Properties

Label 1323.2.g.c.667.2
Level $1323$
Weight $2$
Character 1323.667
Analytic conductor $10.564$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Defining polynomial: \(x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 667.2
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 1323.667
Dual form 1323.2.g.c.361.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.119562 - 0.207087i) q^{2} +(0.971410 - 1.68253i) q^{4} -1.18194 q^{5} -0.942820 q^{8} +O(q^{10})\) \(q+(-0.119562 - 0.207087i) q^{2} +(0.971410 - 1.68253i) q^{4} -1.18194 q^{5} -0.942820 q^{8} +(0.141315 + 0.244765i) q^{10} +3.70370 q^{11} +(-0.500000 - 0.866025i) q^{13} +(-1.83009 - 3.16982i) q^{16} +(-3.47141 - 6.01266i) q^{17} +(-0.971410 + 1.68253i) q^{19} +(-1.14815 + 1.98866i) q^{20} +(-0.442820 - 0.766987i) q^{22} +5.60301 q^{23} -3.60301 q^{25} +(-0.119562 + 0.207087i) q^{26} +(0.119562 - 0.207087i) q^{29} +(-0.830095 + 1.43777i) q^{31} +(-1.38044 + 2.39099i) q^{32} +(-0.830095 + 1.43777i) q^{34} +(4.77292 - 8.26693i) q^{37} +0.464574 q^{38} +1.11436 q^{40} +(-5.09097 - 8.81782i) q^{41} +(-1.11273 + 1.92730i) q^{43} +(3.59781 - 6.23159i) q^{44} +(-0.669905 - 1.16031i) q^{46} +(2.91423 + 5.04759i) q^{47} +(0.430782 + 0.746136i) q^{50} -1.94282 q^{52} +(-5.80150 - 10.0485i) q^{53} -4.37756 q^{55} -0.0571799 q^{58} +(1.30150 - 2.25427i) q^{59} +(3.80150 + 6.58440i) q^{61} +0.396990 q^{62} -6.66019 q^{64} +(0.590972 + 1.02359i) q^{65} +(-1.75404 + 3.03809i) q^{67} -13.4887 q^{68} -8.60301 q^{71} +(-7.57442 - 13.1193i) q^{73} -2.28263 q^{74} +(1.88727 + 3.26886i) q^{76} +(-3.68878 - 6.38915i) q^{79} +(2.16307 + 3.74654i) q^{80} +(-1.21737 + 2.10855i) q^{82} +(-3.47141 + 6.01266i) q^{83} +(4.10301 + 7.10662i) q^{85} +0.532157 q^{86} -3.49192 q^{88} +(1.37360 - 2.37915i) q^{89} +(5.44282 - 9.42724i) q^{92} +(0.696860 - 1.20700i) q^{94} +(1.14815 - 1.98866i) q^{95} +(-3.58414 + 6.20790i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - q^{2} - 3q^{4} + 10q^{5} + 12q^{8} + O(q^{10}) \) \( 6q - q^{2} - 3q^{4} + 10q^{5} + 12q^{8} + 4q^{11} - 3q^{13} - 3q^{16} - 12q^{17} + 3q^{19} - 16q^{20} + 15q^{22} + 12q^{25} - q^{26} + q^{29} + 3q^{31} - 8q^{32} + 3q^{34} + 3q^{37} - 16q^{38} + 42q^{40} - 22q^{41} + 3q^{43} + 23q^{44} - 12q^{46} - 9q^{47} + 10q^{50} + 6q^{52} - 18q^{53} - 12q^{55} - 18q^{58} - 9q^{59} + 6q^{61} + 36q^{62} - 24q^{64} - 5q^{65} - 12q^{68} - 18q^{71} - 3q^{73} - 12q^{74} + 21q^{76} - 15q^{79} + 11q^{80} - 9q^{82} - 12q^{83} - 9q^{85} - 68q^{86} - 42q^{88} - 2q^{89} + 15q^{92} - 24q^{94} + 16q^{95} - 3q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.119562 0.207087i −0.0845428 0.146433i 0.820653 0.571426i \(-0.193610\pi\)
−0.905196 + 0.424994i \(0.860276\pi\)
\(3\) 0 0
\(4\) 0.971410 1.68253i 0.485705 0.841266i
\(5\) −1.18194 −0.528581 −0.264291 0.964443i \(-0.585138\pi\)
−0.264291 + 0.964443i \(0.585138\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −0.942820 −0.333337
\(9\) 0 0
\(10\) 0.141315 + 0.244765i 0.0446878 + 0.0774015i
\(11\) 3.70370 1.11671 0.558353 0.829603i \(-0.311433\pi\)
0.558353 + 0.829603i \(0.311433\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i 0.788320 0.615265i \(-0.210951\pi\)
−0.926995 + 0.375073i \(0.877618\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.83009 3.16982i −0.457524 0.792454i
\(17\) −3.47141 6.01266i −0.841941 1.45828i −0.888252 0.459357i \(-0.848080\pi\)
0.0463112 0.998927i \(-0.485253\pi\)
\(18\) 0 0
\(19\) −0.971410 + 1.68253i −0.222857 + 0.385999i −0.955674 0.294426i \(-0.904872\pi\)
0.732818 + 0.680425i \(0.238205\pi\)
\(20\) −1.14815 + 1.98866i −0.256735 + 0.444677i
\(21\) 0 0
\(22\) −0.442820 0.766987i −0.0944096 0.163522i
\(23\) 5.60301 1.16831 0.584154 0.811643i \(-0.301426\pi\)
0.584154 + 0.811643i \(0.301426\pi\)
\(24\) 0 0
\(25\) −3.60301 −0.720602
\(26\) −0.119562 + 0.207087i −0.0234480 + 0.0406131i
\(27\) 0 0
\(28\) 0 0
\(29\) 0.119562 0.207087i 0.0222020 0.0384551i −0.854711 0.519104i \(-0.826266\pi\)
0.876913 + 0.480649i \(0.159599\pi\)
\(30\) 0 0
\(31\) −0.830095 + 1.43777i −0.149089 + 0.258231i −0.930891 0.365297i \(-0.880968\pi\)
0.781802 + 0.623527i \(0.214301\pi\)
\(32\) −1.38044 + 2.39099i −0.244029 + 0.422671i
\(33\) 0 0
\(34\) −0.830095 + 1.43777i −0.142360 + 0.246575i
\(35\) 0 0
\(36\) 0 0
\(37\) 4.77292 8.26693i 0.784662 1.35908i −0.144538 0.989499i \(-0.546170\pi\)
0.929201 0.369576i \(-0.120497\pi\)
\(38\) 0.464574 0.0753638
\(39\) 0 0
\(40\) 1.11436 0.176196
\(41\) −5.09097 8.81782i −0.795076 1.37711i −0.922791 0.385301i \(-0.874097\pi\)
0.127715 0.991811i \(-0.459236\pi\)
\(42\) 0 0
\(43\) −1.11273 + 1.92730i −0.169689 + 0.293910i −0.938311 0.345794i \(-0.887610\pi\)
0.768622 + 0.639704i \(0.220943\pi\)
\(44\) 3.59781 6.23159i 0.542390 0.939447i
\(45\) 0 0
\(46\) −0.669905 1.16031i −0.0987721 0.171078i
\(47\) 2.91423 + 5.04759i 0.425084 + 0.736267i 0.996428 0.0844432i \(-0.0269112\pi\)
−0.571344 + 0.820711i \(0.693578\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.430782 + 0.746136i 0.0609217 + 0.105520i
\(51\) 0 0
\(52\) −1.94282 −0.269421
\(53\) −5.80150 10.0485i −0.796898 1.38027i −0.921627 0.388077i \(-0.873139\pi\)
0.124729 0.992191i \(-0.460194\pi\)
\(54\) 0 0
\(55\) −4.37756 −0.590270
\(56\) 0 0
\(57\) 0 0
\(58\) −0.0571799 −0.00750809
\(59\) 1.30150 2.25427i 0.169442 0.293481i −0.768782 0.639511i \(-0.779137\pi\)
0.938224 + 0.346029i \(0.112470\pi\)
\(60\) 0 0
\(61\) 3.80150 + 6.58440i 0.486733 + 0.843046i 0.999884 0.0152524i \(-0.00485519\pi\)
−0.513151 + 0.858298i \(0.671522\pi\)
\(62\) 0.396990 0.0504178
\(63\) 0 0
\(64\) −6.66019 −0.832524
\(65\) 0.590972 + 1.02359i 0.0733010 + 0.126961i
\(66\) 0 0
\(67\) −1.75404 + 3.03809i −0.214290 + 0.371161i −0.953053 0.302804i \(-0.902077\pi\)
0.738763 + 0.673966i \(0.235410\pi\)
\(68\) −13.4887 −1.63574
\(69\) 0 0
\(70\) 0 0
\(71\) −8.60301 −1.02099 −0.510495 0.859881i \(-0.670538\pi\)
−0.510495 + 0.859881i \(0.670538\pi\)
\(72\) 0 0
\(73\) −7.57442 13.1193i −0.886519 1.53550i −0.843963 0.536402i \(-0.819783\pi\)
−0.0425559 0.999094i \(-0.513550\pi\)
\(74\) −2.28263 −0.265350
\(75\) 0 0
\(76\) 1.88727 + 3.26886i 0.216485 + 0.374963i
\(77\) 0 0
\(78\) 0 0
\(79\) −3.68878 6.38915i −0.415020 0.718836i 0.580410 0.814324i \(-0.302892\pi\)
−0.995431 + 0.0954881i \(0.969559\pi\)
\(80\) 2.16307 + 3.74654i 0.241838 + 0.418876i
\(81\) 0 0
\(82\) −1.21737 + 2.10855i −0.134436 + 0.232850i
\(83\) −3.47141 + 6.01266i −0.381037 + 0.659975i −0.991211 0.132292i \(-0.957766\pi\)
0.610174 + 0.792267i \(0.291100\pi\)
\(84\) 0 0
\(85\) 4.10301 + 7.10662i 0.445034 + 0.770821i
\(86\) 0.532157 0.0573840
\(87\) 0 0
\(88\) −3.49192 −0.372240
\(89\) 1.37360 2.37915i 0.145602 0.252189i −0.783996 0.620766i \(-0.786822\pi\)
0.929597 + 0.368577i \(0.120155\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 5.44282 9.42724i 0.567453 0.982858i
\(93\) 0 0
\(94\) 0.696860 1.20700i 0.0718756 0.124492i
\(95\) 1.14815 1.98866i 0.117798 0.204032i
\(96\) 0 0
\(97\) −3.58414 + 6.20790i −0.363914 + 0.630317i −0.988601 0.150558i \(-0.951893\pi\)
0.624687 + 0.780875i \(0.285226\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.50000 + 6.06218i −0.350000 + 0.606218i
\(101\) 12.7850 1.27215 0.636075 0.771627i \(-0.280557\pi\)
0.636075 + 0.771627i \(0.280557\pi\)
\(102\) 0 0
\(103\) −4.39699 −0.433248 −0.216624 0.976255i \(-0.569505\pi\)
−0.216624 + 0.976255i \(0.569505\pi\)
\(104\) 0.471410 + 0.816506i 0.0462256 + 0.0800650i
\(105\) 0 0
\(106\) −1.38727 + 2.40283i −0.134744 + 0.233384i
\(107\) 6.86389 11.8886i 0.663557 1.14931i −0.316117 0.948720i \(-0.602379\pi\)
0.979674 0.200594i \(-0.0642873\pi\)
\(108\) 0 0
\(109\) −0.631600 1.09396i −0.0604963 0.104783i 0.834191 0.551476i \(-0.185935\pi\)
−0.894687 + 0.446693i \(0.852602\pi\)
\(110\) 0.523388 + 0.906535i 0.0499031 + 0.0864347i
\(111\) 0 0
\(112\) 0 0
\(113\) 6.08126 + 10.5330i 0.572076 + 0.990866i 0.996353 + 0.0853326i \(0.0271953\pi\)
−0.424276 + 0.905533i \(0.639471\pi\)
\(114\) 0 0
\(115\) −6.62244 −0.617546
\(116\) −0.232287 0.402332i −0.0215673 0.0373556i
\(117\) 0 0
\(118\) −0.622440 −0.0573003
\(119\) 0 0
\(120\) 0 0
\(121\) 2.71737 0.247034
\(122\) 0.909028 1.57448i 0.0822996 0.142547i
\(123\) 0 0
\(124\) 1.61273 + 2.79332i 0.144827 + 0.250848i
\(125\) 10.1683 0.909478
\(126\) 0 0
\(127\) 1.33981 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(128\) 3.55718 + 6.16122i 0.314413 + 0.544580i
\(129\) 0 0
\(130\) 0.141315 0.244765i 0.0123942 0.0214673i
\(131\) 4.96690 0.433960 0.216980 0.976176i \(-0.430379\pi\)
0.216980 + 0.976176i \(0.430379\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.838864 0.0724668
\(135\) 0 0
\(136\) 3.27292 + 5.66886i 0.280650 + 0.486100i
\(137\) 4.33981 0.370775 0.185387 0.982665i \(-0.440646\pi\)
0.185387 + 0.982665i \(0.440646\pi\)
\(138\) 0 0
\(139\) −1.97141 3.41458i −0.167213 0.289621i 0.770226 0.637771i \(-0.220143\pi\)
−0.937439 + 0.348150i \(0.886810\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.02859 + 1.78157i 0.0863174 + 0.149506i
\(143\) −1.85185 3.20750i −0.154859 0.268224i
\(144\) 0 0
\(145\) −0.141315 + 0.244765i −0.0117356 + 0.0203266i
\(146\) −1.81122 + 3.13713i −0.149898 + 0.259630i
\(147\) 0 0
\(148\) −9.27292 16.0612i −0.762229 1.32022i
\(149\) −11.1111 −0.910256 −0.455128 0.890426i \(-0.650406\pi\)
−0.455128 + 0.890426i \(0.650406\pi\)
\(150\) 0 0
\(151\) 13.9234 1.13307 0.566535 0.824038i \(-0.308284\pi\)
0.566535 + 0.824038i \(0.308284\pi\)
\(152\) 0.915865 1.58632i 0.0742864 0.128668i
\(153\) 0 0
\(154\) 0 0
\(155\) 0.981125 1.69936i 0.0788059 0.136496i
\(156\) 0 0
\(157\) −0.0285900 + 0.0495193i −0.00228173 + 0.00395207i −0.867164 0.498023i \(-0.834060\pi\)
0.864882 + 0.501975i \(0.167393\pi\)
\(158\) −0.882073 + 1.52780i −0.0701740 + 0.121545i
\(159\) 0 0
\(160\) 1.63160 2.82601i 0.128989 0.223416i
\(161\) 0 0
\(162\) 0 0
\(163\) 0.754040 1.30604i 0.0590610 0.102297i −0.834983 0.550276i \(-0.814523\pi\)
0.894044 + 0.447979i \(0.147856\pi\)
\(164\) −19.7817 −1.54469
\(165\) 0 0
\(166\) 1.66019 0.128856
\(167\) −7.34213 12.7169i −0.568151 0.984067i −0.996749 0.0805714i \(-0.974325\pi\)
0.428598 0.903496i \(-0.359008\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 0.981125 1.69936i 0.0752489 0.130335i
\(171\) 0 0
\(172\) 2.16182 + 3.74439i 0.164838 + 0.285507i
\(173\) 0.126398 + 0.218928i 0.00960987 + 0.0166448i 0.870790 0.491655i \(-0.163608\pi\)
−0.861180 + 0.508299i \(0.830274\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −6.77812 11.7400i −0.510920 0.884939i
\(177\) 0 0
\(178\) −0.656920 −0.0492383
\(179\) 7.09617 + 12.2909i 0.530393 + 0.918667i 0.999371 + 0.0354578i \(0.0112889\pi\)
−0.468978 + 0.883210i \(0.655378\pi\)
\(180\) 0 0
\(181\) −1.43147 −0.106400 −0.0532002 0.998584i \(-0.516942\pi\)
−0.0532002 + 0.998584i \(0.516942\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −5.28263 −0.389441
\(185\) −5.64132 + 9.77104i −0.414758 + 0.718381i
\(186\) 0 0
\(187\) −12.8571 22.2691i −0.940201 1.62848i
\(188\) 11.3236 0.825862
\(189\) 0 0
\(190\) −0.549100 −0.0398359
\(191\) 7.53379 + 13.0489i 0.545126 + 0.944186i 0.998599 + 0.0529159i \(0.0168515\pi\)
−0.453473 + 0.891270i \(0.649815\pi\)
\(192\) 0 0
\(193\) 3.92395 6.79647i 0.282452 0.489221i −0.689536 0.724251i \(-0.742186\pi\)
0.971988 + 0.235030i \(0.0755190\pi\)
\(194\) 1.71410 0.123065
\(195\) 0 0
\(196\) 0 0
\(197\) −6.69002 −0.476644 −0.238322 0.971186i \(-0.576597\pi\)
−0.238322 + 0.971186i \(0.576597\pi\)
\(198\) 0 0
\(199\) 9.96978 + 17.2682i 0.706739 + 1.22411i 0.966060 + 0.258316i \(0.0831677\pi\)
−0.259322 + 0.965791i \(0.583499\pi\)
\(200\) 3.39699 0.240203
\(201\) 0 0
\(202\) −1.52859 2.64760i −0.107551 0.186284i
\(203\) 0 0
\(204\) 0 0
\(205\) 6.01724 + 10.4222i 0.420262 + 0.727916i
\(206\) 0.525711 + 0.910559i 0.0366280 + 0.0634416i
\(207\) 0 0
\(208\) −1.83009 + 3.16982i −0.126894 + 0.219787i
\(209\) −3.59781 + 6.23159i −0.248866 + 0.431048i
\(210\) 0 0
\(211\) 9.04583 + 15.6678i 0.622741 + 1.07862i 0.988973 + 0.148095i \(0.0473141\pi\)
−0.366233 + 0.930523i \(0.619353\pi\)
\(212\) −22.5426 −1.54823
\(213\) 0 0
\(214\) −3.28263 −0.224396
\(215\) 1.31518 2.27796i 0.0896944 0.155355i
\(216\) 0 0
\(217\) 0 0
\(218\) −0.151030 + 0.261592i −0.0102291 + 0.0177172i
\(219\) 0 0
\(220\) −4.25241 + 7.36538i −0.286697 + 0.496574i
\(221\) −3.47141 + 6.01266i −0.233512 + 0.404455i
\(222\) 0 0
\(223\) 11.3285 19.6215i 0.758610 1.31395i −0.184950 0.982748i \(-0.559212\pi\)
0.943560 0.331203i \(-0.107454\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.45417 2.51870i 0.0967299 0.167541i
\(227\) 5.28263 0.350620 0.175310 0.984513i \(-0.443907\pi\)
0.175310 + 0.984513i \(0.443907\pi\)
\(228\) 0 0
\(229\) 19.3365 1.27779 0.638897 0.769292i \(-0.279391\pi\)
0.638897 + 0.769292i \(0.279391\pi\)
\(230\) 0.791790 + 1.37142i 0.0522091 + 0.0904288i
\(231\) 0 0
\(232\) −0.112725 + 0.195246i −0.00740077 + 0.0128185i
\(233\) −8.49028 + 14.7056i −0.556217 + 0.963396i 0.441591 + 0.897217i \(0.354414\pi\)
−0.997808 + 0.0661796i \(0.978919\pi\)
\(234\) 0 0
\(235\) −3.44445 5.96597i −0.224691 0.389177i
\(236\) −2.52859 4.37965i −0.164597 0.285091i
\(237\) 0 0
\(238\) 0 0
\(239\) 8.44282 + 14.6234i 0.546121 + 0.945909i 0.998535 + 0.0541011i \(0.0172293\pi\)
−0.452415 + 0.891808i \(0.649437\pi\)
\(240\) 0 0
\(241\) 27.1456 1.74860 0.874300 0.485386i \(-0.161321\pi\)
0.874300 + 0.485386i \(0.161321\pi\)
\(242\) −0.324893 0.562732i −0.0208849 0.0361738i
\(243\) 0 0
\(244\) 14.7713 0.945634
\(245\) 0 0
\(246\) 0 0
\(247\) 1.94282 0.123619
\(248\) 0.782630 1.35556i 0.0496971 0.0860778i
\(249\) 0 0
\(250\) −1.21574 2.10571i −0.0768898 0.133177i
\(251\) 19.0780 1.20419 0.602096 0.798424i \(-0.294332\pi\)
0.602096 + 0.798424i \(0.294332\pi\)
\(252\) 0 0
\(253\) 20.7518 1.30466
\(254\) −0.160190 0.277457i −0.0100512 0.0174092i
\(255\) 0 0
\(256\) −5.80959 + 10.0625i −0.363099 + 0.628906i
\(257\) 14.8421 0.925827 0.462913 0.886404i \(-0.346804\pi\)
0.462913 + 0.886404i \(0.346804\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 2.29630 0.142411
\(261\) 0 0
\(262\) −0.593850 1.02858i −0.0366882 0.0635458i
\(263\) 7.74145 0.477358 0.238679 0.971099i \(-0.423286\pi\)
0.238679 + 0.971099i \(0.423286\pi\)
\(264\) 0 0
\(265\) 6.85705 + 11.8768i 0.421225 + 0.729584i
\(266\) 0 0
\(267\) 0 0
\(268\) 3.40778 + 5.90246i 0.208164 + 0.360550i
\(269\) −0.755675 1.30887i −0.0460743 0.0798031i 0.842069 0.539371i \(-0.181338\pi\)
−0.888143 + 0.459567i \(0.848004\pi\)
\(270\) 0 0
\(271\) 10.9903 19.0357i 0.667612 1.15634i −0.310958 0.950424i \(-0.600650\pi\)
0.978570 0.205915i \(-0.0660169\pi\)
\(272\) −12.7060 + 22.0075i −0.770416 + 1.33440i
\(273\) 0 0
\(274\) −0.518875 0.898718i −0.0313464 0.0542935i
\(275\) −13.3445 −0.804701
\(276\) 0 0
\(277\) −10.8285 −0.650619 −0.325310 0.945608i \(-0.605469\pi\)
−0.325310 + 0.945608i \(0.605469\pi\)
\(278\) −0.471410 + 0.816506i −0.0282733 + 0.0489708i
\(279\) 0 0
\(280\) 0 0
\(281\) −8.43831 + 14.6156i −0.503387 + 0.871892i 0.496605 + 0.867977i \(0.334580\pi\)
−0.999992 + 0.00391559i \(0.998754\pi\)
\(282\) 0 0
\(283\) 7.65856 13.2650i 0.455254 0.788523i −0.543449 0.839442i \(-0.682882\pi\)
0.998703 + 0.0509194i \(0.0162152\pi\)
\(284\) −8.35705 + 14.4748i −0.495900 + 0.858923i
\(285\) 0 0
\(286\) −0.442820 + 0.766987i −0.0261845 + 0.0453529i
\(287\) 0 0
\(288\) 0 0
\(289\) −15.6014 + 27.0224i −0.917728 + 1.58955i
\(290\) 0.0675835 0.00396864
\(291\) 0 0
\(292\) −29.4315 −1.72235
\(293\) −4.68482 8.11435i −0.273690 0.474045i 0.696114 0.717932i \(-0.254911\pi\)
−0.969804 + 0.243886i \(0.921578\pi\)
\(294\) 0 0
\(295\) −1.53831 + 2.66442i −0.0895636 + 0.155129i
\(296\) −4.50000 + 7.79423i −0.261557 + 0.453030i
\(297\) 0 0
\(298\) 1.32846 + 2.30096i 0.0769556 + 0.133291i
\(299\) −2.80150 4.85235i −0.162015 0.280619i
\(300\) 0 0
\(301\) 0 0
\(302\) −1.66470 2.88335i −0.0957929 0.165918i
\(303\) 0 0
\(304\) 7.11109 0.407849
\(305\) −4.49316 7.78239i −0.257278 0.445618i
\(306\) 0 0
\(307\) 2.71410 0.154902 0.0774509 0.996996i \(-0.475322\pi\)
0.0774509 + 0.996996i \(0.475322\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.469220 −0.0266499
\(311\) −6.99028 + 12.1075i −0.396383 + 0.686555i −0.993277 0.115765i \(-0.963068\pi\)
0.596894 + 0.802320i \(0.296401\pi\)
\(312\) 0 0
\(313\) 9.52696 + 16.5012i 0.538495 + 0.932701i 0.998985 + 0.0450364i \(0.0143404\pi\)
−0.460490 + 0.887665i \(0.652326\pi\)
\(314\) 0.0136731 0.000771615
\(315\) 0 0
\(316\) −14.3333 −0.806309
\(317\) −2.00972 3.48093i −0.112877 0.195508i 0.804052 0.594559i \(-0.202673\pi\)
−0.916929 + 0.399050i \(0.869340\pi\)
\(318\) 0 0
\(319\) 0.442820 0.766987i 0.0247932 0.0429430i
\(320\) 7.87197 0.440056
\(321\) 0 0
\(322\) 0 0
\(323\) 13.4887 0.750529
\(324\) 0 0
\(325\) 1.80150 + 3.12030i 0.0999295 + 0.173083i
\(326\) −0.360617 −0.0199727
\(327\) 0 0
\(328\) 4.79987 + 8.31362i 0.265028 + 0.459043i
\(329\) 0 0
\(330\) 0 0
\(331\) 6.18878 + 10.7193i 0.340166 + 0.589185i 0.984463 0.175590i \(-0.0561834\pi\)
−0.644297 + 0.764775i \(0.722850\pi\)
\(332\) 6.74433 + 11.6815i 0.370143 + 0.641106i
\(333\) 0 0
\(334\) −1.75567 + 3.04092i −0.0960663 + 0.166392i
\(335\) 2.07318 3.59085i 0.113270 0.196189i
\(336\) 0 0
\(337\) −6.12997 10.6174i −0.333920 0.578367i 0.649356 0.760484i \(-0.275038\pi\)
−0.983277 + 0.182117i \(0.941705\pi\)
\(338\) −2.86948 −0.156079
\(339\) 0 0
\(340\) 15.9428 0.864621
\(341\) −3.07442 + 5.32505i −0.166489 + 0.288368i
\(342\) 0 0
\(343\) 0 0
\(344\) 1.04910 1.81709i 0.0565637 0.0979711i
\(345\) 0 0
\(346\) 0.0302247 0.0523508i 0.00162489 0.00281440i
\(347\) 3.32489 5.75888i 0.178490 0.309153i −0.762874 0.646547i \(-0.776212\pi\)
0.941363 + 0.337394i \(0.109546\pi\)
\(348\) 0 0
\(349\) −5.71737 + 9.90278i −0.306044 + 0.530083i −0.977493 0.210967i \(-0.932339\pi\)
0.671449 + 0.741050i \(0.265672\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.11273 + 8.85550i −0.272509 + 0.472000i
\(353\) 22.1956 1.18135 0.590677 0.806908i \(-0.298861\pi\)
0.590677 + 0.806908i \(0.298861\pi\)
\(354\) 0 0
\(355\) 10.1683 0.539676
\(356\) −2.66866 4.62226i −0.141439 0.244979i
\(357\) 0 0
\(358\) 1.69686 2.93905i 0.0896819 0.155334i
\(359\) −3.77812 + 6.54389i −0.199401 + 0.345373i −0.948334 0.317272i \(-0.897233\pi\)
0.748933 + 0.662646i \(0.230566\pi\)
\(360\) 0 0
\(361\) 7.61273 + 13.1856i 0.400670 + 0.693980i
\(362\) 0.171149 + 0.296439i 0.00899539 + 0.0155805i
\(363\) 0 0
\(364\) 0 0
\(365\) 8.95254 + 15.5062i 0.468597 + 0.811634i
\(366\) 0 0
\(367\) −18.5231 −0.966900 −0.483450 0.875372i \(-0.660616\pi\)
−0.483450 + 0.875372i \(0.660616\pi\)
\(368\) −10.2540 17.7605i −0.534529 0.925831i
\(369\) 0 0
\(370\) 2.69794 0.140259
\(371\) 0 0
\(372\) 0 0
\(373\) 15.6602 0.810854 0.405427 0.914127i \(-0.367123\pi\)
0.405427 + 0.914127i \(0.367123\pi\)
\(374\) −3.07442 + 5.32505i −0.158974 + 0.275352i
\(375\) 0 0
\(376\) −2.74759 4.75897i −0.141696 0.245425i
\(377\) −0.239123 −0.0123155
\(378\) 0 0
\(379\) 4.03775 0.207405 0.103703 0.994608i \(-0.466931\pi\)
0.103703 + 0.994608i \(0.466931\pi\)
\(380\) −2.23065 3.86360i −0.114430 0.198199i
\(381\) 0 0
\(382\) 1.80150 3.12030i 0.0921730 0.159648i
\(383\) −0.225450 −0.0115200 −0.00575998 0.999983i \(-0.501833\pi\)
−0.00575998 + 0.999983i \(0.501833\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.87661 −0.0955171
\(387\) 0 0
\(388\) 6.96333 + 12.0608i 0.353510 + 0.612296i
\(389\) −25.2632 −1.28090 −0.640448 0.768002i \(-0.721251\pi\)
−0.640448 + 0.768002i \(0.721251\pi\)
\(390\) 0 0
\(391\) −19.4503 33.6890i −0.983646 1.70373i
\(392\) 0 0
\(393\) 0 0
\(394\) 0.799870 + 1.38542i 0.0402969 + 0.0697962i
\(395\) 4.35993 + 7.55162i 0.219372 + 0.379963i
\(396\) 0 0
\(397\) 10.1505 17.5811i 0.509438 0.882372i −0.490503 0.871440i \(-0.663187\pi\)
0.999940 0.0109322i \(-0.00347991\pi\)
\(398\) 2.38401 4.12922i 0.119499 0.206979i
\(399\) 0 0
\(400\) 6.59385 + 11.4209i 0.329693 + 0.571044i
\(401\) 15.2255 0.760323 0.380161 0.924920i \(-0.375868\pi\)
0.380161 + 0.924920i \(0.375868\pi\)
\(402\) 0 0
\(403\) 1.66019 0.0826999
\(404\) 12.4194 21.5111i 0.617890 1.07022i
\(405\) 0 0
\(406\) 0 0
\(407\) 17.6774 30.6182i 0.876238 1.51769i
\(408\) 0 0
\(409\) −0.828460 + 1.43494i −0.0409647 + 0.0709530i −0.885781 0.464104i \(-0.846376\pi\)
0.844816 + 0.535057i \(0.179710\pi\)
\(410\) 1.43886 2.49218i 0.0710603 0.123080i
\(411\) 0 0
\(412\) −4.27128 + 7.39807i −0.210431 + 0.364477i
\(413\) 0 0
\(414\) 0 0
\(415\) 4.10301 7.10662i 0.201409 0.348850i
\(416\) 2.76088 0.135363
\(417\) 0 0
\(418\) 1.72064 0.0841592
\(419\) 16.6871 + 28.9030i 0.815220 + 1.41200i 0.909170 + 0.416426i \(0.136718\pi\)
−0.0939492 + 0.995577i \(0.529949\pi\)
\(420\) 0 0
\(421\) −9.12025 + 15.7967i −0.444494 + 0.769886i −0.998017 0.0629481i \(-0.979950\pi\)
0.553523 + 0.832834i \(0.313283\pi\)
\(422\) 2.16307 3.74654i 0.105297 0.182379i
\(423\) 0 0
\(424\) 5.46978 + 9.47393i 0.265636 + 0.460095i
\(425\) 12.5075 + 21.6637i 0.606704 + 1.05084i
\(426\) 0 0
\(427\) 0 0
\(428\) −13.3353 23.0974i −0.644586 1.11646i
\(429\) 0 0
\(430\) −0.628979 −0.0303321
\(431\) 14.6413 + 25.3595i 0.705247 + 1.22152i 0.966602 + 0.256281i \(0.0824974\pi\)
−0.261355 + 0.965243i \(0.584169\pi\)
\(432\) 0 0
\(433\) −12.2449 −0.588451 −0.294226 0.955736i \(-0.595062\pi\)
−0.294226 + 0.955736i \(0.595062\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −2.45417 −0.117533
\(437\) −5.44282 + 9.42724i −0.260365 + 0.450966i
\(438\) 0 0
\(439\) 2.41586 + 4.18440i 0.115303 + 0.199711i 0.917901 0.396810i \(-0.129883\pi\)
−0.802598 + 0.596520i \(0.796549\pi\)
\(440\) 4.12725 0.196759
\(441\) 0 0
\(442\) 1.66019 0.0789672
\(443\) 0.622440 + 1.07810i 0.0295730 + 0.0512220i 0.880433 0.474170i \(-0.157252\pi\)
−0.850860 + 0.525392i \(0.823919\pi\)
\(444\) 0 0
\(445\) −1.62352 + 2.81202i −0.0769622 + 0.133302i
\(446\) −5.41780 −0.256540
\(447\) 0 0
\(448\) 0 0
\(449\) −8.82846 −0.416641 −0.208320 0.978061i \(-0.566800\pi\)
−0.208320 + 0.978061i \(0.566800\pi\)
\(450\) 0 0
\(451\) −18.8554 32.6585i −0.887867 1.53783i
\(452\) 23.6296 1.11144
\(453\) 0 0
\(454\) −0.631600 1.09396i −0.0296425 0.0513422i
\(455\) 0 0
\(456\) 0 0
\(457\) 5.25404 + 9.10026i 0.245774 + 0.425692i 0.962349 0.271817i \(-0.0876247\pi\)
−0.716575 + 0.697510i \(0.754291\pi\)
\(458\) −2.31191 4.00434i −0.108028 0.187111i
\(459\) 0 0
\(460\) −6.43310 + 11.1425i −0.299945 + 0.519520i
\(461\) 11.2758 19.5302i 0.525166 0.909614i −0.474404 0.880307i \(-0.657337\pi\)
0.999570 0.0293073i \(-0.00933013\pi\)
\(462\) 0 0
\(463\) −5.19850 9.00406i −0.241595 0.418454i 0.719574 0.694416i \(-0.244337\pi\)
−0.961169 + 0.275962i \(0.911004\pi\)
\(464\) −0.875237 −0.0406318
\(465\) 0 0
\(466\) 4.06045 0.188097
\(467\) 6.65856 11.5330i 0.308121 0.533682i −0.669830 0.742514i \(-0.733633\pi\)
0.977951 + 0.208833i \(0.0669664\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.823649 + 1.42660i −0.0379921 + 0.0658043i
\(471\) 0 0
\(472\) −1.22708 + 2.12537i −0.0564812 + 0.0978282i
\(473\) −4.12120 + 7.13812i −0.189493 + 0.328211i
\(474\) 0 0
\(475\) 3.50000 6.06218i 0.160591 0.278152i
\(476\) 0 0
\(477\) 0 0
\(478\) 2.01887 3.49679i 0.0923412 0.159940i
\(479\) −14.5354 −0.664141 −0.332070 0.943255i \(-0.607747\pi\)
−0.332070 + 0.943255i \(0.607747\pi\)
\(480\) 0 0
\(481\) −9.54583 −0.435252
\(482\) −3.24557 5.62149i −0.147832 0.256052i
\(483\) 0 0
\(484\) 2.63968 4.57206i 0.119985 0.207821i
\(485\) 4.23624 7.33739i 0.192358 0.333174i
\(486\) 0 0
\(487\) −6.52696 11.3050i −0.295765 0.512279i 0.679398 0.733770i \(-0.262241\pi\)
−0.975162 + 0.221491i \(0.928908\pi\)
\(488\) −3.58414 6.20790i −0.162246 0.281019i
\(489\) 0 0
\(490\) 0 0
\(491\) 9.67223 + 16.7528i 0.436502 + 0.756043i 0.997417 0.0718303i \(-0.0228840\pi\)
−0.560915 + 0.827873i \(0.689551\pi\)
\(492\) 0 0
\(493\) −1.66019 −0.0747712
\(494\) −0.232287 0.402332i −0.0104511 0.0181018i
\(495\) 0 0
\(496\) 6.07661 0.272848
\(497\) 0 0
\(498\) 0 0
\(499\) −36.2222 −1.62153 −0.810764 0.585374i \(-0.800948\pi\)
−0.810764 + 0.585374i \(0.800948\pi\)
\(500\) 9.87756 17.1084i 0.441738 0.765112i
\(501\) 0 0
\(502\) −2.28100 3.95080i −0.101806 0.176333i
\(503\) −15.6764 −0.698974 −0.349487 0.936941i \(-0.613644\pi\)
−0.349487 + 0.936941i \(0.613644\pi\)
\(504\) 0 0
\(505\) −15.1111 −0.672435
\(506\) −2.48113 4.29743i −0.110299 0.191044i
\(507\) 0 0
\(508\) 1.30150 2.25427i 0.0577449 0.100017i
\(509\) −34.3034 −1.52047 −0.760237 0.649646i \(-0.774917\pi\)
−0.760237 + 0.649646i \(0.774917\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 17.0071 0.751616
\(513\) 0 0
\(514\) −1.77455 3.07361i −0.0782720 0.135571i
\(515\) 5.19699 0.229007
\(516\) 0 0
\(517\) 10.7934 + 18.6948i 0.474694 + 0.822195i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.557180 0.965064i −0.0244340 0.0423209i
\(521\) −5.12244 8.87233i −0.224418 0.388704i 0.731727 0.681598i \(-0.238715\pi\)
−0.956145 + 0.292895i \(0.905381\pi\)
\(522\) 0 0
\(523\) −15.3015 + 26.5030i −0.669088 + 1.15889i 0.309071 + 0.951039i \(0.399982\pi\)
−0.978159 + 0.207856i \(0.933352\pi\)
\(524\) 4.82489 8.35696i 0.210776 0.365075i
\(525\) 0 0
\(526\) −0.925580 1.60315i −0.0403572 0.0699007i
\(527\) 11.5264 0.502098
\(528\) 0 0
\(529\) 8.39372 0.364944
\(530\) 1.63968 2.84001i 0.0712232 0.123362i
\(531\) 0 0
\(532\) 0 0
\(533\) −5.09097 + 8.81782i −0.220514 + 0.381942i
\(534\) 0 0
\(535\) −8.11273 + 14.0517i −0.350744 + 0.607506i
\(536\) 1.65374 2.86437i 0.0714309 0.123722i
\(537\) 0 0
\(538\) −0.180699 + 0.312981i −0.00779051 + 0.0134936i
\(539\) 0 0
\(540\) 0 0
\(541\) 13.0458 22.5960i 0.560884 0.971480i −0.436536 0.899687i \(-0.643795\pi\)
0.997420 0.0717926i \(-0.0228720\pi\)
\(542\) −5.25607 −0.225767
\(543\) 0 0
\(544\) 19.1683 0.821833
\(545\) 0.746515 + 1.29300i 0.0319772 + 0.0553861i
\(546\) 0 0
\(547\) 5.46169 9.45993i 0.233525 0.404478i −0.725318 0.688414i \(-0.758307\pi\)
0.958843 + 0.283937i \(0.0916405\pi\)
\(548\) 4.21574 7.30187i 0.180087 0.311920i
\(549\) 0 0
\(550\) 1.59549 + 2.76346i 0.0680317 + 0.117834i
\(551\) 0.232287 + 0.402332i 0.00989575 + 0.0171399i
\(552\) 0 0
\(553\) 0 0
\(554\) 1.29467 + 2.24243i 0.0550052 + 0.0952718i
\(555\) 0 0
\(556\) −7.66019 −0.324864
\(557\) −6.97210 12.0760i −0.295417 0.511678i 0.679665 0.733523i \(-0.262125\pi\)
−0.975082 + 0.221845i \(0.928792\pi\)
\(558\) 0 0
\(559\) 2.22545 0.0941265
\(560\) 0 0
\(561\) 0 0
\(562\) 4.03559 0.170231
\(563\) 15.1287 26.2037i 0.637600 1.10435i −0.348358 0.937361i \(-0.613261\pi\)
0.985958 0.166993i \(-0.0534059\pi\)
\(564\) 0 0
\(565\) −7.18770 12.4495i −0.302389 0.523753i
\(566\) −3.66268 −0.153954
\(567\) 0 0
\(568\) 8.11109 0.340334
\(569\) −10.5676 18.3036i −0.443016 0.767326i 0.554896 0.831920i \(-0.312758\pi\)
−0.997912 + 0.0645936i \(0.979425\pi\)
\(570\) 0 0
\(571\) 16.3932 28.3938i 0.686033 1.18824i −0.287078 0.957907i \(-0.592684\pi\)
0.973111 0.230336i \(-0.0739826\pi\)
\(572\) −7.19562 −0.300864
\(573\) 0 0
\(574\) 0 0
\(575\) −20.1877 −0.841885
\(576\) 0 0
\(577\) 8.68715 + 15.0466i 0.361651 + 0.626397i 0.988233 0.152958i \(-0.0488800\pi\)
−0.626582 + 0.779355i \(0.715547\pi\)
\(578\) 7.46130 0.310349
\(579\) 0 0
\(580\) 0.274550 + 0.475534i 0.0114001 + 0.0197455i
\(581\) 0 0
\(582\) 0 0
\(583\) −21.4870 37.2166i −0.889901 1.54135i
\(584\) 7.14132 + 12.3691i 0.295510 + 0.511838i
\(585\) 0 0
\(586\) −1.12025 + 1.94033i −0.0462771 + 0.0801543i
\(587\) 8.48796 14.7016i 0.350336 0.606799i −0.635973 0.771712i \(-0.719401\pi\)
0.986308 + 0.164913i \(0.0527342\pi\)
\(588\) 0 0
\(589\) −1.61273 2.79332i −0.0664512 0.115097i
\(590\) 0.735689 0.0302878
\(591\) 0 0
\(592\) −34.9396 −1.43601
\(593\) −6.53667 + 11.3218i −0.268429 + 0.464932i −0.968456 0.249184i \(-0.919838\pi\)
0.700027 + 0.714116i \(0.253171\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.7934 + 18.6948i −0.442116 + 0.765767i
\(597\) 0 0
\(598\) −0.669905 + 1.16031i −0.0273945 + 0.0474486i
\(599\) 14.6030 25.2932i 0.596663 1.03345i −0.396647 0.917971i \(-0.629826\pi\)
0.993310 0.115479i \(-0.0368403\pi\)
\(600\) 0 0
\(601\) −3.89536 + 6.74695i −0.158895 + 0.275214i −0.934470 0.356041i \(-0.884126\pi\)
0.775576 + 0.631255i \(0.217460\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 13.5253 23.4265i 0.550337 0.953212i
\(605\) −3.21178 −0.130577
\(606\) 0 0
\(607\) −19.6408 −0.797194 −0.398597 0.917126i \(-0.630503\pi\)
−0.398597 + 0.917126i \(0.630503\pi\)
\(608\) −2.68194 4.64526i −0.108767 0.188390i
\(609\) 0 0
\(610\) −1.07442 + 1.86095i −0.0435020 + 0.0753477i
\(611\) 2.91423 5.04759i 0.117897 0.204204i
\(612\) 0 0
\(613\) −11.7826 20.4081i −0.475896 0.824276i 0.523723 0.851889i \(-0.324543\pi\)
−0.999619 + 0.0276128i \(0.991209\pi\)
\(614\) −0.324502 0.562054i −0.0130958 0.0226827i
\(615\) 0 0
\(616\) 0 0
\(617\) −5.33009 9.23200i −0.214582 0.371666i 0.738562 0.674186i \(-0.235505\pi\)
−0.953143 + 0.302520i \(0.902172\pi\)
\(618\) 0 0
\(619\) −18.0150 −0.724086 −0.362043 0.932161i \(-0.617921\pi\)
−0.362043 + 0.932161i \(0.617921\pi\)
\(620\) −1.90615 3.30155i −0.0765528 0.132593i
\(621\) 0 0
\(622\) 3.34308 0.134045
\(623\) 0 0
\(624\) 0 0
\(625\) 5.99673 0.239869
\(626\) 2.27812 3.94581i 0.0910519 0.157706i
\(627\) 0 0
\(628\) 0.0555452 + 0.0962071i 0.00221649 + 0.00383908i
\(629\) −66.2750 −2.64256
\(630\) 0 0
\(631\) 12.4703 0.496436 0.248218 0.968704i \(-0.420155\pi\)
0.248218 + 0.968704i \(0.420155\pi\)
\(632\) 3.47786 + 6.02382i 0.138342 + 0.239615i
\(633\) 0 0
\(634\) −0.480570 + 0.832371i −0.0190859 + 0.0330577i
\(635\) −1.58358 −0.0628424
\(636\) 0 0
\(637\) 0 0
\(638\) −0.211777 −0.00838434
\(639\) 0 0
\(640\) −4.20439 7.28221i −0.166193 0.287855i
\(641\) −19.1456 −0.756205 −0.378102 0.925764i \(-0.623423\pi\)
−0.378102 + 0.925764i \(0.623423\pi\)
\(642\) 0 0
\(643\) −3.24433 5.61934i −0.127944 0.221605i 0.794936 0.606693i \(-0.207504\pi\)
−0.922880 + 0.385088i \(0.874171\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.61273 2.79332i −0.0634518 0.109902i
\(647\) −24.0494 41.6548i −0.945479 1.63762i −0.754789 0.655968i \(-0.772261\pi\)
−0.190691 0.981650i \(-0.561073\pi\)
\(648\) 0 0
\(649\) 4.82038 8.34914i 0.189216 0.327733i
\(650\) 0.430782 0.746136i 0.0168967 0.0292659i
\(651\) 0 0
\(652\) −1.46496 2.53739i −0.0573724 0.0993720i
\(653\) 43.2405 1.69213 0.846066 0.533079i \(-0.178965\pi\)
0.846066 + 0.533079i \(0.178965\pi\)
\(654\) 0 0
\(655\) −5.87059 −0.229383
\(656\) −18.6339 + 32.2749i −0.727532 + 1.26012i
\(657\) 0 0
\(658\) 0 0
\(659\) −1.25404 + 2.17206i −0.0488505 + 0.0846115i −0.889417 0.457097i \(-0.848889\pi\)
0.840566 + 0.541709i \(0.182222\pi\)
\(660\) 0 0
\(661\) 21.1677 36.6636i 0.823329 1.42605i −0.0798613 0.996806i \(-0.525448\pi\)
0.903190 0.429241i \(-0.141219\pi\)
\(662\) 1.47988 2.56323i 0.0575172 0.0996227i
\(663\) 0 0
\(664\) 3.27292 5.66886i 0.127014 0.219994i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.669905 1.16031i 0.0259388 0.0449274i
\(668\) −28.5289 −1.10382
\(669\) 0 0
\(670\) −0.991489 −0.0383046
\(671\) 14.0796 + 24.3866i 0.543538 + 0.941435i
\(672\) 0 0
\(673\) −6.70765 + 11.6180i −0.258561 + 0.447841i −0.965857 0.259077i \(-0.916582\pi\)
0.707296 + 0.706918i \(0.249915\pi\)
\(674\) −1.46582 + 2.53887i −0.0564612 + 0.0977936i
\(675\) 0 0
\(676\) −11.6569 20.1904i −0.448343 0.776553i
\(677\) 0.981125 + 1.69936i 0.0377077 + 0.0653117i 0.884263 0.466989i \(-0.154661\pi\)
−0.846556 + 0.532300i \(0.821328\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −3.86840 6.70027i −0.148346 0.256943i
\(681\) 0 0
\(682\) 1.47033 0.0563019
\(683\) 13.5836 + 23.5275i 0.519761 + 0.900253i 0.999736 + 0.0229706i \(0.00731243\pi\)
−0.479975 + 0.877282i \(0.659354\pi\)
\(684\) 0 0
\(685\) −5.12941 −0.195985
\(686\) 0 0
\(687\) 0 0
\(688\) 8.14557 0.310547
\(689\) −5.80150 + 10.0485i −0.221020 + 0.382817i
\(690\) 0 0
\(691\) 25.1586 + 43.5759i 0.957077 + 1.65771i 0.729543 + 0.683935i \(0.239733\pi\)
0.227534 + 0.973770i \(0.426934\pi\)
\(692\) 0.491138 0.0186703
\(693\) 0 0
\(694\) −1.59012 −0.0603601
\(695\) 2.33009 + 4.03584i 0.0883855 + 0.153088i
\(696\) 0 0
\(697\) −35.3457 + 61.2205i −1.33881 + 2.31889i
\(698\) 2.73431 0.103495
\(699\) 0 0
\(700\) 0 0
\(701\) −45.1672 −1.70594 −0.852970 0.521960i \(-0.825201\pi\)
−0.852970 + 0.521960i \(0.825201\pi\)
\(702\) 0 0
\(703\) 9.27292 + 16.0612i 0.349735 + 0.605758i
\(704\) −24.6673 −0.929685
\(705\) 0 0
\(706\) −2.65374 4.59642i −0.0998750 0.172989i
\(707\) 0 0
\(708\) 0 0
\(709\) −19.8090 34.3102i −0.743944 1.28855i −0.950687 0.310153i \(-0.899620\pi\)
0.206743 0.978395i \(-0.433714\pi\)
\(710\) −1.21574 2.10571i −0.0456257 0.0790261i
\(711\) 0 0
\(712\) −1.29506 + 2.24311i −0.0485344 + 0.0840640i
\(713\) −4.65103 + 8.05582i −0.174182 + 0.301693i
\(714\) 0 0
\(715\) 2.18878 + 3.79108i 0.0818557 + 0.141778i
\(716\) 27.5732 1.03046
\(717\) 0 0
\(718\) 1.80687 0.0674318
\(719\) −11.0189 + 19.0853i −0.410935 + 0.711760i −0.994992 0.0999525i \(-0.968131\pi\)
0.584058 + 0.811712i \(0.301464\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.82038 3.15299i 0.0677475 0.117342i
\(723\) 0 0
\(724\) −1.39054 + 2.40849i −0.0516792 + 0.0895110i
\(725\) −0.430782 + 0.746136i −0.0159988 + 0.0277108i
\(726\) 0 0
\(727\) −14.0555 + 24.3449i −0.521291 + 0.902903i 0.478402 + 0.878141i \(0.341216\pi\)
−0.999693 + 0.0247621i \(0.992117\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 2.14076 3.70790i 0.0792331 0.137236i
\(731\) 15.4509 0.571472
\(732\) 0 0
\(733\) 11.8695 0.438409 0.219205 0.975679i \(-0.429654\pi\)
0.219205 + 0.975679i \(0.429654\pi\)
\(734\) 2.21466 + 3.83590i 0.0817444 + 0.141586i
\(735\) 0 0
\(736\) −7.73461 + 13.3967i −0.285102 + 0.493810i
\(737\) −6.49643 + 11.2522i −0.239299 + 0.414478i
\(738\) 0 0
\(739\) 6.09222 + 10.5520i 0.224106 + 0.388163i 0.956051 0.293201i \(-0.0947206\pi\)
−0.731945 + 0.681364i \(0.761387\pi\)
\(740\) 10.9601 + 18.9834i 0.402900 + 0.697843i
\(741\) 0 0
\(742\) 0 0
\(743\) −22.2427 38.5255i −0.816005 1.41336i −0.908604 0.417659i \(-0.862851\pi\)
0.0925987 0.995704i \(-0.470483\pi\)
\(744\) 0 0
\(745\) 13.1327 0.481144
\(746\) −1.87236 3.24302i −0.0685519 0.118735i
\(747\) 0 0
\(748\) −49.9579 −1.82664
\(749\) 0 0
\(750\) 0 0
\(751\) 42.8058 1.56200 0.781002 0.624528i \(-0.214709\pi\)
0.781002 + 0.624528i \(0.214709\pi\)
\(752\) 10.6666 18.4752i 0.388972 0.673720i
\(753\) 0 0
\(754\) 0.0285900 + 0.0495193i 0.00104119 + 0.00180339i
\(755\) −16.4567 −0.598919
\(756\) 0 0
\(757\) −22.4919 −0.817483 −0.408741 0.912650i \(-0.634032\pi\)
−0.408741 + 0.912650i \(0.634032\pi\)
\(758\) −0.482760 0.836165i −0.0175346 0.0303709i
\(759\) 0 0
\(760\) −1.08250 + 1.87495i −0.0392664 + 0.0680114i
\(761\) 14.3365 0.519699 0.259850 0.965649i \(-0.416327\pi\)
0.259850 + 0.965649i \(0.416327\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 29.2736 1.05908
\(765\) 0 0
\(766\) 0.0269552 + 0.0466878i 0.000973931 + 0.00168690i
\(767\) −2.60301 −0.0939892
\(768\) 0 0
\(769\) 15.6105 + 27.0382i 0.562930 + 0.975024i 0.997239 + 0.0742597i \(0.0236594\pi\)
−0.434309 + 0.900764i \(0.643007\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.62352 13.2043i −0.274376 0.475234i
\(773\) 2.19002 + 3.79323i 0.0787697 + 0.136433i 0.902719 0.430230i \(-0.141567\pi\)
−0.823950 + 0.566663i \(0.808234\pi\)
\(774\) 0 0
\(775\) 2.99084 5.18029i 0.107434 0.186081i
\(776\) 3.37919 5.85294i 0.121306 0.210108i
\(777\) 0 0
\(778\) 3.02051 + 5.23168i 0.108291 + 0.187565i
\(779\) 19.7817 0.708752
\(780\) 0 0
\(781\) −31.8629 −1.14015
\(782\) −4.65103 + 8.05582i −0.166321 + 0.288076i
\(783\) 0 0
\(784\) 0 0
\(785\) 0.0337917 0.0585290i 0.00120608 0.00208899i
\(786\) 0 0
\(787\) −13.8107 + 23.9208i −0.492297 + 0.852683i −0.999961 0.00887191i \(-0.997176\pi\)
0.507664 + 0.861555i \(0.330509\pi\)
\(788\) −6.49876 + 11.2562i −0.231509 + 0.400985i
\(789\) 0 0
\(790\) 1.04256 1.80577i 0.0370926 0.0642463i
\(791\) 0 0
\(792\) 0 0
\(793\) 3.80150 6.58440i 0.134995 0.233819i
\(794\) −4.85443