Properties

Label 1320.2
Level 1320
Weight 2
Dimension 17308
Nonzero newspaces 36
Sturm bound 184320
Trace bound 22

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 36 \)
Sturm bound: \(184320\)
Trace bound: \(22\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1320))\).

Total New Old
Modular forms 48000 17740 30260
Cusp forms 44161 17308 26853
Eisenstein series 3839 432 3407

Trace form

\( 17308 q - 8 q^{2} - 24 q^{3} - 40 q^{4} - 8 q^{5} - 36 q^{6} - 56 q^{7} + 16 q^{8} - 40 q^{9} - 36 q^{10} + 24 q^{12} - 16 q^{13} + 64 q^{14} - 4 q^{15} - 24 q^{16} - 40 q^{17} + 20 q^{18} - 20 q^{19} + 64 q^{20}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1320))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1320.2.a \(\chi_{1320}(1, \cdot)\) 1320.2.a.a 1 1
1320.2.a.b 1
1320.2.a.c 1
1320.2.a.d 1
1320.2.a.e 1
1320.2.a.f 1
1320.2.a.g 1
1320.2.a.h 1
1320.2.a.i 1
1320.2.a.j 1
1320.2.a.k 1
1320.2.a.l 1
1320.2.a.m 1
1320.2.a.n 1
1320.2.a.o 2
1320.2.a.p 2
1320.2.a.q 2
1320.2.d \(\chi_{1320}(529, \cdot)\) 1320.2.d.a 6 1
1320.2.d.b 6
1320.2.d.c 10
1320.2.d.d 10
1320.2.e \(\chi_{1320}(1211, \cdot)\) n/a 160 1
1320.2.f \(\chi_{1320}(1121, \cdot)\) 1320.2.f.a 24 1
1320.2.f.b 24
1320.2.g \(\chi_{1320}(1099, \cdot)\) n/a 144 1
1320.2.j \(\chi_{1320}(1189, \cdot)\) n/a 120 1
1320.2.k \(\chi_{1320}(551, \cdot)\) None 0 1
1320.2.p \(\chi_{1320}(461, \cdot)\) n/a 192 1
1320.2.q \(\chi_{1320}(439, \cdot)\) None 0 1
1320.2.t \(\chi_{1320}(1231, \cdot)\) None 0 1
1320.2.u \(\chi_{1320}(989, \cdot)\) n/a 280 1
1320.2.v \(\chi_{1320}(1079, \cdot)\) None 0 1
1320.2.w \(\chi_{1320}(661, \cdot)\) 1320.2.w.a 2 1
1320.2.w.b 2
1320.2.w.c 12
1320.2.w.d 18
1320.2.w.e 20
1320.2.w.f 26
1320.2.z \(\chi_{1320}(571, \cdot)\) 1320.2.z.a 4 1
1320.2.z.b 4
1320.2.z.c 40
1320.2.z.d 48
1320.2.ba \(\chi_{1320}(329, \cdot)\) 1320.2.ba.a 72 1
1320.2.bf \(\chi_{1320}(419, \cdot)\) n/a 240 1
1320.2.bh \(\chi_{1320}(263, \cdot)\) None 0 2
1320.2.bi \(\chi_{1320}(373, \cdot)\) n/a 288 2
1320.2.bl \(\chi_{1320}(67, \cdot)\) n/a 240 2
1320.2.bm \(\chi_{1320}(353, \cdot)\) n/a 120 2
1320.2.bp \(\chi_{1320}(463, \cdot)\) None 0 2
1320.2.bq \(\chi_{1320}(1013, \cdot)\) n/a 480 2
1320.2.bt \(\chi_{1320}(923, \cdot)\) n/a 560 2
1320.2.bu \(\chi_{1320}(1033, \cdot)\) 1320.2.bu.a 36 2
1320.2.bu.b 36
1320.2.bw \(\chi_{1320}(361, \cdot)\) 1320.2.bw.a 4 4
1320.2.bw.b 8
1320.2.bw.c 8
1320.2.bw.d 12
1320.2.bw.e 12
1320.2.bw.f 12
1320.2.bw.g 12
1320.2.bw.h 12
1320.2.bw.i 16
1320.2.bx \(\chi_{1320}(59, \cdot)\) n/a 1120 4
1320.2.cc \(\chi_{1320}(211, \cdot)\) n/a 384 4
1320.2.cd \(\chi_{1320}(569, \cdot)\) n/a 288 4
1320.2.cg \(\chi_{1320}(119, \cdot)\) None 0 4
1320.2.ch \(\chi_{1320}(181, \cdot)\) n/a 384 4
1320.2.ci \(\chi_{1320}(151, \cdot)\) None 0 4
1320.2.cj \(\chi_{1320}(29, \cdot)\) n/a 1120 4
1320.2.cm \(\chi_{1320}(101, \cdot)\) n/a 768 4
1320.2.cn \(\chi_{1320}(79, \cdot)\) None 0 4
1320.2.cs \(\chi_{1320}(229, \cdot)\) n/a 576 4
1320.2.ct \(\chi_{1320}(71, \cdot)\) None 0 4
1320.2.cw \(\chi_{1320}(41, \cdot)\) n/a 192 4
1320.2.cx \(\chi_{1320}(19, \cdot)\) n/a 576 4
1320.2.cy \(\chi_{1320}(49, \cdot)\) n/a 144 4
1320.2.cz \(\chi_{1320}(251, \cdot)\) n/a 768 4
1320.2.dd \(\chi_{1320}(73, \cdot)\) n/a 288 8
1320.2.de \(\chi_{1320}(83, \cdot)\) n/a 2240 8
1320.2.dh \(\chi_{1320}(53, \cdot)\) n/a 2240 8
1320.2.di \(\chi_{1320}(103, \cdot)\) None 0 8
1320.2.dl \(\chi_{1320}(113, \cdot)\) n/a 576 8
1320.2.dm \(\chi_{1320}(163, \cdot)\) n/a 1152 8
1320.2.dp \(\chi_{1320}(13, \cdot)\) n/a 1152 8
1320.2.dq \(\chi_{1320}(167, \cdot)\) None 0 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1320))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1320)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 32}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(132))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(220))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(264))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(330))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(440))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(660))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1320))\)\(^{\oplus 1}\)