Defining parameters
Level: | \( N \) | \(=\) | \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1320.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 17 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(7\), \(13\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1320))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 304 | 20 | 284 |
Cusp forms | 273 | 20 | 253 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(11\) | Fricke | Dim |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(2\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(2\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(1\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(8\) | |||
Minus space | \(-\) | \(12\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1320))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1320))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1320)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(110))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(165))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(220))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(330))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(440))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(660))\)\(^{\oplus 2}\)