Properties

 Label 1323.2.c.c Level $1323$ Weight $2$ Character orbit 1323.c Analytic conductor $10.564$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1323 = 3^{3} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1323.c (of order $$2$$, degree $$1$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$10.5642081874$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} - 2 x^{2} + 4$$ Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 189) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{2} + \beta_{3} q^{5} + 2 \beta_{1} q^{8} +O(q^{10})$$ $$q + \beta_{1} q^{2} + \beta_{3} q^{5} + 2 \beta_{1} q^{8} + 2 \beta_{2} q^{10} + 4 \beta_{1} q^{11} + 2 \beta_{2} q^{13} -4 q^{16} + \beta_{3} q^{17} -\beta_{2} q^{19} -8 q^{22} -5 \beta_{1} q^{23} + q^{25} -2 \beta_{3} q^{26} + \beta_{1} q^{29} -3 \beta_{2} q^{31} + 2 \beta_{2} q^{34} -4 q^{37} + \beta_{3} q^{38} + 4 \beta_{2} q^{40} -\beta_{3} q^{41} -7 q^{43} + 10 q^{46} + 3 \beta_{3} q^{47} + \beta_{1} q^{50} + \beta_{1} q^{53} + 8 \beta_{2} q^{55} -2 q^{58} + 6 \beta_{3} q^{59} + 3 \beta_{2} q^{61} + 3 \beta_{3} q^{62} -8 q^{64} + 6 \beta_{1} q^{65} + 2 q^{67} -2 \beta_{1} q^{71} + 7 \beta_{2} q^{73} -4 \beta_{1} q^{74} -4 q^{79} -4 \beta_{3} q^{80} -2 \beta_{2} q^{82} + 4 \beta_{3} q^{83} + 6 q^{85} -7 \beta_{1} q^{86} -16 q^{88} -\beta_{3} q^{89} + 6 \beta_{2} q^{94} -3 \beta_{1} q^{95} -5 \beta_{2} q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + O(q^{10})$$ $$4q - 16q^{16} - 32q^{22} + 4q^{25} - 16q^{37} - 28q^{43} + 40q^{46} - 8q^{58} - 32q^{64} + 8q^{67} - 16q^{79} + 24q^{85} - 64q^{88} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 2 x^{2} + 4$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu^{3}$$$$/2$$ $$\beta_{2}$$ $$=$$ $$\nu^{2} - 1$$ $$\beta_{3}$$ $$=$$ $$($$$$-\nu^{3} + 4 \nu$$$$)/2$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{3} + \beta_{1}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$\beta_{2} + 1$$ $$\nu^{3}$$ $$=$$ $$2 \beta_{1}$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1081$$ $$\chi(n)$$ $$-1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1322.1
 −1.22474 − 0.707107i 1.22474 − 0.707107i −1.22474 + 0.707107i 1.22474 + 0.707107i
1.41421i 0 0 −2.44949 0 0 2.82843i 0 3.46410i
1322.2 1.41421i 0 0 2.44949 0 0 2.82843i 0 3.46410i
1322.3 1.41421i 0 0 −2.44949 0 0 2.82843i 0 3.46410i
1322.4 1.41421i 0 0 2.44949 0 0 2.82843i 0 3.46410i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.c.c 4
3.b odd 2 1 inner 1323.2.c.c 4
7.b odd 2 1 inner 1323.2.c.c 4
7.c even 3 1 189.2.p.b 4
7.d odd 6 1 189.2.p.b 4
21.c even 2 1 inner 1323.2.c.c 4
21.g even 6 1 189.2.p.b 4
21.h odd 6 1 189.2.p.b 4
63.g even 3 1 567.2.s.c 4
63.h even 3 1 567.2.i.e 4
63.i even 6 1 567.2.i.e 4
63.j odd 6 1 567.2.i.e 4
63.k odd 6 1 567.2.s.c 4
63.n odd 6 1 567.2.s.c 4
63.s even 6 1 567.2.s.c 4
63.t odd 6 1 567.2.i.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.p.b 4 7.c even 3 1
189.2.p.b 4 7.d odd 6 1
189.2.p.b 4 21.g even 6 1
189.2.p.b 4 21.h odd 6 1
567.2.i.e 4 63.h even 3 1
567.2.i.e 4 63.i even 6 1
567.2.i.e 4 63.j odd 6 1
567.2.i.e 4 63.t odd 6 1
567.2.s.c 4 63.g even 3 1
567.2.s.c 4 63.k odd 6 1
567.2.s.c 4 63.n odd 6 1
567.2.s.c 4 63.s even 6 1
1323.2.c.c 4 1.a even 1 1 trivial
1323.2.c.c 4 3.b odd 2 1 inner
1323.2.c.c 4 7.b odd 2 1 inner
1323.2.c.c 4 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{2} + 2$$ acting on $$S_{2}^{\mathrm{new}}(1323, [\chi])$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$( 2 + T^{2} )^{2}$$
$3$ $$T^{4}$$
$5$ $$( -6 + T^{2} )^{2}$$
$7$ $$T^{4}$$
$11$ $$( 32 + T^{2} )^{2}$$
$13$ $$( 12 + T^{2} )^{2}$$
$17$ $$( -6 + T^{2} )^{2}$$
$19$ $$( 3 + T^{2} )^{2}$$
$23$ $$( 50 + T^{2} )^{2}$$
$29$ $$( 2 + T^{2} )^{2}$$
$31$ $$( 27 + T^{2} )^{2}$$
$37$ $$( 4 + T )^{4}$$
$41$ $$( -6 + T^{2} )^{2}$$
$43$ $$( 7 + T )^{4}$$
$47$ $$( -54 + T^{2} )^{2}$$
$53$ $$( 2 + T^{2} )^{2}$$
$59$ $$( -216 + T^{2} )^{2}$$
$61$ $$( 27 + T^{2} )^{2}$$
$67$ $$( -2 + T )^{4}$$
$71$ $$( 8 + T^{2} )^{2}$$
$73$ $$( 147 + T^{2} )^{2}$$
$79$ $$( 4 + T )^{4}$$
$83$ $$( -96 + T^{2} )^{2}$$
$89$ $$( -6 + T^{2} )^{2}$$
$97$ $$( 75 + T^{2} )^{2}$$