Properties

Label 1323.2.bs
Level $1323$
Weight $2$
Character orbit 1323.bs
Rep. character $\chi_{1323}(26,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $900$
Sturm bound $336$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.bs (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 147 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1323, [\chi])\).

Total New Old
Modular forms 2088 900 1188
Cusp forms 1944 900 1044
Eisenstein series 144 0 144

Trace form

\( 900q - 76q^{4} + 5q^{7} + O(q^{10}) \) \( 900q - 76q^{4} + 5q^{7} - 6q^{10} + 78q^{16} + 3q^{19} - 22q^{22} + 71q^{25} - 30q^{28} + 39q^{31} + 56q^{34} - 69q^{37} + 152q^{40} + 2q^{43} + 10q^{46} + 19q^{49} + 132q^{52} - 336q^{55} - 84q^{58} + 13q^{61} + 152q^{64} - 14q^{67} + 140q^{70} - 51q^{73} + 336q^{76} + 14q^{79} + 52q^{82} - 84q^{85} + 6q^{88} - 254q^{91} - 170q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1323, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1323, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1323, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 2}\)