0.0460427i −0.879011 0.476802i \(-0.841796\pi\)
0.852428 + 0.522845i \(0.175129\pi\)
\(444\) 0 0
\(445\) −6.52532 11.3022i −0.309330 0.535775i
\(446\) −1.07639 −0.0509687
\(447\) 0 0
\(448\) 0 0
\(449\) 39.4419 1.86138 0.930689 0.365813i \(-0.119209\pi\)
0.930689 + 0.365813i \(0.119209\pi\)
\(450\) 0 0
\(451\) −21.3676 + 37.0097i −1.00616 + 1.74272i
\(452\) 13.4621 0.633203
\(453\) 0 0
\(454\) −0.725057 + 1.25584i −0.0340286 + 0.0589393i
\(455\) 0 0
\(456\) 0 0
\(457\) 17.1202 29.6531i 0.800852 1.38712i −0.118205 0.992989i \(-0.537714\pi\)
0.919056 0.394126i \(-0.128953\pi\)
\(458\) 1.32107 2.28817i 0.0617297 0.106919i
\(459\) 0 0
\(460\) −12.9026 22.3479i −0.601585 1.04198i
\(461\) −10.1938 17.6561i −0.474772 0.822328i 0.524811 0.851219i \(-0.324136\pi\)
−0.999583 + 0.0288903i \(0.990803\pi\)
\(462\) 0 0
\(463\) −3.40451 + 5.89679i −0.158221 + 0.274047i −0.934227 0.356678i \(-0.883909\pi\)
0.776006 + 0.630725i \(0.217243\pi\)
\(464\) 7.77704 0.361040
\(465\) 0 0
\(466\) −1.94609 −0.0901509
\(467\) −12.3956 21.4698i −0.573598 0.993502i −0.996192 0.0871825i \(-0.972214\pi\)
0.422594 0.906319i \(-0.361120\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.89372 5.01207i −0.133477 0.231190i
\(471\) 0 0
\(472\) −2.85877 4.95153i −0.131586 0.227913i
\(473\) −3.47141 6.01266i −0.159616 0.276462i
\(474\) 0 0
\(475\) −6.14441 10.6424i −0.281925 0.488309i
\(476\) 0 0
\(477\) 0 0
\(478\) −2.53022 4.38248i −0.115730 0.200450i
\(479\) −11.0997 −0.507157 −0.253579 0.967315i \(-0.581608\pi\)
−0.253579 + 0.967315i \(0.581608\pi\)
\(480\) 0 0
\(481\) −6.11465 −0.278804
\(482\) −1.63697 + 2.83532i −0.0745621 + 0.129145i
\(483\) 0 0
\(484\) 6.30314 + 10.9174i 0.286506 + 0.496244i
\(485\) −3.96978 6.87585i −0.180258 0.312216i
\(486\) 0 0
\(487\) 5.01887 8.69295i 0.227427 0.393915i −0.729618 0.683855i \(-0.760302\pi\)
0.957045 + 0.289940i \(0.0936354\pi\)
\(488\) −3.76466 + 6.52059i −0.170418 + 0.295173i
\(489\) 0 0
\(490\) 0 0
\(491\) −6.19398 + 10.7283i −0.279530 + 0.484161i −0.971268 0.237988i \(-0.923512\pi\)
0.691738 + 0.722149i \(0.256845\pi\)
\(492\) 0 0
\(493\) 3.63562 0.163740
\(494\) −3.15103 + 5.45774i −0.141772 + 0.245556i
\(495\) 0 0
\(496\) 23.9225 1.07415
\(497\) 0 0
\(498\) 0 0
\(499\) 10.2222 0.457608 0.228804 0.973473i \(-0.426519\pi\)
0.228804 + 0.973473i \(0.426519\pi\)
\(500\) 8.26464 + 14.3148i 0.369606 + 0.640177i
\(501\) 0 0
\(502\) 1.81781 3.14854i 0.0811329 0.140526i
\(503\) −8.45753 −0.377102 −0.188551 0.982063i \(-0.560379\pi\)
−0.188551 + 0.982063i \(0.560379\pi\)
\(504\) 0 0
\(505\) 28.7680 1.28016
\(506\) −2.56238 + 4.43818i −0.113912 + 0.197301i
\(507\) 0 0
\(508\) 8.85060 + 15.3297i 0.392682 + 0.680145i
\(509\) −10.5657 −0.468317 −0.234159 0.972198i \(-0.575233\pi\)
−0.234159 + 0.972198i \(0.575233\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −17.0071 −0.751616
\(513\) 0 0
\(514\) 3.06335 5.30587i 0.135118 0.234032i
\(515\) 20.6979 0.912060
\(516\) 0 0
\(517\) 19.5260 33.8200i 0.858752 1.48740i
\(518\) 0 0
\(519\) 0 0
\(520\) −4.50000 + 7.79423i −0.197338 + 0.341800i
\(521\) −9.87788 + 17.1090i −0.432758 + 0.749558i −0.997110 0.0759760i \(-0.975793\pi\)
0.564352 + 0.825534i \(0.309126\pi\)
\(522\) 0 0
\(523\) −16.2641 28.1702i −0.711179 1.23180i −0.964415 0.264394i \(-0.914828\pi\)
0.253236 0.967405i \(-0.418505\pi\)
\(524\) −4.17984 7.23970i −0.182597 0.316268i
\(525\) 0 0
\(526\) −0.848970 + 1.47046i −0.0370168 + 0.0641150i
\(527\) 11.1833 0.487153
\(528\) 0 0
\(529\) 3.26320 0.141878
\(530\) 3.29913 + 5.71426i 0.143305 + 0.248211i
\(531\) 0 0
\(532\) 0 0
\(533\) −18.8187 32.5950i −0.815130 1.41185i
\(534\) 0 0
\(535\) −5.12720 8.88057i −0.221668 0.383940i
\(536\) −3.89536 6.74695i −0.168254 0.291424i
\(537\) 0 0
\(538\) −1.96457 3.40274i −0.0846987 0.146702i
\(539\) 0 0
\(540\) 0 0
\(541\) −7.61109 13.1828i −0.327226 0.566773i 0.654734 0.755859i \(-0.272781\pi\)
−0.981960 + 0.189087i \(0.939447\pi\)
\(542\) 3.03638 0.130424
\(543\) 0 0
\(544\) −4.72406 −0.202542
\(545\) 9.41234 16.3027i 0.403180 0.698329i
\(546\) 0 0
\(547\) −11.6871 20.2427i −0.499706 0.865517i 0.500294 0.865856i \(-0.333225\pi\)
−1.00000 0.000339172i \(0.999892\pi\)
\(548\) −20.0007 34.6422i −0.854387 1.47984i
\(549\) 0 0
\(550\) −0.858685 + 1.48729i −0.0366144 + 0.0634181i
\(551\) −7.60199 + 13.1670i −0.323856 + 0.560934i
\(552\) 0 0
\(553\) 0 0
\(554\) −0.0990521 + 0.171563i −0.00420832 + 0.00728902i
\(555\) 0 0
\(556\) −30.6214 −1.29864
\(557\) 13.8337 23.9606i 0.586151 1.01524i −0.408580 0.912723i \(-0.633976\pi\)
0.994731 0.102521i \(-0.0326908\pi\)
\(558\) 0 0
\(559\) 6.11465 0.258622
\(560\) 0 0
\(561\) 0 0
\(562\) 1.24815 0.0526500
\(563\) 4.27912 + 7.41166i 0.180343 + 0.312364i 0.941998 0.335620i \(-0.108946\pi\)
−0.761654 + 0.647984i \(0.775612\pi\)
\(564\) 0 0
\(565\) −8.97944 + 15.5529i −0.377768 + 0.654313i
\(566\) −1.75855 −0.0739175
\(567\) 0 0
\(568\) −5.88237 −0.246819
\(569\) 6.86389 11.8886i 0.287749 0.498396i −0.685523 0.728051i \(-0.740426\pi\)
0.973272 + 0.229655i \(0.0737597\pi\)
\(570\) 0 0
\(571\) −5.35868 9.28151i −0.224254 0.388419i 0.731841 0.681475i \(-0.238661\pi\)
−0.956095 + 0.293056i \(0.905328\pi\)
\(572\) −29.9244 −1.25120
\(573\) 0 0
\(574\) 0 0
\(575\) 8.80111 0.367032
\(576\) 0 0
\(577\) 22.8177 39.5214i 0.949912 1.64530i 0.204307 0.978907i \(-0.434506\pi\)
0.745605 0.666389i \(-0.232161\pi\)
\(578\) 3.36500 0.139965
\(579\) 0 0
\(580\) −5.34950 + 9.26560i −0.222126 + 0.384733i
\(581\) 0 0
\(582\) 0 0
\(583\) −22.2616 + 38.5582i −0.921980 + 1.59692i
\(584\) 3.37323 5.84260i 0.139585 0.241768i
\(585\) 0 0
\(586\) 0.935657 + 1.62060i 0.0386516 + 0.0669466i
\(587\) −5.10948 8.84988i −0.210891 0.365274i 0.741103 0.671392i \(-0.234303\pi\)
−0.951994 + 0.306118i \(0.900970\pi\)
\(588\) 0 0
\(589\) −23.3840 + 40.5023i −0.963521 + 1.66887i
\(590\) 3.75839 0.154730
\(591\) 0 0
\(592\) 6.07661 0.249747
\(593\) 5.69804 + 9.86929i 0.233990 + 0.405283i 0.958979 0.283478i \(-0.0914883\pi\)
−0.724988 + 0.688761i \(0.758155\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.89411 10.2089i −0.241432 0.418173i
\(597\) 0 0
\(598\) −2.25673 3.90877i −0.0922846 0.159842i
\(599\) −17.2873 29.9424i −0.706339 1.22341i −0.966206 0.257771i \(-0.917012\pi\)
0.259867 0.965644i \(-0.416321\pi\)
\(600\) 0 0
\(601\) 19.4207 + 33.6376i 0.792187 + 1.37211i 0.924610 + 0.380915i \(0.124391\pi\)
−0.132423 + 0.991193i \(0.542276\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 4.36032 + 7.55230i 0.177419 + 0.307299i
\(605\) −16.8172 −0.683717
\(606\) 0 0
\(607\) −41.3325 −1.67763 −0.838817 0.544414i \(-0.816752\pi\)
−0.838817 + 0.544414i \(0.816752\pi\)
\(608\) 9.87788 17.1090i 0.400601 0.693861i
\(609\) 0 0
\(610\) −2.47468 4.28627i −0.100197 0.173546i
\(611\) 17.1969 + 29.7858i 0.695710 + 1.20501i
\(612\) 0 0
\(613\) 14.3285 24.8176i 0.578721 1.00237i −0.416905 0.908950i \(-0.636885\pi\)
0.995626 0.0934244i \(-0.0297813\pi\)
\(614\) −2.71057 + 4.69485i −0.109390 + 0.189469i
\(615\) 0 0
\(616\) 0 0
\(617\) −16.8518 + 29.1883i −0.678430 + 1.17508i 0.297024 + 0.954870i \(0.404006\pi\)
−0.975454 + 0.220205i \(0.929327\pi\)
\(618\) 0 0
\(619\) 1.43807 0.0578010 0.0289005 0.999582i \(-0.490799\pi\)
0.0289005 + 0.999582i \(0.490799\pi\)
\(620\) −16.4552 + 28.5013i −0.660859 + 1.14464i
\(621\) 0 0
\(622\) 7.72789 0.309860
\(623\) 0 0
\(624\) 0 0
\(625\) −30.6375 −1.22550
\(626\) 2.90769 + 5.03626i 0.116215 + 0.201290i
\(627\) 0 0
\(628\) −0.999498 + 1.73118i −0.0398843 + 0.0690816i
\(629\) 2.84071 0.113266
\(630\) 0 0
\(631\) −30.7680 −1.22486 −0.612428 0.790527i \(-0.709807\pi\)
−0.612428 + 0.790527i \(0.709807\pi\)
\(632\) 4.63323 8.02500i 0.184300 0.319217i
\(633\) 0 0
\(634\) −0.614360 1.06410i −0.0243993 0.0422609i
\(635\) −23.6140 −0.937094
\(636\) 0 0
\(637\) 0 0
\(638\) 2.12476 0.0841202
\(639\) 0 0
\(640\) 9.21946 15.9686i 0.364431 0.631213i
\(641\) −9.23912 −0.364923 −0.182462 0.983213i \(-0.558407\pi\)
−0.182462 + 0.983213i \(0.558407\pi\)
\(642\) 0 0
\(643\) 12.7795 22.1348i 0.503976 0.872912i −0.496013 0.868315i \(-0.665203\pi\)
0.999989 0.00459728i \(-0.00146337\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.46389 2.53552i 0.0575958 0.0997588i
\(647\) 14.1556 24.5181i 0.556512 0.963908i −0.441272 0.897374i \(-0.645472\pi\)
0.997784 0.0665343i \(-0.0211942\pi\)
\(648\) 0 0
\(649\) 12.6803 + 21.9629i 0.497744 + 0.862118i
\(650\) −0.756258 1.30988i −0.0296629 0.0513776i
\(651\) 0 0
\(652\) 6.63323 11.4891i 0.259778 0.449948i
\(653\) 8.35021 0.326769 0.163385 0.986562i \(-0.447759\pi\)
0.163385 + 0.986562i \(0.447759\pi\)
\(654\) 0 0
\(655\) 11.1521 0.435749
\(656\) 18.7017 + 32.3922i 0.730177 + 1.26470i
\(657\) 0 0
\(658\) 0 0
\(659\) −16.7862 29.0745i −0.653897 1.13258i −0.982169 0.188000i \(-0.939799\pi\)
0.328272 0.944583i \(-0.393534\pi\)
\(660\) 0 0
\(661\) 8.47668 + 14.6820i 0.329705 + 0.571065i 0.982453 0.186509i \(-0.0597175\pi\)
−0.652748 + 0.757575i \(0.726384\pi\)
\(662\) −1.39862 2.42249i −0.0543591 0.0941527i
\(663\) 0 0
\(664\) −3.25021 5.62952i −0.126133 0.218468i
\(665\) 0 0
\(666\) 0 0
\(667\) −5.44445 9.43007i −0.210810 0.365134i
\(668\) −34.9597 −1.35263
\(669\) 0 0
\(670\) 5.12118 0.197848
\(671\) 16.6984 28.9225i 0.644636 1.11654i
\(672\) 0 0
\(673\) 22.2157 + 38.4788i 0.856354 + 1.48325i 0.875384 + 0.483429i \(0.160609\pi\)
−0.0190299 + 0.999819i \(0.506058\pi\)
\(674\) −4.02859 6.97772i −0.155175 0.268772i
\(675\) 0 0
\(676\) 0.549100 0.951068i 0.0211192 0.0365796i
\(677\) −7.18681 + 12.4479i −0.276212 + 0.478412i −0.970440 0.241342i \(-0.922412\pi\)
0.694229 + 0.719755i \(0.255746\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 2.09058 3.62099i 0.0801701 0.138859i
\(681\) 0 0
\(682\) 6.53585 0.250271
\(683\) −16.1546 + 27.9806i −0.618138 + 1.07065i 0.371687 + 0.928358i \(0.378780\pi\)
−0.989825 + 0.142289i \(0.954554\pi\)
\(684\) 0 0
\(685\) 53.3632 2.03890
\(686\) 0 0
\(687\) 0 0
\(688\) −6.07661 −0.231669
\(689\) −19.6061 33.9588i −0.746934 1.29373i
\(690\) 0 0
\(691\) 14.4981 25.1114i 0.551533 0.955283i −0.446631 0.894718i \(-0.647376\pi\)
0.998164 0.0605650i \(-0.0192902\pi\)
\(692\) 1.61323 0.0613259
\(693\) 0 0
\(694\) 6.53078 0.247905
\(695\) 20.4250 35.3772i 0.774765 1.34193i
\(696\) 0 0
\(697\) 8.74269 + 15.1428i 0.331153 + 0.573574i
\(698\) 5.47997 0.207420
\(699\) 0 0
\(700\) 0 0
\(701\) 26.3912 0.996783 0.498392 0.866952i \(-0.333924\pi\)
0.498392 + 0.866952i \(0.333924\pi\)
\(702\) 0 0
\(703\) −5.93984 + 10.2881i −0.224025 + 0.388023i
\(704\) 27.8525 1.04973
\(705\) 0 0
\(706\) 1.22782 2.12664i 0.0462095 0.0800372i
\(707\) 0 0
\(708\) 0 0
\(709\) 3.94282 6.82916i 0.148076 0.256475i −0.782441 0.622725i \(-0.786025\pi\)
0.930516 + 0.366251i \(0.119359\pi\)
\(710\) 1.93337 3.34870i 0.0725581 0.125674i
\(711\) 0 0
\(712\) 2.37373 + 4.11142i 0.0889592 + 0.154082i
\(713\) −16.7473 29.0073i −0.627193 1.08633i
\(714\) 0 0
\(715\) 19.9601 34.5718i 0.746464 1.29291i
\(716\) 14.7245 0.550281
\(717\) 0 0
\(718\) 2.41531 0.0901385
\(719\) −16.5754 28.7095i −0.618159 1.07068i −0.989822 0.142314i \(-0.954546\pi\)
0.371663 0.928368i \(-0.378788\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.85021 + 6.66877i 0.143290 + 0.248186i
\(723\) 0 0
\(724\) −0.397460 0.688420i −0.0147715 0.0255849i
\(725\) −1.82450 3.16013i −0.0677603 0.117364i
\(726\) 0 0
\(727\) −16.5502 28.6658i −0.613814 1.06316i −0.990591 0.136853i \(-0.956301\pi\)
0.376777 0.926304i \(-0.377032\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 2.21737 + 3.84060i 0.0820685 + 0.142147i
\(731\) −2.84071 −0.105067
\(732\) 0 0
\(733\) −44.5589 −1.64582 −0.822911 0.568170i \(-0.807651\pi\)
−0.822911 + 0.568170i \(0.807651\pi\)
\(734\) 0.929636 1.61018i 0.0343135 0.0594327i
\(735\) 0 0
\(736\) 7.07442 + 12.2533i 0.260767 + 0.451661i
\(737\) 17.2781 + 29.9266i 0.636448 + 1.10236i
\(738\) 0 0
\(739\) −19.9045 + 34.4756i −0.732199 + 1.26821i 0.223742 + 0.974648i \(0.428173\pi\)
−0.955941 + 0.293558i \(0.905161\pi\)
\(740\) −4.17984 + 7.23970i −0.153654 + 0.266137i
\(741\) 0 0
\(742\) 0 0
\(743\) 5.37072 9.30237i 0.197033 0.341271i −0.750532 0.660834i \(-0.770203\pi\)
0.947565 + 0.319563i \(0.103536\pi\)
\(744\) 0 0
\(745\) 15.7259 0.576152
\(746\) 2.88276 4.99309i 0.105545 0.182810i
\(747\) 0 0
\(748\) 13.9021 0.508310
\(749\) 0 0
\(750\) 0 0
\(751\) 19.7141 0.719378 0.359689 0.933072i \(-0.382883\pi\)
0.359689 + 0.933072i \(0.382883\pi\)
\(752\) −17.0899 29.6005i −0.623203 1.07942i
\(753\) 0 0
\(754\) −0.935657 + 1.62060i −0.0340746 + 0.0590189i
\(755\) −11.6336 −0.423391
\(756\) 0 0
\(757\) 35.3549 1.28499 0.642497 0.766288i \(-0.277898\pi\)
0.642497 + 0.766288i \(0.277898\pi\)
\(758\) −1.59712 + 2.76629i −0.0580100 + 0.100476i
\(759\) 0 0
\(760\) 8.74269 + 15.1428i 0.317131 + 0.549286i
\(761\) 39.1144 1.41790 0.708948 0.705261i \(-0.249170\pi\)
0.708948 + 0.705261i \(0.249170\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 31.1319 1.12631
\(765\) 0 0
\(766\) −1.10480 + 1.91357i −0.0399180 + 0.0691399i
\(767\) −22.3354 −0.806486
\(768\) 0 0
\(769\) 18.9240 32.7773i 0.682415 1.18198i −0.291826 0.956471i \(-0.594263\pi\)
0.974242 0.225507i \(-0.0724038\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −12.0205 + 20.8201i −0.432628 + 0.749333i
\(773\) 14.9133 25.8305i 0.536393 0.929059i −0.462702 0.886514i \(-0.653120\pi\)
0.999095 0.0425453i \(-0.0135467\pi\)
\(774\) 0 0
\(775\) −5.61224 9.72068i −0.201598 0.349177i
\(776\) 1.44409 + 2.50124i 0.0518399 + 0.0897894i
\(777\) 0 0
\(778\) −1.24923 + 2.16373i −0.0447870 + 0.0775734i
\(779\) −73.1229 −2.61990
\(780\) 0 0
\(781\) 26.0917 0.933633
\(782\) 1.04842 + 1.81591i 0.0374913 + 0.0649369i
\(783\) 0 0
\(784\) 0 0
\(785\) −1.33336 2.30946i −0.0475898 0.0824280i
\(786\) 0 0
\(787\) −8.81030 15.2599i −0.314053 0.543956i 0.665182 0.746681i \(-0.268354\pi\)
−0.979236 + 0.202724i \(0.935020\pi\)
\(788\) −22.4416 38.8700i −0.799448 1.38468i
\(789\) 0 0
\(790\) 3.04563 + 5.27518i 0.108359 + 0.187683i
\(791\) 0 0
\(792\) 0 0
\(793\) 14.7066 + 25.4725i 0.522246 + 0.904556i
\(794\) −0.0978390 −0.00347218