Defining parameters
| Level: | \( N \) | \(=\) | \( 1323 = 3^{3} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1323.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 31 \) | ||
| Sturm bound: | \(336\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1323))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 192 | 55 | 137 |
| Cusp forms | 145 | 55 | 90 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(44\) | \(12\) | \(32\) | \(33\) | \(12\) | \(21\) | \(11\) | \(0\) | \(11\) | |||
| \(+\) | \(-\) | \(-\) | \(50\) | \(16\) | \(34\) | \(38\) | \(16\) | \(22\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(-\) | \(52\) | \(15\) | \(37\) | \(40\) | \(15\) | \(25\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(+\) | \(46\) | \(12\) | \(34\) | \(34\) | \(12\) | \(22\) | \(12\) | \(0\) | \(12\) | |||
| Plus space | \(+\) | \(90\) | \(24\) | \(66\) | \(67\) | \(24\) | \(43\) | \(23\) | \(0\) | \(23\) | ||||
| Minus space | \(-\) | \(102\) | \(31\) | \(71\) | \(78\) | \(31\) | \(47\) | \(24\) | \(0\) | \(24\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1323))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1323))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1323)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(147))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(189))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(441))\)\(^{\oplus 2}\)