Properties

Label 131.1.b
Level $131$
Weight $1$
Character orbit 131.b
Rep. character $\chi_{131}(130,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $11$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 131 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 131.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 131 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(11\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(131, [\chi])\).

Total New Old
Modular forms 3 3 0
Cusp forms 2 2 0
Eisenstein series 1 1 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - q^{3} + 2 q^{4} - q^{5} - q^{7} + q^{9} - q^{11} - q^{12} - q^{13} - 2 q^{15} + 2 q^{16} - q^{20} - 2 q^{21} + q^{25} - 2 q^{27} - q^{28} + 3 q^{33} + 3 q^{35} + q^{36} + 3 q^{39} - q^{41}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(131, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
131.1.b.a 131.b 131.b $2$ $0.065$ \(\Q(\sqrt{5}) \) $D_{5}$ \(\Q(\sqrt{-131}) \) None 131.1.b.a \(0\) \(-1\) \(-1\) \(-1\) \(q+(-1+\beta )q^{3}+q^{4}-\beta q^{5}-\beta q^{7}+\cdots\)