Properties

Label 131.2.a
Level $131$
Weight $2$
Character orbit 131.a
Rep. character $\chi_{131}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $2$
Sturm bound $22$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 131 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 131.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(22\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(131))\).

Total New Old
Modular forms 12 12 0
Cusp forms 11 11 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(131\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(1\)\(1\)\(0\)\(1\)\(1\)\(0\)\(0\)\(0\)\(0\)
\(-\)\(11\)\(11\)\(0\)\(10\)\(10\)\(0\)\(1\)\(1\)\(0\)

Trace form

\( 11 q + 14 q^{4} + 2 q^{5} - 4 q^{6} - 6 q^{8} + 13 q^{9} + 2 q^{11} - 6 q^{12} + 8 q^{13} - 6 q^{14} + 32 q^{16} + 2 q^{17} - 24 q^{18} - 2 q^{19} - 10 q^{20} + 10 q^{21} - 4 q^{22} - 12 q^{23} - 36 q^{24}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(131))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 131
131.2.a.a 131.a 1.a $1$ $1.046$ \(\Q\) None 131.2.a.a \(0\) \(-1\) \(-2\) \(-1\) $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}-2q^{5}-q^{7}-2q^{9}+2q^{12}+\cdots\)
131.2.a.b 131.a 1.a $10$ $1.046$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 131.2.a.b \(0\) \(1\) \(4\) \(1\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{6}q^{3}+(1-\beta _{2}+\beta _{3}-\beta _{4}+\cdots)q^{4}+\cdots\)