Properties

Label 1323.2.a.a
Level $1323$
Weight $2$
Character orbit 1323.a
Self dual yes
Analytic conductor $10.564$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(10.5642081874\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 2q^{2} + 2q^{4} - 3q^{5} + O(q^{10}) \) \( q - 2q^{2} + 2q^{4} - 3q^{5} + 6q^{10} - 2q^{11} + 6q^{13} - 4q^{16} - 3q^{17} - 6q^{19} - 6q^{20} + 4q^{22} + 8q^{23} + 4q^{25} - 12q^{26} + 2q^{29} + 6q^{31} + 8q^{32} + 6q^{34} + 9q^{37} + 12q^{38} - 9q^{41} - 9q^{43} - 4q^{44} - 16q^{46} + 3q^{47} - 8q^{50} + 12q^{52} - 4q^{53} + 6q^{55} - 4q^{58} + 3q^{59} - 6q^{61} - 12q^{62} - 8q^{64} - 18q^{65} + 4q^{67} - 6q^{68} + 4q^{71} - 12q^{73} - 18q^{74} - 12q^{76} - q^{79} + 12q^{80} + 18q^{82} - 15q^{83} + 9q^{85} + 18q^{86} + 6q^{89} + 16q^{92} - 6q^{94} + 18q^{95} - 6q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 0 2.00000 −3.00000 0 0 0 0 6.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.a.a 1
3.b odd 2 1 1323.2.a.s yes 1
7.b odd 2 1 1323.2.a.c yes 1
21.c even 2 1 1323.2.a.q yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1323.2.a.a 1 1.a even 1 1 trivial
1323.2.a.c yes 1 7.b odd 2 1
1323.2.a.q yes 1 21.c even 2 1
1323.2.a.s yes 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1323))\):

\( T_{2} + 2 \)
\( T_{5} + 3 \)
\( T_{13} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 2 + T \)
$3$ \( T \)
$5$ \( 3 + T \)
$7$ \( T \)
$11$ \( 2 + T \)
$13$ \( -6 + T \)
$17$ \( 3 + T \)
$19$ \( 6 + T \)
$23$ \( -8 + T \)
$29$ \( -2 + T \)
$31$ \( -6 + T \)
$37$ \( -9 + T \)
$41$ \( 9 + T \)
$43$ \( 9 + T \)
$47$ \( -3 + T \)
$53$ \( 4 + T \)
$59$ \( -3 + T \)
$61$ \( 6 + T \)
$67$ \( -4 + T \)
$71$ \( -4 + T \)
$73$ \( 12 + T \)
$79$ \( 1 + T \)
$83$ \( 15 + T \)
$89$ \( -6 + T \)
$97$ \( 6 + T \)
show more
show less