Properties

Label 1323.2.bt
Level $1323$
Weight $2$
Character orbit 1323.bt
Rep. character $\chi_{1323}(62,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $648$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.bt (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 441 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1323, [\chi])\).

Total New Old
Modular forms 2088 696 1392
Cusp forms 1944 648 1296
Eisenstein series 144 48 96

Trace form

\( 648 q + 15 q^{2} - 57 q^{4} + 21 q^{5} - 5 q^{7} - 28 q^{10} + 15 q^{11} - 7 q^{13} + 114 q^{14} + 39 q^{16} + 21 q^{20} + 3 q^{22} - 30 q^{23} + 41 q^{25} - 20 q^{28} - 75 q^{29} + 39 q^{32} - 7 q^{34}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1323, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)