Properties

Label 1305.4.a.n.1.7
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(5.24052\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.24052 q^{2} +19.4631 q^{4} -5.00000 q^{5} -18.4475 q^{7} +60.0724 q^{8} -26.2026 q^{10} -11.5384 q^{11} -34.4618 q^{13} -96.6746 q^{14} +159.106 q^{16} -70.7681 q^{17} +3.52127 q^{19} -97.3153 q^{20} -60.4671 q^{22} +18.3117 q^{23} +25.0000 q^{25} -180.598 q^{26} -359.045 q^{28} -29.0000 q^{29} -120.558 q^{31} +353.221 q^{32} -370.862 q^{34} +92.2376 q^{35} -182.505 q^{37} +18.4533 q^{38} -300.362 q^{40} -74.4691 q^{41} -405.899 q^{43} -224.572 q^{44} +95.9626 q^{46} +327.143 q^{47} -2.68899 q^{49} +131.013 q^{50} -670.732 q^{52} -409.067 q^{53} +57.6919 q^{55} -1108.19 q^{56} -151.975 q^{58} -120.722 q^{59} +34.6082 q^{61} -631.788 q^{62} +578.210 q^{64} +172.309 q^{65} +671.739 q^{67} -1377.36 q^{68} +483.373 q^{70} -873.524 q^{71} +432.426 q^{73} -956.419 q^{74} +68.5347 q^{76} +212.854 q^{77} -548.355 q^{79} -795.532 q^{80} -390.257 q^{82} -511.077 q^{83} +353.841 q^{85} -2127.12 q^{86} -693.138 q^{88} +788.135 q^{89} +635.734 q^{91} +356.401 q^{92} +1714.40 q^{94} -17.6063 q^{95} +967.070 q^{97} -14.0917 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 22 q^{4} - 35 q^{5} - 50 q^{7} + 33 q^{8} - 10 q^{10} - 76 q^{11} + 30 q^{13} - 89 q^{14} + 138 q^{16} + 140 q^{17} + 90 q^{19} - 110 q^{20} + 61 q^{22} - 34 q^{23} + 175 q^{25} + 241 q^{26}+ \cdots + 761 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.24052 1.85280 0.926402 0.376536i \(-0.122885\pi\)
0.926402 + 0.376536i \(0.122885\pi\)
\(3\) 0 0
\(4\) 19.4631 2.43288
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −18.4475 −0.996072 −0.498036 0.867156i \(-0.665945\pi\)
−0.498036 + 0.867156i \(0.665945\pi\)
\(8\) 60.0724 2.65485
\(9\) 0 0
\(10\) −26.2026 −0.828599
\(11\) −11.5384 −0.316268 −0.158134 0.987418i \(-0.550548\pi\)
−0.158134 + 0.987418i \(0.550548\pi\)
\(12\) 0 0
\(13\) −34.4618 −0.735229 −0.367614 0.929978i \(-0.619825\pi\)
−0.367614 + 0.929978i \(0.619825\pi\)
\(14\) −96.6746 −1.84553
\(15\) 0 0
\(16\) 159.106 2.48604
\(17\) −70.7681 −1.00963 −0.504817 0.863226i \(-0.668440\pi\)
−0.504817 + 0.863226i \(0.668440\pi\)
\(18\) 0 0
\(19\) 3.52127 0.0425176 0.0212588 0.999774i \(-0.493233\pi\)
0.0212588 + 0.999774i \(0.493233\pi\)
\(20\) −97.3153 −1.08802
\(21\) 0 0
\(22\) −60.4671 −0.585983
\(23\) 18.3117 0.166011 0.0830053 0.996549i \(-0.473548\pi\)
0.0830053 + 0.996549i \(0.473548\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −180.598 −1.36224
\(27\) 0 0
\(28\) −359.045 −2.42333
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −120.558 −0.698481 −0.349240 0.937033i \(-0.613560\pi\)
−0.349240 + 0.937033i \(0.613560\pi\)
\(32\) 353.221 1.95129
\(33\) 0 0
\(34\) −370.862 −1.87065
\(35\) 92.2376 0.445457
\(36\) 0 0
\(37\) −182.505 −0.810907 −0.405454 0.914116i \(-0.632886\pi\)
−0.405454 + 0.914116i \(0.632886\pi\)
\(38\) 18.4533 0.0787768
\(39\) 0 0
\(40\) −300.362 −1.18729
\(41\) −74.4691 −0.283661 −0.141831 0.989891i \(-0.545299\pi\)
−0.141831 + 0.989891i \(0.545299\pi\)
\(42\) 0 0
\(43\) −405.899 −1.43951 −0.719756 0.694227i \(-0.755746\pi\)
−0.719756 + 0.694227i \(0.755746\pi\)
\(44\) −224.572 −0.769444
\(45\) 0 0
\(46\) 95.9626 0.307585
\(47\) 327.143 1.01529 0.507646 0.861566i \(-0.330516\pi\)
0.507646 + 0.861566i \(0.330516\pi\)
\(48\) 0 0
\(49\) −2.68899 −0.00783963
\(50\) 131.013 0.370561
\(51\) 0 0
\(52\) −670.732 −1.78873
\(53\) −409.067 −1.06018 −0.530092 0.847940i \(-0.677843\pi\)
−0.530092 + 0.847940i \(0.677843\pi\)
\(54\) 0 0
\(55\) 57.6919 0.141440
\(56\) −1108.19 −2.64442
\(57\) 0 0
\(58\) −151.975 −0.344057
\(59\) −120.722 −0.266384 −0.133192 0.991090i \(-0.542523\pi\)
−0.133192 + 0.991090i \(0.542523\pi\)
\(60\) 0 0
\(61\) 34.6082 0.0726415 0.0363207 0.999340i \(-0.488436\pi\)
0.0363207 + 0.999340i \(0.488436\pi\)
\(62\) −631.788 −1.29415
\(63\) 0 0
\(64\) 578.210 1.12932
\(65\) 172.309 0.328804
\(66\) 0 0
\(67\) 671.739 1.22487 0.612433 0.790523i \(-0.290191\pi\)
0.612433 + 0.790523i \(0.290191\pi\)
\(68\) −1377.36 −2.45632
\(69\) 0 0
\(70\) 483.373 0.825345
\(71\) −873.524 −1.46012 −0.730058 0.683386i \(-0.760507\pi\)
−0.730058 + 0.683386i \(0.760507\pi\)
\(72\) 0 0
\(73\) 432.426 0.693311 0.346655 0.937993i \(-0.387317\pi\)
0.346655 + 0.937993i \(0.387317\pi\)
\(74\) −956.419 −1.50245
\(75\) 0 0
\(76\) 68.5347 0.103440
\(77\) 212.854 0.315026
\(78\) 0 0
\(79\) −548.355 −0.780946 −0.390473 0.920614i \(-0.627689\pi\)
−0.390473 + 0.920614i \(0.627689\pi\)
\(80\) −795.532 −1.11179
\(81\) 0 0
\(82\) −390.257 −0.525569
\(83\) −511.077 −0.675879 −0.337940 0.941168i \(-0.609730\pi\)
−0.337940 + 0.941168i \(0.609730\pi\)
\(84\) 0 0
\(85\) 353.841 0.451522
\(86\) −2127.12 −2.66713
\(87\) 0 0
\(88\) −693.138 −0.839646
\(89\) 788.135 0.938676 0.469338 0.883019i \(-0.344493\pi\)
0.469338 + 0.883019i \(0.344493\pi\)
\(90\) 0 0
\(91\) 635.734 0.732341
\(92\) 356.401 0.403884
\(93\) 0 0
\(94\) 1714.40 1.88114
\(95\) −17.6063 −0.0190144
\(96\) 0 0
\(97\) 967.070 1.01228 0.506140 0.862452i \(-0.331072\pi\)
0.506140 + 0.862452i \(0.331072\pi\)
\(98\) −14.0917 −0.0145253
\(99\) 0 0
\(100\) 486.577 0.486577
\(101\) −510.016 −0.502460 −0.251230 0.967927i \(-0.580835\pi\)
−0.251230 + 0.967927i \(0.580835\pi\)
\(102\) 0 0
\(103\) 1645.72 1.57435 0.787175 0.616730i \(-0.211543\pi\)
0.787175 + 0.616730i \(0.211543\pi\)
\(104\) −2070.20 −1.95192
\(105\) 0 0
\(106\) −2143.73 −1.96431
\(107\) 1305.35 1.17937 0.589687 0.807632i \(-0.299251\pi\)
0.589687 + 0.807632i \(0.299251\pi\)
\(108\) 0 0
\(109\) 932.125 0.819095 0.409548 0.912289i \(-0.365687\pi\)
0.409548 + 0.912289i \(0.365687\pi\)
\(110\) 302.336 0.262060
\(111\) 0 0
\(112\) −2935.12 −2.47627
\(113\) −1719.89 −1.43180 −0.715901 0.698202i \(-0.753984\pi\)
−0.715901 + 0.698202i \(0.753984\pi\)
\(114\) 0 0
\(115\) −91.5583 −0.0742422
\(116\) −564.429 −0.451775
\(117\) 0 0
\(118\) −632.646 −0.493558
\(119\) 1305.50 1.00567
\(120\) 0 0
\(121\) −1197.87 −0.899974
\(122\) 181.365 0.134590
\(123\) 0 0
\(124\) −2346.43 −1.69932
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −883.792 −0.617511 −0.308756 0.951141i \(-0.599912\pi\)
−0.308756 + 0.951141i \(0.599912\pi\)
\(128\) 204.357 0.141116
\(129\) 0 0
\(130\) 902.988 0.609210
\(131\) 937.386 0.625190 0.312595 0.949887i \(-0.398802\pi\)
0.312595 + 0.949887i \(0.398802\pi\)
\(132\) 0 0
\(133\) −64.9587 −0.0423506
\(134\) 3520.26 2.26944
\(135\) 0 0
\(136\) −4251.21 −2.68043
\(137\) −237.650 −0.148203 −0.0741014 0.997251i \(-0.523609\pi\)
−0.0741014 + 0.997251i \(0.523609\pi\)
\(138\) 0 0
\(139\) 1706.72 1.04146 0.520728 0.853723i \(-0.325661\pi\)
0.520728 + 0.853723i \(0.325661\pi\)
\(140\) 1795.23 1.08375
\(141\) 0 0
\(142\) −4577.72 −2.70531
\(143\) 397.633 0.232530
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 2266.14 1.28457
\(147\) 0 0
\(148\) −3552.10 −1.97284
\(149\) −3546.59 −1.94999 −0.974994 0.222230i \(-0.928667\pi\)
−0.974994 + 0.222230i \(0.928667\pi\)
\(150\) 0 0
\(151\) 1818.23 0.979901 0.489951 0.871750i \(-0.337015\pi\)
0.489951 + 0.871750i \(0.337015\pi\)
\(152\) 211.531 0.112878
\(153\) 0 0
\(154\) 1115.47 0.583682
\(155\) 602.791 0.312370
\(156\) 0 0
\(157\) −37.7540 −0.0191917 −0.00959585 0.999954i \(-0.503055\pi\)
−0.00959585 + 0.999954i \(0.503055\pi\)
\(158\) −2873.66 −1.44694
\(159\) 0 0
\(160\) −1766.10 −0.872642
\(161\) −337.805 −0.165359
\(162\) 0 0
\(163\) 1541.87 0.740913 0.370457 0.928850i \(-0.379201\pi\)
0.370457 + 0.928850i \(0.379201\pi\)
\(164\) −1449.40 −0.690115
\(165\) 0 0
\(166\) −2678.31 −1.25227
\(167\) −1669.49 −0.773586 −0.386793 0.922167i \(-0.626417\pi\)
−0.386793 + 0.922167i \(0.626417\pi\)
\(168\) 0 0
\(169\) −1009.39 −0.459438
\(170\) 1854.31 0.836582
\(171\) 0 0
\(172\) −7900.04 −3.50216
\(173\) 728.623 0.320209 0.160105 0.987100i \(-0.448817\pi\)
0.160105 + 0.987100i \(0.448817\pi\)
\(174\) 0 0
\(175\) −461.188 −0.199214
\(176\) −1835.83 −0.786255
\(177\) 0 0
\(178\) 4130.24 1.73918
\(179\) −1926.46 −0.804416 −0.402208 0.915548i \(-0.631757\pi\)
−0.402208 + 0.915548i \(0.631757\pi\)
\(180\) 0 0
\(181\) 3695.62 1.51764 0.758821 0.651299i \(-0.225776\pi\)
0.758821 + 0.651299i \(0.225776\pi\)
\(182\) 3331.58 1.35689
\(183\) 0 0
\(184\) 1100.03 0.440733
\(185\) 912.523 0.362649
\(186\) 0 0
\(187\) 816.549 0.319315
\(188\) 6367.21 2.47009
\(189\) 0 0
\(190\) −92.2664 −0.0352300
\(191\) −2490.19 −0.943370 −0.471685 0.881767i \(-0.656354\pi\)
−0.471685 + 0.881767i \(0.656354\pi\)
\(192\) 0 0
\(193\) 4493.27 1.67582 0.837909 0.545809i \(-0.183778\pi\)
0.837909 + 0.545809i \(0.183778\pi\)
\(194\) 5067.95 1.87555
\(195\) 0 0
\(196\) −52.3361 −0.0190729
\(197\) −1990.23 −0.719787 −0.359894 0.932993i \(-0.617187\pi\)
−0.359894 + 0.932993i \(0.617187\pi\)
\(198\) 0 0
\(199\) −83.8021 −0.0298521 −0.0149261 0.999889i \(-0.504751\pi\)
−0.0149261 + 0.999889i \(0.504751\pi\)
\(200\) 1501.81 0.530970
\(201\) 0 0
\(202\) −2672.75 −0.930960
\(203\) 534.978 0.184966
\(204\) 0 0
\(205\) 372.345 0.126857
\(206\) 8624.45 2.91696
\(207\) 0 0
\(208\) −5483.09 −1.82781
\(209\) −40.6297 −0.0134470
\(210\) 0 0
\(211\) −4369.95 −1.42578 −0.712891 0.701275i \(-0.752615\pi\)
−0.712891 + 0.701275i \(0.752615\pi\)
\(212\) −7961.71 −2.57930
\(213\) 0 0
\(214\) 6840.72 2.18515
\(215\) 2029.49 0.643769
\(216\) 0 0
\(217\) 2224.00 0.695738
\(218\) 4884.82 1.51762
\(219\) 0 0
\(220\) 1122.86 0.344106
\(221\) 2438.79 0.742313
\(222\) 0 0
\(223\) 3633.76 1.09119 0.545594 0.838050i \(-0.316304\pi\)
0.545594 + 0.838050i \(0.316304\pi\)
\(224\) −6516.05 −1.94362
\(225\) 0 0
\(226\) −9013.12 −2.65285
\(227\) 3692.30 1.07959 0.539794 0.841797i \(-0.318502\pi\)
0.539794 + 0.841797i \(0.318502\pi\)
\(228\) 0 0
\(229\) 4833.73 1.39486 0.697428 0.716655i \(-0.254328\pi\)
0.697428 + 0.716655i \(0.254328\pi\)
\(230\) −479.813 −0.137556
\(231\) 0 0
\(232\) −1742.10 −0.492994
\(233\) 4834.45 1.35929 0.679647 0.733539i \(-0.262133\pi\)
0.679647 + 0.733539i \(0.262133\pi\)
\(234\) 0 0
\(235\) −1635.72 −0.454053
\(236\) −2349.62 −0.648081
\(237\) 0 0
\(238\) 6841.48 1.86331
\(239\) −4019.80 −1.08795 −0.543974 0.839102i \(-0.683081\pi\)
−0.543974 + 0.839102i \(0.683081\pi\)
\(240\) 0 0
\(241\) 1076.81 0.287816 0.143908 0.989591i \(-0.454033\pi\)
0.143908 + 0.989591i \(0.454033\pi\)
\(242\) −6277.44 −1.66748
\(243\) 0 0
\(244\) 673.582 0.176728
\(245\) 13.4450 0.00350599
\(246\) 0 0
\(247\) −121.349 −0.0312602
\(248\) −7242.23 −1.85436
\(249\) 0 0
\(250\) −655.065 −0.165720
\(251\) 3179.99 0.799677 0.399839 0.916586i \(-0.369066\pi\)
0.399839 + 0.916586i \(0.369066\pi\)
\(252\) 0 0
\(253\) −211.287 −0.0525039
\(254\) −4631.53 −1.14413
\(255\) 0 0
\(256\) −3554.74 −0.867858
\(257\) −3125.29 −0.758561 −0.379280 0.925282i \(-0.623828\pi\)
−0.379280 + 0.925282i \(0.623828\pi\)
\(258\) 0 0
\(259\) 3366.76 0.807722
\(260\) 3353.66 0.799943
\(261\) 0 0
\(262\) 4912.39 1.15835
\(263\) 4474.30 1.04904 0.524519 0.851399i \(-0.324245\pi\)
0.524519 + 0.851399i \(0.324245\pi\)
\(264\) 0 0
\(265\) 2045.34 0.474129
\(266\) −340.417 −0.0784674
\(267\) 0 0
\(268\) 13074.1 2.97995
\(269\) −4053.04 −0.918655 −0.459327 0.888267i \(-0.651909\pi\)
−0.459327 + 0.888267i \(0.651909\pi\)
\(270\) 0 0
\(271\) −8045.96 −1.80353 −0.901766 0.432225i \(-0.857729\pi\)
−0.901766 + 0.432225i \(0.857729\pi\)
\(272\) −11259.7 −2.50999
\(273\) 0 0
\(274\) −1245.41 −0.274591
\(275\) −288.459 −0.0632537
\(276\) 0 0
\(277\) 4625.74 1.00337 0.501685 0.865050i \(-0.332714\pi\)
0.501685 + 0.865050i \(0.332714\pi\)
\(278\) 8944.11 1.92961
\(279\) 0 0
\(280\) 5540.94 1.18262
\(281\) 69.7964 0.0148174 0.00740872 0.999973i \(-0.497642\pi\)
0.00740872 + 0.999973i \(0.497642\pi\)
\(282\) 0 0
\(283\) 1903.58 0.399845 0.199922 0.979812i \(-0.435931\pi\)
0.199922 + 0.979812i \(0.435931\pi\)
\(284\) −17001.4 −3.55229
\(285\) 0 0
\(286\) 2083.80 0.430832
\(287\) 1373.77 0.282547
\(288\) 0 0
\(289\) 95.1246 0.0193618
\(290\) 759.876 0.153867
\(291\) 0 0
\(292\) 8416.34 1.68674
\(293\) −623.198 −0.124258 −0.0621290 0.998068i \(-0.519789\pi\)
−0.0621290 + 0.998068i \(0.519789\pi\)
\(294\) 0 0
\(295\) 603.610 0.119131
\(296\) −10963.5 −2.15284
\(297\) 0 0
\(298\) −18586.0 −3.61295
\(299\) −631.052 −0.122056
\(300\) 0 0
\(301\) 7487.83 1.43386
\(302\) 9528.45 1.81557
\(303\) 0 0
\(304\) 560.256 0.105700
\(305\) −173.041 −0.0324863
\(306\) 0 0
\(307\) −6899.90 −1.28273 −0.641365 0.767236i \(-0.721632\pi\)
−0.641365 + 0.767236i \(0.721632\pi\)
\(308\) 4142.80 0.766422
\(309\) 0 0
\(310\) 3158.94 0.578761
\(311\) 181.369 0.0330692 0.0165346 0.999863i \(-0.494737\pi\)
0.0165346 + 0.999863i \(0.494737\pi\)
\(312\) 0 0
\(313\) −3839.22 −0.693308 −0.346654 0.937993i \(-0.612682\pi\)
−0.346654 + 0.937993i \(0.612682\pi\)
\(314\) −197.851 −0.0355585
\(315\) 0 0
\(316\) −10672.7 −1.89995
\(317\) −7000.08 −1.24026 −0.620132 0.784497i \(-0.712921\pi\)
−0.620132 + 0.784497i \(0.712921\pi\)
\(318\) 0 0
\(319\) 334.613 0.0587296
\(320\) −2891.05 −0.505046
\(321\) 0 0
\(322\) −1770.27 −0.306377
\(323\) −249.193 −0.0429272
\(324\) 0 0
\(325\) −861.544 −0.147046
\(326\) 8080.22 1.37277
\(327\) 0 0
\(328\) −4473.54 −0.753079
\(329\) −6034.98 −1.01130
\(330\) 0 0
\(331\) −1176.84 −0.195423 −0.0977115 0.995215i \(-0.531152\pi\)
−0.0977115 + 0.995215i \(0.531152\pi\)
\(332\) −9947.12 −1.64433
\(333\) 0 0
\(334\) −8748.99 −1.43330
\(335\) −3358.69 −0.547776
\(336\) 0 0
\(337\) −174.049 −0.0281336 −0.0140668 0.999901i \(-0.504478\pi\)
−0.0140668 + 0.999901i \(0.504478\pi\)
\(338\) −5289.71 −0.851249
\(339\) 0 0
\(340\) 6886.82 1.09850
\(341\) 1391.05 0.220907
\(342\) 0 0
\(343\) 6377.10 1.00388
\(344\) −24383.3 −3.82169
\(345\) 0 0
\(346\) 3818.37 0.593285
\(347\) 10895.5 1.68560 0.842799 0.538228i \(-0.180906\pi\)
0.842799 + 0.538228i \(0.180906\pi\)
\(348\) 0 0
\(349\) −11820.3 −1.81298 −0.906488 0.422232i \(-0.861247\pi\)
−0.906488 + 0.422232i \(0.861247\pi\)
\(350\) −2416.87 −0.369105
\(351\) 0 0
\(352\) −4075.60 −0.617131
\(353\) −9795.13 −1.47689 −0.738445 0.674314i \(-0.764439\pi\)
−0.738445 + 0.674314i \(0.764439\pi\)
\(354\) 0 0
\(355\) 4367.62 0.652983
\(356\) 15339.5 2.28369
\(357\) 0 0
\(358\) −10095.7 −1.49042
\(359\) −8894.06 −1.30755 −0.653775 0.756689i \(-0.726816\pi\)
−0.653775 + 0.756689i \(0.726816\pi\)
\(360\) 0 0
\(361\) −6846.60 −0.998192
\(362\) 19367.0 2.81189
\(363\) 0 0
\(364\) 12373.3 1.78170
\(365\) −2162.13 −0.310058
\(366\) 0 0
\(367\) 11113.1 1.58066 0.790329 0.612683i \(-0.209910\pi\)
0.790329 + 0.612683i \(0.209910\pi\)
\(368\) 2913.50 0.412708
\(369\) 0 0
\(370\) 4782.10 0.671917
\(371\) 7546.28 1.05602
\(372\) 0 0
\(373\) 13469.8 1.86981 0.934907 0.354892i \(-0.115482\pi\)
0.934907 + 0.354892i \(0.115482\pi\)
\(374\) 4279.14 0.591629
\(375\) 0 0
\(376\) 19652.3 2.69545
\(377\) 999.391 0.136529
\(378\) 0 0
\(379\) −3750.71 −0.508341 −0.254170 0.967159i \(-0.581802\pi\)
−0.254170 + 0.967159i \(0.581802\pi\)
\(380\) −342.673 −0.0462599
\(381\) 0 0
\(382\) −13049.9 −1.74788
\(383\) −12404.3 −1.65490 −0.827451 0.561537i \(-0.810210\pi\)
−0.827451 + 0.561537i \(0.810210\pi\)
\(384\) 0 0
\(385\) −1064.27 −0.140884
\(386\) 23547.1 3.10496
\(387\) 0 0
\(388\) 18822.1 2.46276
\(389\) 7718.67 1.00605 0.503023 0.864273i \(-0.332221\pi\)
0.503023 + 0.864273i \(0.332221\pi\)
\(390\) 0 0
\(391\) −1295.88 −0.167610
\(392\) −161.534 −0.0208131
\(393\) 0 0
\(394\) −10429.8 −1.33362
\(395\) 2741.77 0.349250
\(396\) 0 0
\(397\) −6747.40 −0.853004 −0.426502 0.904487i \(-0.640254\pi\)
−0.426502 + 0.904487i \(0.640254\pi\)
\(398\) −439.167 −0.0553101
\(399\) 0 0
\(400\) 3977.66 0.497207
\(401\) 5047.40 0.628567 0.314283 0.949329i \(-0.398236\pi\)
0.314283 + 0.949329i \(0.398236\pi\)
\(402\) 0 0
\(403\) 4154.65 0.513543
\(404\) −9926.47 −1.22243
\(405\) 0 0
\(406\) 2803.56 0.342706
\(407\) 2105.81 0.256464
\(408\) 0 0
\(409\) 5317.14 0.642826 0.321413 0.946939i \(-0.395842\pi\)
0.321413 + 0.946939i \(0.395842\pi\)
\(410\) 1951.28 0.235042
\(411\) 0 0
\(412\) 32030.8 3.83021
\(413\) 2227.02 0.265338
\(414\) 0 0
\(415\) 2555.38 0.302262
\(416\) −12172.6 −1.43464
\(417\) 0 0
\(418\) −212.921 −0.0249146
\(419\) −2953.43 −0.344355 −0.172177 0.985066i \(-0.555080\pi\)
−0.172177 + 0.985066i \(0.555080\pi\)
\(420\) 0 0
\(421\) 7427.88 0.859888 0.429944 0.902855i \(-0.358533\pi\)
0.429944 + 0.902855i \(0.358533\pi\)
\(422\) −22900.8 −2.64170
\(423\) 0 0
\(424\) −24573.7 −2.81463
\(425\) −1769.20 −0.201927
\(426\) 0 0
\(427\) −638.436 −0.0723562
\(428\) 25406.1 2.86928
\(429\) 0 0
\(430\) 10635.6 1.19278
\(431\) −3302.08 −0.369038 −0.184519 0.982829i \(-0.559073\pi\)
−0.184519 + 0.982829i \(0.559073\pi\)
\(432\) 0 0
\(433\) 9352.89 1.03804 0.519020 0.854762i \(-0.326297\pi\)
0.519020 + 0.854762i \(0.326297\pi\)
\(434\) 11654.9 1.28907
\(435\) 0 0
\(436\) 18142.0 1.99276
\(437\) 64.4802 0.00705837
\(438\) 0 0
\(439\) −6109.74 −0.664241 −0.332120 0.943237i \(-0.607764\pi\)
−0.332120 + 0.943237i \(0.607764\pi\)
\(440\) 3465.69 0.375501
\(441\) 0 0
\(442\) 12780.6 1.37536
\(443\) −14282.0 −1.53173 −0.765865 0.643002i \(-0.777689\pi\)
−0.765865 + 0.643002i \(0.777689\pi\)
\(444\) 0 0
\(445\) −3940.68 −0.419789
\(446\) 19042.8 2.02176
\(447\) 0 0
\(448\) −10666.5 −1.12488
\(449\) 16406.0 1.72439 0.862193 0.506581i \(-0.169091\pi\)
0.862193 + 0.506581i \(0.169091\pi\)
\(450\) 0 0
\(451\) 859.252 0.0897131
\(452\) −33474.3 −3.48341
\(453\) 0 0
\(454\) 19349.6 2.00026
\(455\) −3178.67 −0.327513
\(456\) 0 0
\(457\) −15726.2 −1.60971 −0.804856 0.593470i \(-0.797757\pi\)
−0.804856 + 0.593470i \(0.797757\pi\)
\(458\) 25331.3 2.58440
\(459\) 0 0
\(460\) −1782.00 −0.180623
\(461\) 14091.2 1.42363 0.711816 0.702366i \(-0.247873\pi\)
0.711816 + 0.702366i \(0.247873\pi\)
\(462\) 0 0
\(463\) −8794.40 −0.882743 −0.441372 0.897324i \(-0.645508\pi\)
−0.441372 + 0.897324i \(0.645508\pi\)
\(464\) −4614.08 −0.461645
\(465\) 0 0
\(466\) 25335.0 2.51850
\(467\) 8746.05 0.866636 0.433318 0.901241i \(-0.357343\pi\)
0.433318 + 0.901241i \(0.357343\pi\)
\(468\) 0 0
\(469\) −12391.9 −1.22005
\(470\) −8572.00 −0.841270
\(471\) 0 0
\(472\) −7252.06 −0.707210
\(473\) 4683.41 0.455272
\(474\) 0 0
\(475\) 88.0317 0.00850352
\(476\) 25409.0 2.44668
\(477\) 0 0
\(478\) −21065.9 −2.01575
\(479\) 11452.6 1.09245 0.546225 0.837638i \(-0.316064\pi\)
0.546225 + 0.837638i \(0.316064\pi\)
\(480\) 0 0
\(481\) 6289.43 0.596203
\(482\) 5643.06 0.533266
\(483\) 0 0
\(484\) −23314.1 −2.18953
\(485\) −4835.35 −0.452705
\(486\) 0 0
\(487\) 1635.31 0.152163 0.0760813 0.997102i \(-0.475759\pi\)
0.0760813 + 0.997102i \(0.475759\pi\)
\(488\) 2079.00 0.192852
\(489\) 0 0
\(490\) 70.4586 0.00649591
\(491\) −2106.92 −0.193654 −0.0968270 0.995301i \(-0.530869\pi\)
−0.0968270 + 0.995301i \(0.530869\pi\)
\(492\) 0 0
\(493\) 2052.28 0.187484
\(494\) −635.933 −0.0579190
\(495\) 0 0
\(496\) −19181.6 −1.73645
\(497\) 16114.3 1.45438
\(498\) 0 0
\(499\) −8865.74 −0.795361 −0.397681 0.917524i \(-0.630185\pi\)
−0.397681 + 0.917524i \(0.630185\pi\)
\(500\) −2432.88 −0.217604
\(501\) 0 0
\(502\) 16664.8 1.48165
\(503\) 14591.9 1.29348 0.646738 0.762712i \(-0.276133\pi\)
0.646738 + 0.762712i \(0.276133\pi\)
\(504\) 0 0
\(505\) 2550.08 0.224707
\(506\) −1107.25 −0.0972794
\(507\) 0 0
\(508\) −17201.3 −1.50233
\(509\) −13600.3 −1.18432 −0.592162 0.805819i \(-0.701726\pi\)
−0.592162 + 0.805819i \(0.701726\pi\)
\(510\) 0 0
\(511\) −7977.19 −0.690588
\(512\) −20263.6 −1.74909
\(513\) 0 0
\(514\) −16378.1 −1.40546
\(515\) −8228.62 −0.704070
\(516\) 0 0
\(517\) −3774.70 −0.321105
\(518\) 17643.6 1.49655
\(519\) 0 0
\(520\) 10351.0 0.872927
\(521\) −8355.92 −0.702647 −0.351324 0.936254i \(-0.614268\pi\)
−0.351324 + 0.936254i \(0.614268\pi\)
\(522\) 0 0
\(523\) 926.372 0.0774520 0.0387260 0.999250i \(-0.487670\pi\)
0.0387260 + 0.999250i \(0.487670\pi\)
\(524\) 18244.4 1.52101
\(525\) 0 0
\(526\) 23447.7 1.94366
\(527\) 8531.68 0.705210
\(528\) 0 0
\(529\) −11831.7 −0.972440
\(530\) 10718.6 0.878467
\(531\) 0 0
\(532\) −1264.29 −0.103034
\(533\) 2566.34 0.208556
\(534\) 0 0
\(535\) −6526.75 −0.527432
\(536\) 40353.0 3.25184
\(537\) 0 0
\(538\) −21240.0 −1.70209
\(539\) 31.0266 0.00247943
\(540\) 0 0
\(541\) 13503.6 1.07313 0.536565 0.843859i \(-0.319722\pi\)
0.536565 + 0.843859i \(0.319722\pi\)
\(542\) −42165.0 −3.34159
\(543\) 0 0
\(544\) −24996.8 −1.97009
\(545\) −4660.63 −0.366311
\(546\) 0 0
\(547\) −20425.4 −1.59658 −0.798288 0.602275i \(-0.794261\pi\)
−0.798288 + 0.602275i \(0.794261\pi\)
\(548\) −4625.39 −0.360560
\(549\) 0 0
\(550\) −1511.68 −0.117197
\(551\) −102.117 −0.00789532
\(552\) 0 0
\(553\) 10115.8 0.777879
\(554\) 24241.3 1.85905
\(555\) 0 0
\(556\) 33218.0 2.53374
\(557\) 3929.12 0.298891 0.149446 0.988770i \(-0.452251\pi\)
0.149446 + 0.988770i \(0.452251\pi\)
\(558\) 0 0
\(559\) 13988.0 1.05837
\(560\) 14675.6 1.10742
\(561\) 0 0
\(562\) 365.769 0.0274538
\(563\) −4452.67 −0.333318 −0.166659 0.986015i \(-0.553298\pi\)
−0.166659 + 0.986015i \(0.553298\pi\)
\(564\) 0 0
\(565\) 8599.45 0.640322
\(566\) 9975.75 0.740834
\(567\) 0 0
\(568\) −52474.7 −3.87639
\(569\) 5462.20 0.402438 0.201219 0.979546i \(-0.435510\pi\)
0.201219 + 0.979546i \(0.435510\pi\)
\(570\) 0 0
\(571\) −7228.87 −0.529805 −0.264902 0.964275i \(-0.585340\pi\)
−0.264902 + 0.964275i \(0.585340\pi\)
\(572\) 7739.16 0.565717
\(573\) 0 0
\(574\) 7199.27 0.523505
\(575\) 457.791 0.0332021
\(576\) 0 0
\(577\) 12771.6 0.921468 0.460734 0.887538i \(-0.347586\pi\)
0.460734 + 0.887538i \(0.347586\pi\)
\(578\) 498.502 0.0358736
\(579\) 0 0
\(580\) 2822.14 0.202040
\(581\) 9428.10 0.673224
\(582\) 0 0
\(583\) 4719.97 0.335303
\(584\) 25976.9 1.84064
\(585\) 0 0
\(586\) −3265.88 −0.230226
\(587\) −6986.93 −0.491280 −0.245640 0.969361i \(-0.578998\pi\)
−0.245640 + 0.969361i \(0.578998\pi\)
\(588\) 0 0
\(589\) −424.518 −0.0296977
\(590\) 3163.23 0.220726
\(591\) 0 0
\(592\) −29037.6 −2.01595
\(593\) −4323.42 −0.299396 −0.149698 0.988732i \(-0.547830\pi\)
−0.149698 + 0.988732i \(0.547830\pi\)
\(594\) 0 0
\(595\) −6527.48 −0.449749
\(596\) −69027.6 −4.74409
\(597\) 0 0
\(598\) −3307.04 −0.226145
\(599\) −13443.7 −0.917019 −0.458510 0.888689i \(-0.651617\pi\)
−0.458510 + 0.888689i \(0.651617\pi\)
\(600\) 0 0
\(601\) −7179.72 −0.487299 −0.243650 0.969863i \(-0.578345\pi\)
−0.243650 + 0.969863i \(0.578345\pi\)
\(602\) 39240.1 2.65666
\(603\) 0 0
\(604\) 35388.2 2.38399
\(605\) 5989.33 0.402481
\(606\) 0 0
\(607\) −8560.81 −0.572442 −0.286221 0.958164i \(-0.592399\pi\)
−0.286221 + 0.958164i \(0.592399\pi\)
\(608\) 1243.79 0.0829641
\(609\) 0 0
\(610\) −906.826 −0.0601907
\(611\) −11273.9 −0.746472
\(612\) 0 0
\(613\) 19634.3 1.29367 0.646837 0.762628i \(-0.276091\pi\)
0.646837 + 0.762628i \(0.276091\pi\)
\(614\) −36159.1 −2.37665
\(615\) 0 0
\(616\) 12786.7 0.836348
\(617\) −14268.5 −0.931003 −0.465502 0.885047i \(-0.654126\pi\)
−0.465502 + 0.885047i \(0.654126\pi\)
\(618\) 0 0
\(619\) 1663.48 0.108014 0.0540071 0.998541i \(-0.482801\pi\)
0.0540071 + 0.998541i \(0.482801\pi\)
\(620\) 11732.2 0.759960
\(621\) 0 0
\(622\) 950.470 0.0612707
\(623\) −14539.1 −0.934990
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −20119.5 −1.28456
\(627\) 0 0
\(628\) −734.808 −0.0466912
\(629\) 12915.5 0.818720
\(630\) 0 0
\(631\) 13448.3 0.848444 0.424222 0.905558i \(-0.360548\pi\)
0.424222 + 0.905558i \(0.360548\pi\)
\(632\) −32941.0 −2.07330
\(633\) 0 0
\(634\) −36684.1 −2.29797
\(635\) 4418.96 0.276159
\(636\) 0 0
\(637\) 92.6675 0.00576392
\(638\) 1753.55 0.108814
\(639\) 0 0
\(640\) −1021.79 −0.0631088
\(641\) −7644.92 −0.471070 −0.235535 0.971866i \(-0.575684\pi\)
−0.235535 + 0.971866i \(0.575684\pi\)
\(642\) 0 0
\(643\) 1814.60 0.111292 0.0556462 0.998451i \(-0.482278\pi\)
0.0556462 + 0.998451i \(0.482278\pi\)
\(644\) −6574.71 −0.402298
\(645\) 0 0
\(646\) −1305.90 −0.0795357
\(647\) −18746.6 −1.13911 −0.569556 0.821952i \(-0.692885\pi\)
−0.569556 + 0.821952i \(0.692885\pi\)
\(648\) 0 0
\(649\) 1392.94 0.0842489
\(650\) −4514.94 −0.272447
\(651\) 0 0
\(652\) 30009.6 1.80256
\(653\) −8299.18 −0.497354 −0.248677 0.968586i \(-0.579996\pi\)
−0.248677 + 0.968586i \(0.579996\pi\)
\(654\) 0 0
\(655\) −4686.93 −0.279593
\(656\) −11848.5 −0.705192
\(657\) 0 0
\(658\) −31626.4 −1.87375
\(659\) −12624.7 −0.746262 −0.373131 0.927779i \(-0.621716\pi\)
−0.373131 + 0.927779i \(0.621716\pi\)
\(660\) 0 0
\(661\) −10912.8 −0.642144 −0.321072 0.947055i \(-0.604043\pi\)
−0.321072 + 0.947055i \(0.604043\pi\)
\(662\) −6167.26 −0.362081
\(663\) 0 0
\(664\) −30701.6 −1.79436
\(665\) 324.793 0.0189398
\(666\) 0 0
\(667\) −531.038 −0.0308274
\(668\) −32493.4 −1.88204
\(669\) 0 0
\(670\) −17601.3 −1.01492
\(671\) −399.323 −0.0229742
\(672\) 0 0
\(673\) 6292.15 0.360393 0.180197 0.983631i \(-0.442327\pi\)
0.180197 + 0.983631i \(0.442327\pi\)
\(674\) −912.105 −0.0521261
\(675\) 0 0
\(676\) −19645.7 −1.11776
\(677\) −16630.8 −0.944125 −0.472062 0.881565i \(-0.656490\pi\)
−0.472062 + 0.881565i \(0.656490\pi\)
\(678\) 0 0
\(679\) −17840.0 −1.00830
\(680\) 21256.1 1.19872
\(681\) 0 0
\(682\) 7289.81 0.409298
\(683\) −11843.7 −0.663521 −0.331761 0.943364i \(-0.607643\pi\)
−0.331761 + 0.943364i \(0.607643\pi\)
\(684\) 0 0
\(685\) 1188.25 0.0662783
\(686\) 33419.4 1.86000
\(687\) 0 0
\(688\) −64581.1 −3.57868
\(689\) 14097.2 0.779478
\(690\) 0 0
\(691\) 20458.3 1.12630 0.563149 0.826356i \(-0.309590\pi\)
0.563149 + 0.826356i \(0.309590\pi\)
\(692\) 14181.2 0.779032
\(693\) 0 0
\(694\) 57098.2 3.12308
\(695\) −8533.61 −0.465753
\(696\) 0 0
\(697\) 5270.03 0.286394
\(698\) −61944.8 −3.35909
\(699\) 0 0
\(700\) −8976.13 −0.484666
\(701\) −23987.6 −1.29244 −0.646220 0.763151i \(-0.723651\pi\)
−0.646220 + 0.763151i \(0.723651\pi\)
\(702\) 0 0
\(703\) −642.648 −0.0344778
\(704\) −6671.61 −0.357167
\(705\) 0 0
\(706\) −51331.6 −2.73639
\(707\) 9408.52 0.500487
\(708\) 0 0
\(709\) 6275.84 0.332432 0.166216 0.986089i \(-0.446845\pi\)
0.166216 + 0.986089i \(0.446845\pi\)
\(710\) 22888.6 1.20985
\(711\) 0 0
\(712\) 47345.2 2.49205
\(713\) −2207.62 −0.115955
\(714\) 0 0
\(715\) −1988.16 −0.103990
\(716\) −37494.8 −1.95705
\(717\) 0 0
\(718\) −46609.5 −2.42263
\(719\) 15544.4 0.806273 0.403136 0.915140i \(-0.367920\pi\)
0.403136 + 0.915140i \(0.367920\pi\)
\(720\) 0 0
\(721\) −30359.5 −1.56817
\(722\) −35879.8 −1.84945
\(723\) 0 0
\(724\) 71928.1 3.69225
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) −25002.9 −1.27552 −0.637762 0.770233i \(-0.720140\pi\)
−0.637762 + 0.770233i \(0.720140\pi\)
\(728\) 38190.1 1.94426
\(729\) 0 0
\(730\) −11330.7 −0.574477
\(731\) 28724.7 1.45338
\(732\) 0 0
\(733\) −16981.1 −0.855678 −0.427839 0.903855i \(-0.640725\pi\)
−0.427839 + 0.903855i \(0.640725\pi\)
\(734\) 58238.7 2.92865
\(735\) 0 0
\(736\) 6468.06 0.323934
\(737\) −7750.78 −0.387386
\(738\) 0 0
\(739\) 920.528 0.0458216 0.0229108 0.999738i \(-0.492707\pi\)
0.0229108 + 0.999738i \(0.492707\pi\)
\(740\) 17760.5 0.882282
\(741\) 0 0
\(742\) 39546.4 1.95660
\(743\) −6708.21 −0.331225 −0.165613 0.986191i \(-0.552960\pi\)
−0.165613 + 0.986191i \(0.552960\pi\)
\(744\) 0 0
\(745\) 17733.0 0.872061
\(746\) 70588.9 3.46440
\(747\) 0 0
\(748\) 15892.5 0.776857
\(749\) −24080.5 −1.17474
\(750\) 0 0
\(751\) 34311.4 1.66717 0.833583 0.552394i \(-0.186286\pi\)
0.833583 + 0.552394i \(0.186286\pi\)
\(752\) 52050.6 2.52405
\(753\) 0 0
\(754\) 5237.33 0.252961
\(755\) −9091.13 −0.438225
\(756\) 0 0
\(757\) −12405.6 −0.595628 −0.297814 0.954624i \(-0.596257\pi\)
−0.297814 + 0.954624i \(0.596257\pi\)
\(758\) −19655.7 −0.941856
\(759\) 0 0
\(760\) −1057.66 −0.0504805
\(761\) 18869.8 0.898857 0.449428 0.893316i \(-0.351628\pi\)
0.449428 + 0.893316i \(0.351628\pi\)
\(762\) 0 0
\(763\) −17195.4 −0.815878
\(764\) −48466.7 −2.29511
\(765\) 0 0
\(766\) −65004.8 −3.06621
\(767\) 4160.29 0.195853
\(768\) 0 0
\(769\) 38269.7 1.79459 0.897295 0.441432i \(-0.145529\pi\)
0.897295 + 0.441432i \(0.145529\pi\)
\(770\) −5577.34 −0.261030
\(771\) 0 0
\(772\) 87452.9 4.07707
\(773\) −37398.4 −1.74014 −0.870069 0.492930i \(-0.835926\pi\)
−0.870069 + 0.492930i \(0.835926\pi\)
\(774\) 0 0
\(775\) −3013.96 −0.139696
\(776\) 58094.2 2.68745
\(777\) 0 0
\(778\) 40449.9 1.86401
\(779\) −262.226 −0.0120606
\(780\) 0 0
\(781\) 10079.0 0.461788
\(782\) −6791.09 −0.310549
\(783\) 0 0
\(784\) −427.836 −0.0194896
\(785\) 188.770 0.00858279
\(786\) 0 0
\(787\) −22352.2 −1.01241 −0.506206 0.862413i \(-0.668952\pi\)
−0.506206 + 0.862413i \(0.668952\pi\)
\(788\) −38736.0 −1.75116
\(789\) 0 0
\(790\) 14368.3 0.647091
\(791\) 31727.7 1.42618
\(792\) 0 0
\(793\) −1192.66 −0.0534081
\(794\) −35359.9 −1.58045
\(795\) 0 0
\(796\) −1631.05 −0.0726267
\(797\) 29993.8 1.33304 0.666521 0.745487i \(-0.267783\pi\)
0.666521 + 0.745487i \(0.267783\pi\)
\(798\) 0 0
\(799\) −23151.3 −1.02507
\(800\) 8830.52 0.390258
\(801\) 0 0
\(802\) 26451.0 1.16461
\(803\) −4989.50 −0.219272
\(804\) 0 0
\(805\) 1689.02 0.0739506
\(806\) 21772.5 0.951495
\(807\) 0 0
\(808\) −30637.9 −1.33396
\(809\) −28328.9 −1.23114 −0.615569 0.788083i \(-0.711074\pi\)
−0.615569 + 0.788083i \(0.711074\pi\)
\(810\) 0 0
\(811\) 4087.14 0.176965 0.0884826 0.996078i \(-0.471798\pi\)
0.0884826 + 0.996078i \(0.471798\pi\)
\(812\) 10412.3 0.450001
\(813\) 0 0
\(814\) 11035.5 0.475178
\(815\) −7709.37 −0.331347
\(816\) 0 0
\(817\) −1429.28 −0.0612046
\(818\) 27864.6 1.19103
\(819\) 0 0
\(820\) 7246.98 0.308629
\(821\) 9552.90 0.406088 0.203044 0.979170i \(-0.434916\pi\)
0.203044 + 0.979170i \(0.434916\pi\)
\(822\) 0 0
\(823\) 26863.5 1.13779 0.568895 0.822410i \(-0.307371\pi\)
0.568895 + 0.822410i \(0.307371\pi\)
\(824\) 98862.6 4.17966
\(825\) 0 0
\(826\) 11670.8 0.491619
\(827\) 43901.7 1.84596 0.922981 0.384846i \(-0.125746\pi\)
0.922981 + 0.384846i \(0.125746\pi\)
\(828\) 0 0
\(829\) −9622.68 −0.403148 −0.201574 0.979473i \(-0.564606\pi\)
−0.201574 + 0.979473i \(0.564606\pi\)
\(830\) 13391.5 0.560033
\(831\) 0 0
\(832\) −19926.2 −0.830307
\(833\) 190.295 0.00791516
\(834\) 0 0
\(835\) 8347.44 0.345958
\(836\) −790.779 −0.0327149
\(837\) 0 0
\(838\) −15477.5 −0.638022
\(839\) −26742.6 −1.10043 −0.550214 0.835024i \(-0.685454\pi\)
−0.550214 + 0.835024i \(0.685454\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 38926.0 1.59320
\(843\) 0 0
\(844\) −85052.7 −3.46876
\(845\) 5046.93 0.205467
\(846\) 0 0
\(847\) 22097.7 0.896440
\(848\) −65085.2 −2.63566
\(849\) 0 0
\(850\) −9271.54 −0.374131
\(851\) −3341.96 −0.134619
\(852\) 0 0
\(853\) −16600.5 −0.666341 −0.333171 0.942867i \(-0.608119\pi\)
−0.333171 + 0.942867i \(0.608119\pi\)
\(854\) −3345.74 −0.134062
\(855\) 0 0
\(856\) 78415.6 3.13106
\(857\) −15752.2 −0.627869 −0.313935 0.949445i \(-0.601647\pi\)
−0.313935 + 0.949445i \(0.601647\pi\)
\(858\) 0 0
\(859\) −35249.8 −1.40012 −0.700062 0.714082i \(-0.746844\pi\)
−0.700062 + 0.714082i \(0.746844\pi\)
\(860\) 39500.2 1.56622
\(861\) 0 0
\(862\) −17304.6 −0.683755
\(863\) 36020.7 1.42081 0.710404 0.703794i \(-0.248512\pi\)
0.710404 + 0.703794i \(0.248512\pi\)
\(864\) 0 0
\(865\) −3643.12 −0.143202
\(866\) 49014.0 1.92328
\(867\) 0 0
\(868\) 43285.9 1.69265
\(869\) 6327.12 0.246988
\(870\) 0 0
\(871\) −23149.3 −0.900556
\(872\) 55995.0 2.17458
\(873\) 0 0
\(874\) 337.910 0.0130778
\(875\) 2305.94 0.0890914
\(876\) 0 0
\(877\) 1353.74 0.0521239 0.0260620 0.999660i \(-0.491703\pi\)
0.0260620 + 0.999660i \(0.491703\pi\)
\(878\) −32018.2 −1.23071
\(879\) 0 0
\(880\) 9179.15 0.351624
\(881\) 1774.07 0.0678435 0.0339217 0.999424i \(-0.489200\pi\)
0.0339217 + 0.999424i \(0.489200\pi\)
\(882\) 0 0
\(883\) 1483.09 0.0565233 0.0282616 0.999601i \(-0.491003\pi\)
0.0282616 + 0.999601i \(0.491003\pi\)
\(884\) 47466.4 1.80596
\(885\) 0 0
\(886\) −74844.9 −2.83799
\(887\) −18524.8 −0.701244 −0.350622 0.936517i \(-0.614030\pi\)
−0.350622 + 0.936517i \(0.614030\pi\)
\(888\) 0 0
\(889\) 16303.8 0.615086
\(890\) −20651.2 −0.777786
\(891\) 0 0
\(892\) 70724.2 2.65473
\(893\) 1151.96 0.0431678
\(894\) 0 0
\(895\) 9632.30 0.359746
\(896\) −3769.89 −0.140561
\(897\) 0 0
\(898\) 85976.2 3.19495
\(899\) 3496.19 0.129705
\(900\) 0 0
\(901\) 28948.9 1.07040
\(902\) 4502.93 0.166221
\(903\) 0 0
\(904\) −103318. −3.80122
\(905\) −18478.1 −0.678710
\(906\) 0 0
\(907\) −26687.1 −0.976991 −0.488495 0.872567i \(-0.662454\pi\)
−0.488495 + 0.872567i \(0.662454\pi\)
\(908\) 71863.4 2.62651
\(909\) 0 0
\(910\) −16657.9 −0.606817
\(911\) 4443.10 0.161588 0.0807939 0.996731i \(-0.474254\pi\)
0.0807939 + 0.996731i \(0.474254\pi\)
\(912\) 0 0
\(913\) 5897.00 0.213759
\(914\) −82413.2 −2.98248
\(915\) 0 0
\(916\) 94079.3 3.39352
\(917\) −17292.5 −0.622734
\(918\) 0 0
\(919\) 17674.0 0.634398 0.317199 0.948359i \(-0.397258\pi\)
0.317199 + 0.948359i \(0.397258\pi\)
\(920\) −5500.13 −0.197102
\(921\) 0 0
\(922\) 73845.4 2.63771
\(923\) 30103.2 1.07352
\(924\) 0 0
\(925\) −4562.61 −0.162181
\(926\) −46087.2 −1.63555
\(927\) 0 0
\(928\) −10243.4 −0.362345
\(929\) −10760.5 −0.380021 −0.190010 0.981782i \(-0.560852\pi\)
−0.190010 + 0.981782i \(0.560852\pi\)
\(930\) 0 0
\(931\) −9.46867 −0.000333322 0
\(932\) 94093.2 3.30700
\(933\) 0 0
\(934\) 45833.9 1.60571
\(935\) −4082.75 −0.142802
\(936\) 0 0
\(937\) 22210.3 0.774365 0.387182 0.922003i \(-0.373448\pi\)
0.387182 + 0.922003i \(0.373448\pi\)
\(938\) −64940.1 −2.26052
\(939\) 0 0
\(940\) −31836.0 −1.10466
\(941\) −34977.1 −1.21171 −0.605855 0.795575i \(-0.707169\pi\)
−0.605855 + 0.795575i \(0.707169\pi\)
\(942\) 0 0
\(943\) −1363.65 −0.0470908
\(944\) −19207.6 −0.662241
\(945\) 0 0
\(946\) 24543.5 0.843530
\(947\) −42798.4 −1.46860 −0.734298 0.678827i \(-0.762489\pi\)
−0.734298 + 0.678827i \(0.762489\pi\)
\(948\) 0 0
\(949\) −14902.2 −0.509742
\(950\) 461.332 0.0157554
\(951\) 0 0
\(952\) 78424.3 2.66990
\(953\) 15363.5 0.522217 0.261108 0.965309i \(-0.415912\pi\)
0.261108 + 0.965309i \(0.415912\pi\)
\(954\) 0 0
\(955\) 12450.9 0.421888
\(956\) −78237.7 −2.64685
\(957\) 0 0
\(958\) 60017.7 2.02410
\(959\) 4384.05 0.147621
\(960\) 0 0
\(961\) −15256.7 −0.512125
\(962\) 32959.9 1.10465
\(963\) 0 0
\(964\) 20958.1 0.700222
\(965\) −22466.4 −0.749449
\(966\) 0 0
\(967\) −44310.2 −1.47355 −0.736774 0.676139i \(-0.763652\pi\)
−0.736774 + 0.676139i \(0.763652\pi\)
\(968\) −71958.7 −2.38930
\(969\) 0 0
\(970\) −25339.8 −0.838774
\(971\) −50163.2 −1.65789 −0.828946 0.559328i \(-0.811059\pi\)
−0.828946 + 0.559328i \(0.811059\pi\)
\(972\) 0 0
\(973\) −31484.8 −1.03736
\(974\) 8569.90 0.281927
\(975\) 0 0
\(976\) 5506.39 0.180589
\(977\) 2549.65 0.0834908 0.0417454 0.999128i \(-0.486708\pi\)
0.0417454 + 0.999128i \(0.486708\pi\)
\(978\) 0 0
\(979\) −9093.80 −0.296874
\(980\) 261.680 0.00852966
\(981\) 0 0
\(982\) −11041.4 −0.358803
\(983\) −25382.0 −0.823561 −0.411781 0.911283i \(-0.635093\pi\)
−0.411781 + 0.911283i \(0.635093\pi\)
\(984\) 0 0
\(985\) 9951.15 0.321899
\(986\) 10755.0 0.347372
\(987\) 0 0
\(988\) −2361.83 −0.0760523
\(989\) −7432.68 −0.238974
\(990\) 0 0
\(991\) −44583.2 −1.42909 −0.714547 0.699588i \(-0.753367\pi\)
−0.714547 + 0.699588i \(0.753367\pi\)
\(992\) −42583.7 −1.36294
\(993\) 0 0
\(994\) 84447.6 2.69468
\(995\) 419.010 0.0133503
\(996\) 0 0
\(997\) −39668.0 −1.26008 −0.630039 0.776563i \(-0.716961\pi\)
−0.630039 + 0.776563i \(0.716961\pi\)
\(998\) −46461.1 −1.47365
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.n.1.7 7
3.2 odd 2 435.4.a.i.1.1 7
15.14 odd 2 2175.4.a.n.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.1 7 3.2 odd 2
1305.4.a.n.1.7 7 1.1 even 1 trivial
2175.4.a.n.1.7 7 15.14 odd 2