Newspace parameters
Level: | \( N \) | \(=\) | \( 131 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 131.g (of order \(65\), degree \(48\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.04604026648\) |
Analytic rank: | \(0\) |
Dimension: | \(480\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{65})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{65}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −0.417542 | + | 2.44470i | −2.93863 | + | 1.19647i | −3.91558 | − | 1.37771i | 0.0646001 | + | 0.889495i | −1.69801 | − | 7.68365i | 3.01288 | + | 1.77200i | 2.59244 | − | 4.66211i | 5.05721 | − | 4.93645i | −2.20152 | − | 0.213474i |
3.2 | −0.383228 | + | 2.24379i | 0.905506 | − | 0.368680i | −3.00112 | − | 1.05595i | 0.162357 | + | 2.23554i | 0.480225 | + | 2.17306i | −0.544265 | − | 0.320104i | 1.30698 | − | 2.35041i | −1.46278 | + | 1.42785i | −5.07830 | − | 0.492426i |
3.3 | −0.320177 | + | 1.87463i | 2.01006 | − | 0.818401i | −1.52510 | − | 0.536611i | −0.270841 | − | 3.72928i | 0.890624 | + | 4.03015i | 2.70263 | + | 1.58953i | −0.354213 | + | 0.636999i | 1.22376 | − | 1.19454i | 7.07773 | + | 0.686303i |
3.4 | −0.0849272 | + | 0.497247i | −1.07782 | + | 0.438839i | 1.64658 | + | 0.579356i | −0.0828582 | − | 1.14090i | −0.126675 | − | 0.573213i | 2.74375 | + | 1.61371i | −0.918229 | + | 1.65130i | −1.17767 | + | 1.14955i | 0.574343 | + | 0.0556921i |
3.5 | −0.0582900 | + | 0.341286i | 1.74884 | − | 0.712045i | 1.77355 | + | 0.624029i | 0.0136268 | + | 0.187631i | 0.141071 | + | 0.638360i | −2.92116 | − | 1.71806i | −0.652875 | + | 1.17410i | 0.404635 | − | 0.394973i | −0.0648303 | − | 0.00628638i |
3.6 | 0.162150 | − | 0.949383i | −3.01631 | + | 1.22810i | 1.01159 | + | 0.355931i | −0.248835 | − | 3.42627i | 0.676843 | + | 3.06277i | −3.10599 | − | 1.82676i | 1.43807 | − | 2.58616i | 5.44310 | − | 5.31313i | −3.29319 | − | 0.319330i |
3.7 | 0.184536 | − | 1.08045i | −1.64449 | + | 0.669559i | 0.753296 | + | 0.265050i | 0.315521 | + | 4.34449i | 0.419960 | + | 1.90035i | 0.143448 | + | 0.0843677i | 1.49076 | − | 2.68090i | 0.109242 | − | 0.106633i | 4.75224 | + | 0.460809i |
3.8 | 0.212235 | − | 1.24263i | 0.522363 | − | 0.212682i | 0.387543 | + | 0.136358i | −0.0409240 | − | 0.563492i | −0.153421 | − | 0.694241i | −0.403904 | − | 0.237552i | 1.47698 | − | 2.65612i | −1.91917 | + | 1.87334i | −0.708897 | − | 0.0687393i |
3.9 | 0.376358 | − | 2.20356i | 0.103859 | − | 0.0422867i | −2.82743 | − | 0.994842i | −0.157578 | − | 2.16973i | −0.0540932 | − | 0.244776i | 1.63015 | + | 0.958759i | −1.08352 | + | 1.94854i | −2.13780 | + | 2.08675i | −4.84044 | − | 0.469361i |
3.10 | 0.440556 | − | 2.57944i | 2.32788 | − | 0.947804i | −4.57281 | − | 1.60896i | 0.265698 | + | 3.65846i | −1.41924 | − | 6.42219i | −2.67596 | − | 1.57384i | −3.62136 | + | 6.51247i | 2.37390 | − | 2.31722i | 9.55384 | + | 0.926403i |
4.1 | −2.63776 | − | 0.127588i | 1.44222 | + | 0.507450i | 4.95082 | + | 0.480065i | 0.641000 | − | 0.838859i | −3.73948 | − | 1.52254i | 0.110826 | + | 1.52599i | −7.77156 | − | 1.13481i | −0.516534 | − | 0.414847i | −1.79783 | + | 2.13092i |
4.2 | −1.90113 | − | 0.0919573i | −0.302711 | − | 0.106510i | 1.61517 | + | 0.156617i | −0.760613 | + | 0.995395i | 0.565697 | + | 0.230325i | −0.218497 | − | 3.00854i | 0.710516 | + | 0.103750i | −2.25873 | − | 1.81407i | 1.53756 | − | 1.82243i |
4.3 | −1.48472 | − | 0.0718158i | −2.21695 | − | 0.780044i | 0.208576 | + | 0.0202249i | −0.0611959 | + | 0.0800854i | 3.23554 | + | 1.31736i | 0.138086 | + | 1.90134i | 2.63349 | + | 0.384546i | 1.96740 | + | 1.58009i | 0.0966102 | − | 0.114510i |
4.4 | −1.06803 | − | 0.0516606i | 2.81832 | + | 0.991638i | −0.852637 | − | 0.0826773i | 1.39031 | − | 1.81946i | −2.95884 | − | 1.20470i | −0.157856 | − | 2.17356i | 3.02250 | + | 0.441349i | 4.62058 | + | 3.71096i | −1.57889 | + | 1.87142i |
4.5 | −0.713077 | − | 0.0344914i | 1.84003 | + | 0.647423i | −1.48337 | − | 0.143838i | −2.00796 | + | 2.62776i | −1.28975 | − | 0.525127i | 0.293226 | + | 4.03750i | 2.46564 | + | 0.360036i | 0.627542 | + | 0.504002i | 1.52246 | − | 1.80454i |
4.6 | 0.144335 | + | 0.00698147i | −1.12734 | − | 0.396657i | −1.96988 | − | 0.191012i | 1.78680 | − | 2.33834i | −0.159945 | − | 0.0651221i | −0.124981 | − | 1.72090i | −0.568965 | − | 0.0830810i | −1.22547 | − | 0.984223i | 0.274223 | − | 0.325030i |
4.7 | 0.997302 | + | 0.0482394i | −2.80109 | − | 0.985575i | −0.998378 | − | 0.0968093i | −2.35478 | + | 3.08163i | −2.74599 | − | 1.11804i | −0.0816750 | − | 1.12460i | −2.96700 | − | 0.433245i | 4.53573 | + | 3.64281i | −2.49708 | + | 2.95973i |
4.8 | 1.16502 | + | 0.0563520i | 1.56924 | + | 0.552141i | −0.636561 | − | 0.0617251i | 0.648155 | − | 0.848224i | 1.79708 | + | 0.731687i | 0.101524 | + | 1.39791i | −3.04642 | − | 0.444842i | −0.181383 | − | 0.145676i | 0.802915 | − | 0.951675i |
4.9 | 2.16151 | + | 0.104552i | −0.0144134 | − | 0.00507141i | 2.67055 | + | 0.258954i | −0.996208 | + | 1.30371i | −0.0306245 | − | 0.0124689i | −0.0912295 | − | 1.25616i | 1.46270 | + | 0.213585i | −2.33884 | − | 1.87841i | −2.28962 | + | 2.71384i |
4.10 | 2.34004 | + | 0.113188i | −2.75957 | − | 0.970966i | 3.47232 | + | 0.336699i | 2.10187 | − | 2.75066i | −6.34761 | − | 2.58445i | 0.151762 | + | 2.08964i | 3.45089 | + | 0.503903i | 4.33344 | + | 3.48034i | 5.22980 | − | 6.19876i |
See next 80 embeddings (of 480 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
131.g | even | 65 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 131.2.g.a | ✓ | 480 |
131.g | even | 65 | 1 | inner | 131.2.g.a | ✓ | 480 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
131.2.g.a | ✓ | 480 | 1.a | even | 1 | 1 | trivial |
131.2.g.a | ✓ | 480 | 131.g | even | 65 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(131, [\chi])\).