gp: [N,k,chi] = [1323,1,Mod(82,1323)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(42))
chi = DirichletCharacter(H, H._module([0, 41]))
N = Newforms(chi, 1, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1323.82");
S:= CuspForms(chi, 1);
N := Newforms(S);
Newform invariants
sage: traces = []
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 1323 Z ) × \left(\mathbb{Z}/1323\mathbb{Z}\right)^\times ( Z / 1 3 2 3 Z ) × .
n n n
785 785 7 8 5
1081 1081 1 0 8 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− ζ 42 2 -\zeta_{42}^{2} − ζ 4 2 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace is the entire newspace S 1 n e w ( 1323 , [ χ ] ) S_{1}^{\mathrm{new}}(1323, [\chi]) S 1 n e w ( 1 3 2 3 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 T^{12} T 1 2
T^12
7 7 7
( T 6 − T 5 + T 4 + ⋯ + 1 ) 2 (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} ( T 6 − T 5 + T 4 + ⋯ + 1 ) 2
(T^6 - T^5 + T^4 - T^3 + T^2 - T + 1)^2
11 11 1 1
T 12 T^{12} T 1 2
T^12
13 13 1 3
T 12 − 3 T 10 + ⋯ + 1 T^{12} - 3 T^{10} + \cdots + 1 T 1 2 − 3 T 1 0 + ⋯ + 1
T^12 - 3*T^10 - 7*T^9 + 9*T^8 + 7*T^7 + 15*T^6 - 21*T^5 + 4*T^4 + 14*T^3 + 16*T^2 + 7*T + 1
17 17 1 7
T 12 T^{12} T 1 2
T^12
19 19 1 9
T 12 − 7 T 10 + ⋯ + 49 T^{12} - 7 T^{10} + \cdots + 49 T 1 2 − 7 T 1 0 + ⋯ + 4 9
T^12 - 7*T^10 + 35*T^8 - 84*T^6 + 147*T^4 - 98*T^2 + 49
23 23 2 3
T 12 T^{12} T 1 2
T^12
29 29 2 9
T 12 T^{12} T 1 2
T^12
31 31 3 1
T 12 − 3 T 11 + ⋯ + 1 T^{12} - 3 T^{11} + \cdots + 1 T 1 2 − 3 T 1 1 + ⋯ + 1
T^12 - 3*T^11 - T^10 + 12*T^9 + 2*T^8 - 42*T^7 + 36*T^6 + 21*T^5 - 24*T^4 - 12*T^3 + 10*T^2 + 6*T + 1
37 37 3 7
T 12 + 13 T 11 + ⋯ + 1 T^{12} + 13 T^{11} + \cdots + 1 T 1 2 + 1 3 T 1 1 + ⋯ + 1
T^12 + 13*T^11 + 77*T^10 + 274*T^9 + 650*T^8 + 1078*T^7 + 1275*T^6 + 1078*T^5 + 643*T^4 + 260*T^3 + 63*T^2 + 6*T + 1
41 41 4 1
T 12 T^{12} T 1 2
T^12
43 43 4 3
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 3*T^10 + 4*T^9 + 12*T^8 + 6*T^7 + 7*T^6 + 6*T^5 + 54*T^4 - 94*T^3 + 52*T^2 - 5*T + 1
47 47 4 7
T 12 T^{12} T 1 2
T^12
53 53 5 3
T 12 T^{12} T 1 2
T^12
59 59 5 9
T 12 T^{12} T 1 2
T^12
61 61 6 1
T 12 − 4 T 11 + ⋯ + 1 T^{12} - 4 T^{11} + \cdots + 1 T 1 2 − 4 T 1 1 + ⋯ + 1
T^12 - 4*T^11 + 13*T^10 - 26*T^9 + 44*T^8 - 56*T^7 + 57*T^6 - 56*T^5 + 25*T^4 - 2*T^3 + 10*T^2 - 6*T + 1
67 67 6 7
T 12 + T 11 + ⋯ + 1 T^{12} + T^{11} + \cdots + 1 T 1 2 + T 1 1 + ⋯ + 1
T^12 + T^11 + 7*T^10 + 6*T^9 + 34*T^8 + 28*T^7 + 78*T^6 + 49*T^5 + 118*T^4 + 76*T^3 + 56*T^2 + 8*T + 1
71 71 7 1
T 12 T^{12} T 1 2
T^12
73 73 7 3
T 12 − 7 T 8 + ⋯ + 49 T^{12} - 7 T^{8} + \cdots + 49 T 1 2 − 7 T 8 + ⋯ + 4 9
T^12 - 7*T^8 - 14*T^7 + 14*T^6 + 49*T^4 - 98*T^3 + 147*T^2 - 98*T + 49
79 79 7 9
T 12 + T 11 + ⋯ + 1 T^{12} + T^{11} + \cdots + 1 T 1 2 + T 1 1 + ⋯ + 1
T^12 + T^11 + 7*T^10 + 6*T^9 + 34*T^8 + 28*T^7 + 78*T^6 + 49*T^5 + 118*T^4 + 76*T^3 + 56*T^2 + 8*T + 1
83 83 8 3
T 12 T^{12} T 1 2
T^12
89 89 8 9
T 12 T^{12} T 1 2
T^12
97 97 9 7
T 12 + 11 T 10 + ⋯ + 1 T^{12} + 11 T^{10} + \cdots + 1 T 1 2 + 1 1 T 1 0 + ⋯ + 1
T^12 + 11*T^10 + 44*T^8 + 78*T^6 + 60*T^4 + 16*T^2 + 1
show more
show less