Properties

Label 1323.1.bv.a
Level 13231323
Weight 11
Character orbit 1323.bv
Analytic conductor 0.6600.660
Analytic rank 00
Dimension 1212
Projective image D42D_{42}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1323,1,Mod(82,1323)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1323, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 41])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1323.82"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1323=3372 1323 = 3^{3} \cdot 7^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1323.bv (of order 4242, degree 1212, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6602630117130.660263011713
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ21)\Q(\zeta_{21})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x11+x9x8+x6x4+x3x+1 x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D42D_{42}
Projective field: Galois closure of Q[x]/(x42)\mathbb{Q}[x]/(x^{42} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ4210q4ζ4212q7+(ζ4220+ζ424)q13+ζ4220q16+(ζ425ζ422)q19+ζ4216q25ζ42q28++(ζ4219+ζ422)q97+O(q100) q - \zeta_{42}^{10} q^{4} - \zeta_{42}^{12} q^{7} + ( - \zeta_{42}^{20} + \zeta_{42}^{4}) q^{13} + \zeta_{42}^{20} q^{16} + ( - \zeta_{42}^{5} - \zeta_{42}^{2}) q^{19} + \zeta_{42}^{16} q^{25} - \zeta_{42} q^{28} + \cdots + (\zeta_{42}^{19} + \zeta_{42}^{2}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12qq4+2q7+q16+q25+q28+3q3113q372q432q49+4q52+4q61+2q64q67q79+O(q100) 12 q - q^{4} + 2 q^{7} + q^{16} + q^{25} + q^{28} + 3 q^{31} - 13 q^{37} - 2 q^{43} - 2 q^{49} + 4 q^{52} + 4 q^{61} + 2 q^{64} - q^{67} - q^{79}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1323Z)×\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times.

nn 785785 10811081
χ(n)\chi(n) 11 ζ422-\zeta_{42}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
82.1
0.0747301 + 0.997204i
−0.988831 + 0.149042i
0.955573 0.294755i
0.365341 + 0.930874i
−0.733052 + 0.680173i
0.955573 + 0.294755i
0.826239 + 0.563320i
0.826239 0.563320i
0.365341 0.930874i
0.0747301 0.997204i
−0.988831 0.149042i
−0.733052 0.680173i
0 0 0.733052 0.680173i 0 0 −0.623490 + 0.781831i 0 0 0
136.1 0 0 −0.0747301 + 0.997204i 0 0 0.222521 + 0.974928i 0 0 0
271.1 0 0 0.988831 + 0.149042i 0 0 0.900969 0.433884i 0 0 0
514.1 0 0 −0.826239 + 0.563320i 0 0 0.222521 0.974928i 0 0 0
649.1 0 0 −0.365341 + 0.930874i 0 0 0.900969 + 0.433884i 0 0 0
703.1 0 0 0.988831 0.149042i 0 0 0.900969 + 0.433884i 0 0 0
838.1 0 0 −0.955573 + 0.294755i 0 0 −0.623490 0.781831i 0 0 0
892.1 0 0 −0.955573 0.294755i 0 0 −0.623490 + 0.781831i 0 0 0
1027.1 0 0 −0.826239 0.563320i 0 0 0.222521 + 0.974928i 0 0 0
1081.1 0 0 0.733052 + 0.680173i 0 0 −0.623490 0.781831i 0 0 0
1216.1 0 0 −0.0747301 0.997204i 0 0 0.222521 0.974928i 0 0 0
1270.1 0 0 −0.365341 0.930874i 0 0 0.900969 0.433884i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 82.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
49.h odd 42 1 inner
147.o even 42 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.1.bv.a 12
3.b odd 2 1 CM 1323.1.bv.a 12
9.c even 3 1 3969.1.br.a 12
9.c even 3 1 3969.1.ca.a 12
9.d odd 6 1 3969.1.br.a 12
9.d odd 6 1 3969.1.ca.a 12
49.h odd 42 1 inner 1323.1.bv.a 12
147.o even 42 1 inner 1323.1.bv.a 12
441.bc odd 42 1 3969.1.ca.a 12
441.bd even 42 1 3969.1.br.a 12
441.bl odd 42 1 3969.1.br.a 12
441.bn even 42 1 3969.1.ca.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1323.1.bv.a 12 1.a even 1 1 trivial
1323.1.bv.a 12 3.b odd 2 1 CM
1323.1.bv.a 12 49.h odd 42 1 inner
1323.1.bv.a 12 147.o even 42 1 inner
3969.1.br.a 12 9.c even 3 1
3969.1.br.a 12 9.d odd 6 1
3969.1.br.a 12 441.bd even 42 1
3969.1.br.a 12 441.bl odd 42 1
3969.1.ca.a 12 9.c even 3 1
3969.1.ca.a 12 9.d odd 6 1
3969.1.ca.a 12 441.bc odd 42 1
3969.1.ca.a 12 441.bn even 42 1

Hecke kernels

This newform subspace is the entire newspace S1new(1323,[χ])S_{1}^{\mathrm{new}}(1323, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 (T6T5+T4++1)2 (T^{6} - T^{5} + T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 T123T10++1 T^{12} - 3 T^{10} + \cdots + 1 Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T127T10++49 T^{12} - 7 T^{10} + \cdots + 49 Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T12 T^{12} Copy content Toggle raw display
3131 T123T11++1 T^{12} - 3 T^{11} + \cdots + 1 Copy content Toggle raw display
3737 T12+13T11++1 T^{12} + 13 T^{11} + \cdots + 1 Copy content Toggle raw display
4141 T12 T^{12} Copy content Toggle raw display
4343 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T124T11++1 T^{12} - 4 T^{11} + \cdots + 1 Copy content Toggle raw display
6767 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 T127T8++49 T^{12} - 7 T^{8} + \cdots + 49 Copy content Toggle raw display
7979 T12+T11++1 T^{12} + T^{11} + \cdots + 1 Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 T12 T^{12} Copy content Toggle raw display
9797 T12+11T10++1 T^{12} + 11 T^{10} + \cdots + 1 Copy content Toggle raw display
show more
show less