Properties

Label 1305.4.a.n.1.1
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 37x^{5} + 55x^{4} + 336x^{3} - 227x^{2} - 824x - 166 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.88324\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.88324 q^{2} +15.8460 q^{4} -5.00000 q^{5} +5.48750 q^{7} -38.3141 q^{8} +24.4162 q^{10} -50.1324 q^{11} -20.7349 q^{13} -26.7968 q^{14} +60.3288 q^{16} +18.8027 q^{17} +78.8346 q^{19} -79.2302 q^{20} +244.809 q^{22} +6.33763 q^{23} +25.0000 q^{25} +101.254 q^{26} +86.9552 q^{28} -29.0000 q^{29} +310.950 q^{31} +11.9130 q^{32} -91.8182 q^{34} -27.4375 q^{35} -338.745 q^{37} -384.969 q^{38} +191.571 q^{40} -353.526 q^{41} +507.609 q^{43} -794.400 q^{44} -30.9482 q^{46} +112.771 q^{47} -312.887 q^{49} -122.081 q^{50} -328.566 q^{52} +144.849 q^{53} +250.662 q^{55} -210.249 q^{56} +141.614 q^{58} +342.739 q^{59} +357.486 q^{61} -1518.44 q^{62} -540.804 q^{64} +103.675 q^{65} -183.087 q^{67} +297.949 q^{68} +133.984 q^{70} +594.034 q^{71} -622.609 q^{73} +1654.17 q^{74} +1249.22 q^{76} -275.102 q^{77} -1275.18 q^{79} -301.644 q^{80} +1726.35 q^{82} +739.108 q^{83} -94.0136 q^{85} -2478.78 q^{86} +1920.78 q^{88} -906.113 q^{89} -113.783 q^{91} +100.426 q^{92} -550.688 q^{94} -394.173 q^{95} +76.0665 q^{97} +1527.90 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{2} + 22 q^{4} - 35 q^{5} - 50 q^{7} + 33 q^{8} - 10 q^{10} - 76 q^{11} + 30 q^{13} - 89 q^{14} + 138 q^{16} + 140 q^{17} + 90 q^{19} - 110 q^{20} + 61 q^{22} - 34 q^{23} + 175 q^{25} + 241 q^{26}+ \cdots + 761 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.88324 −1.72649 −0.863243 0.504788i \(-0.831571\pi\)
−0.863243 + 0.504788i \(0.831571\pi\)
\(3\) 0 0
\(4\) 15.8460 1.98076
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 5.48750 0.296297 0.148149 0.988965i \(-0.452669\pi\)
0.148149 + 0.988965i \(0.452669\pi\)
\(8\) −38.3141 −1.69326
\(9\) 0 0
\(10\) 24.4162 0.772108
\(11\) −50.1324 −1.37413 −0.687067 0.726594i \(-0.741102\pi\)
−0.687067 + 0.726594i \(0.741102\pi\)
\(12\) 0 0
\(13\) −20.7349 −0.442371 −0.221186 0.975232i \(-0.570993\pi\)
−0.221186 + 0.975232i \(0.570993\pi\)
\(14\) −26.7968 −0.511553
\(15\) 0 0
\(16\) 60.3288 0.942637
\(17\) 18.8027 0.268255 0.134127 0.990964i \(-0.457177\pi\)
0.134127 + 0.990964i \(0.457177\pi\)
\(18\) 0 0
\(19\) 78.8346 0.951890 0.475945 0.879475i \(-0.342106\pi\)
0.475945 + 0.879475i \(0.342106\pi\)
\(20\) −79.2302 −0.885821
\(21\) 0 0
\(22\) 244.809 2.37243
\(23\) 6.33763 0.0574559 0.0287280 0.999587i \(-0.490854\pi\)
0.0287280 + 0.999587i \(0.490854\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 101.254 0.763748
\(27\) 0 0
\(28\) 86.9552 0.586892
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) 310.950 1.80156 0.900778 0.434280i \(-0.142997\pi\)
0.900778 + 0.434280i \(0.142997\pi\)
\(32\) 11.9130 0.0658106
\(33\) 0 0
\(34\) −91.8182 −0.463138
\(35\) −27.4375 −0.132508
\(36\) 0 0
\(37\) −338.745 −1.50512 −0.752558 0.658525i \(-0.771180\pi\)
−0.752558 + 0.658525i \(0.771180\pi\)
\(38\) −384.969 −1.64343
\(39\) 0 0
\(40\) 191.571 0.757250
\(41\) −353.526 −1.34662 −0.673312 0.739359i \(-0.735129\pi\)
−0.673312 + 0.739359i \(0.735129\pi\)
\(42\) 0 0
\(43\) 507.609 1.80022 0.900112 0.435658i \(-0.143484\pi\)
0.900112 + 0.435658i \(0.143484\pi\)
\(44\) −794.400 −2.72183
\(45\) 0 0
\(46\) −30.9482 −0.0991969
\(47\) 112.771 0.349986 0.174993 0.984570i \(-0.444010\pi\)
0.174993 + 0.984570i \(0.444010\pi\)
\(48\) 0 0
\(49\) −312.887 −0.912208
\(50\) −122.081 −0.345297
\(51\) 0 0
\(52\) −328.566 −0.876230
\(53\) 144.849 0.375406 0.187703 0.982226i \(-0.439896\pi\)
0.187703 + 0.982226i \(0.439896\pi\)
\(54\) 0 0
\(55\) 250.662 0.614532
\(56\) −210.249 −0.501709
\(57\) 0 0
\(58\) 141.614 0.320600
\(59\) 342.739 0.756285 0.378142 0.925747i \(-0.376563\pi\)
0.378142 + 0.925747i \(0.376563\pi\)
\(60\) 0 0
\(61\) 357.486 0.750350 0.375175 0.926954i \(-0.377583\pi\)
0.375175 + 0.926954i \(0.377583\pi\)
\(62\) −1518.44 −3.11036
\(63\) 0 0
\(64\) −540.804 −1.05626
\(65\) 103.675 0.197834
\(66\) 0 0
\(67\) −183.087 −0.333844 −0.166922 0.985970i \(-0.553383\pi\)
−0.166922 + 0.985970i \(0.553383\pi\)
\(68\) 297.949 0.531347
\(69\) 0 0
\(70\) 133.984 0.228773
\(71\) 594.034 0.992942 0.496471 0.868053i \(-0.334629\pi\)
0.496471 + 0.868053i \(0.334629\pi\)
\(72\) 0 0
\(73\) −622.609 −0.998231 −0.499115 0.866536i \(-0.666342\pi\)
−0.499115 + 0.866536i \(0.666342\pi\)
\(74\) 1654.17 2.59856
\(75\) 0 0
\(76\) 1249.22 1.88546
\(77\) −275.102 −0.407152
\(78\) 0 0
\(79\) −1275.18 −1.81607 −0.908034 0.418897i \(-0.862417\pi\)
−0.908034 + 0.418897i \(0.862417\pi\)
\(80\) −301.644 −0.421560
\(81\) 0 0
\(82\) 1726.35 2.32493
\(83\) 739.108 0.977441 0.488720 0.872440i \(-0.337464\pi\)
0.488720 + 0.872440i \(0.337464\pi\)
\(84\) 0 0
\(85\) −94.0136 −0.119967
\(86\) −2478.78 −3.10806
\(87\) 0 0
\(88\) 1920.78 2.32677
\(89\) −906.113 −1.07919 −0.539594 0.841925i \(-0.681422\pi\)
−0.539594 + 0.841925i \(0.681422\pi\)
\(90\) 0 0
\(91\) −113.783 −0.131073
\(92\) 100.426 0.113806
\(93\) 0 0
\(94\) −550.688 −0.604246
\(95\) −394.173 −0.425698
\(96\) 0 0
\(97\) 76.0665 0.0796225 0.0398112 0.999207i \(-0.487324\pi\)
0.0398112 + 0.999207i \(0.487324\pi\)
\(98\) 1527.90 1.57491
\(99\) 0 0
\(100\) 396.151 0.396151
\(101\) −653.553 −0.643871 −0.321935 0.946762i \(-0.604333\pi\)
−0.321935 + 0.946762i \(0.604333\pi\)
\(102\) 0 0
\(103\) 969.801 0.927741 0.463871 0.885903i \(-0.346460\pi\)
0.463871 + 0.885903i \(0.346460\pi\)
\(104\) 794.440 0.749050
\(105\) 0 0
\(106\) −707.332 −0.648133
\(107\) 1267.53 1.14520 0.572601 0.819835i \(-0.305935\pi\)
0.572601 + 0.819835i \(0.305935\pi\)
\(108\) 0 0
\(109\) −808.142 −0.710146 −0.355073 0.934838i \(-0.615544\pi\)
−0.355073 + 0.934838i \(0.615544\pi\)
\(110\) −1224.04 −1.06098
\(111\) 0 0
\(112\) 331.054 0.279301
\(113\) 1220.10 1.01572 0.507862 0.861438i \(-0.330436\pi\)
0.507862 + 0.861438i \(0.330436\pi\)
\(114\) 0 0
\(115\) −31.6881 −0.0256951
\(116\) −459.535 −0.367817
\(117\) 0 0
\(118\) −1673.68 −1.30572
\(119\) 103.180 0.0794831
\(120\) 0 0
\(121\) 1182.26 0.888247
\(122\) −1745.69 −1.29547
\(123\) 0 0
\(124\) 4927.32 3.56844
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 814.733 0.569258 0.284629 0.958638i \(-0.408130\pi\)
0.284629 + 0.958638i \(0.408130\pi\)
\(128\) 2545.57 1.75781
\(129\) 0 0
\(130\) −506.268 −0.341559
\(131\) 1493.91 0.996363 0.498181 0.867073i \(-0.334001\pi\)
0.498181 + 0.867073i \(0.334001\pi\)
\(132\) 0 0
\(133\) 432.605 0.282042
\(134\) 894.056 0.576378
\(135\) 0 0
\(136\) −720.410 −0.454225
\(137\) 1608.72 1.00323 0.501615 0.865091i \(-0.332739\pi\)
0.501615 + 0.865091i \(0.332739\pi\)
\(138\) 0 0
\(139\) 51.5725 0.0314700 0.0157350 0.999876i \(-0.494991\pi\)
0.0157350 + 0.999876i \(0.494991\pi\)
\(140\) −434.776 −0.262466
\(141\) 0 0
\(142\) −2900.81 −1.71430
\(143\) 1039.49 0.607878
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 3040.35 1.72343
\(147\) 0 0
\(148\) −5367.77 −2.98127
\(149\) 608.330 0.334472 0.167236 0.985917i \(-0.446516\pi\)
0.167236 + 0.985917i \(0.446516\pi\)
\(150\) 0 0
\(151\) −341.568 −0.184082 −0.0920412 0.995755i \(-0.529339\pi\)
−0.0920412 + 0.995755i \(0.529339\pi\)
\(152\) −3020.48 −1.61180
\(153\) 0 0
\(154\) 1343.39 0.702943
\(155\) −1554.75 −0.805680
\(156\) 0 0
\(157\) −358.378 −0.182176 −0.0910882 0.995843i \(-0.529035\pi\)
−0.0910882 + 0.995843i \(0.529035\pi\)
\(158\) 6227.03 3.13542
\(159\) 0 0
\(160\) −59.5650 −0.0294314
\(161\) 34.7777 0.0170240
\(162\) 0 0
\(163\) −1667.36 −0.801213 −0.400606 0.916250i \(-0.631201\pi\)
−0.400606 + 0.916250i \(0.631201\pi\)
\(164\) −5602.00 −2.66733
\(165\) 0 0
\(166\) −3609.24 −1.68754
\(167\) 1832.30 0.849029 0.424514 0.905421i \(-0.360445\pi\)
0.424514 + 0.905421i \(0.360445\pi\)
\(168\) 0 0
\(169\) −1767.06 −0.804308
\(170\) 459.091 0.207122
\(171\) 0 0
\(172\) 8043.60 3.56580
\(173\) −2034.77 −0.894224 −0.447112 0.894478i \(-0.647547\pi\)
−0.447112 + 0.894478i \(0.647547\pi\)
\(174\) 0 0
\(175\) 137.188 0.0592594
\(176\) −3024.43 −1.29531
\(177\) 0 0
\(178\) 4424.77 1.86320
\(179\) 332.198 0.138713 0.0693566 0.997592i \(-0.477905\pi\)
0.0693566 + 0.997592i \(0.477905\pi\)
\(180\) 0 0
\(181\) −843.391 −0.346347 −0.173173 0.984891i \(-0.555402\pi\)
−0.173173 + 0.984891i \(0.555402\pi\)
\(182\) 555.629 0.226296
\(183\) 0 0
\(184\) −242.821 −0.0972879
\(185\) 1693.72 0.673109
\(186\) 0 0
\(187\) −942.625 −0.368618
\(188\) 1786.97 0.693236
\(189\) 0 0
\(190\) 1924.84 0.734962
\(191\) −2438.81 −0.923908 −0.461954 0.886904i \(-0.652852\pi\)
−0.461954 + 0.886904i \(0.652852\pi\)
\(192\) 0 0
\(193\) 4095.03 1.52729 0.763645 0.645637i \(-0.223408\pi\)
0.763645 + 0.645637i \(0.223408\pi\)
\(194\) −371.451 −0.137467
\(195\) 0 0
\(196\) −4958.03 −1.80686
\(197\) −3226.76 −1.16699 −0.583495 0.812117i \(-0.698315\pi\)
−0.583495 + 0.812117i \(0.698315\pi\)
\(198\) 0 0
\(199\) −4218.74 −1.50281 −0.751404 0.659842i \(-0.770623\pi\)
−0.751404 + 0.659842i \(0.770623\pi\)
\(200\) −957.853 −0.338652
\(201\) 0 0
\(202\) 3191.46 1.11163
\(203\) −159.138 −0.0550210
\(204\) 0 0
\(205\) 1767.63 0.602228
\(206\) −4735.77 −1.60173
\(207\) 0 0
\(208\) −1250.91 −0.416996
\(209\) −3952.17 −1.30803
\(210\) 0 0
\(211\) −2798.33 −0.913010 −0.456505 0.889721i \(-0.650899\pi\)
−0.456505 + 0.889721i \(0.650899\pi\)
\(212\) 2295.28 0.743588
\(213\) 0 0
\(214\) −6189.64 −1.97717
\(215\) −2538.05 −0.805085
\(216\) 0 0
\(217\) 1706.34 0.533796
\(218\) 3946.35 1.22606
\(219\) 0 0
\(220\) 3972.00 1.21724
\(221\) −389.872 −0.118668
\(222\) 0 0
\(223\) 2496.01 0.749529 0.374764 0.927120i \(-0.377724\pi\)
0.374764 + 0.927120i \(0.377724\pi\)
\(224\) 65.3725 0.0194995
\(225\) 0 0
\(226\) −5958.02 −1.75364
\(227\) −3409.57 −0.996920 −0.498460 0.866913i \(-0.666101\pi\)
−0.498460 + 0.866913i \(0.666101\pi\)
\(228\) 0 0
\(229\) 4794.47 1.38353 0.691763 0.722125i \(-0.256834\pi\)
0.691763 + 0.722125i \(0.256834\pi\)
\(230\) 154.741 0.0443622
\(231\) 0 0
\(232\) 1111.11 0.314431
\(233\) −1989.36 −0.559345 −0.279672 0.960095i \(-0.590226\pi\)
−0.279672 + 0.960095i \(0.590226\pi\)
\(234\) 0 0
\(235\) −563.855 −0.156518
\(236\) 5431.06 1.49802
\(237\) 0 0
\(238\) −503.852 −0.137226
\(239\) −2574.69 −0.696832 −0.348416 0.937340i \(-0.613280\pi\)
−0.348416 + 0.937340i \(0.613280\pi\)
\(240\) 0 0
\(241\) −3683.44 −0.984528 −0.492264 0.870446i \(-0.663831\pi\)
−0.492264 + 0.870446i \(0.663831\pi\)
\(242\) −5773.24 −1.53355
\(243\) 0 0
\(244\) 5664.73 1.48626
\(245\) 1564.44 0.407952
\(246\) 0 0
\(247\) −1634.63 −0.421089
\(248\) −11913.8 −3.05050
\(249\) 0 0
\(250\) 610.405 0.154422
\(251\) −4631.27 −1.16463 −0.582317 0.812962i \(-0.697854\pi\)
−0.582317 + 0.812962i \(0.697854\pi\)
\(252\) 0 0
\(253\) −317.720 −0.0789522
\(254\) −3978.54 −0.982817
\(255\) 0 0
\(256\) −8104.22 −1.97857
\(257\) 1609.98 0.390770 0.195385 0.980727i \(-0.437404\pi\)
0.195385 + 0.980727i \(0.437404\pi\)
\(258\) 0 0
\(259\) −1858.86 −0.445962
\(260\) 1642.83 0.391862
\(261\) 0 0
\(262\) −7295.12 −1.72021
\(263\) 2868.22 0.672479 0.336239 0.941777i \(-0.390845\pi\)
0.336239 + 0.941777i \(0.390845\pi\)
\(264\) 0 0
\(265\) −724.244 −0.167887
\(266\) −2112.52 −0.486942
\(267\) 0 0
\(268\) −2901.20 −0.661264
\(269\) 554.047 0.125579 0.0627896 0.998027i \(-0.480000\pi\)
0.0627896 + 0.998027i \(0.480000\pi\)
\(270\) 0 0
\(271\) −1826.02 −0.409309 −0.204655 0.978834i \(-0.565607\pi\)
−0.204655 + 0.978834i \(0.565607\pi\)
\(272\) 1134.35 0.252867
\(273\) 0 0
\(274\) −7855.79 −1.73206
\(275\) −1253.31 −0.274827
\(276\) 0 0
\(277\) 1470.00 0.318859 0.159429 0.987209i \(-0.449035\pi\)
0.159429 + 0.987209i \(0.449035\pi\)
\(278\) −251.841 −0.0543325
\(279\) 0 0
\(280\) 1051.24 0.224371
\(281\) −7826.43 −1.66151 −0.830757 0.556635i \(-0.812092\pi\)
−0.830757 + 0.556635i \(0.812092\pi\)
\(282\) 0 0
\(283\) −6796.87 −1.42767 −0.713837 0.700312i \(-0.753044\pi\)
−0.713837 + 0.700312i \(0.753044\pi\)
\(284\) 9413.10 1.96678
\(285\) 0 0
\(286\) −5076.08 −1.04949
\(287\) −1939.98 −0.399001
\(288\) 0 0
\(289\) −4559.46 −0.928039
\(290\) −708.070 −0.143377
\(291\) 0 0
\(292\) −9865.89 −1.97725
\(293\) −3631.49 −0.724074 −0.362037 0.932164i \(-0.617919\pi\)
−0.362037 + 0.932164i \(0.617919\pi\)
\(294\) 0 0
\(295\) −1713.69 −0.338221
\(296\) 12978.7 2.54856
\(297\) 0 0
\(298\) −2970.62 −0.577461
\(299\) −131.410 −0.0254169
\(300\) 0 0
\(301\) 2785.50 0.533401
\(302\) 1667.96 0.317816
\(303\) 0 0
\(304\) 4756.00 0.897287
\(305\) −1787.43 −0.335567
\(306\) 0 0
\(307\) −9080.77 −1.68817 −0.844083 0.536213i \(-0.819854\pi\)
−0.844083 + 0.536213i \(0.819854\pi\)
\(308\) −4359.27 −0.806469
\(309\) 0 0
\(310\) 7592.21 1.39100
\(311\) −2657.69 −0.484577 −0.242289 0.970204i \(-0.577898\pi\)
−0.242289 + 0.970204i \(0.577898\pi\)
\(312\) 0 0
\(313\) −530.474 −0.0957960 −0.0478980 0.998852i \(-0.515252\pi\)
−0.0478980 + 0.998852i \(0.515252\pi\)
\(314\) 1750.05 0.314525
\(315\) 0 0
\(316\) −20206.6 −3.59719
\(317\) −2393.66 −0.424106 −0.212053 0.977258i \(-0.568015\pi\)
−0.212053 + 0.977258i \(0.568015\pi\)
\(318\) 0 0
\(319\) 1453.84 0.255170
\(320\) 2704.02 0.472373
\(321\) 0 0
\(322\) −169.828 −0.0293918
\(323\) 1482.31 0.255349
\(324\) 0 0
\(325\) −518.373 −0.0884743
\(326\) 8142.12 1.38328
\(327\) 0 0
\(328\) 13545.1 2.28019
\(329\) 618.830 0.103700
\(330\) 0 0
\(331\) −7984.54 −1.32589 −0.662945 0.748668i \(-0.730694\pi\)
−0.662945 + 0.748668i \(0.730694\pi\)
\(332\) 11711.9 1.93607
\(333\) 0 0
\(334\) −8947.57 −1.46584
\(335\) 915.433 0.149300
\(336\) 0 0
\(337\) 9704.45 1.56865 0.784325 0.620350i \(-0.213010\pi\)
0.784325 + 0.620350i \(0.213010\pi\)
\(338\) 8629.00 1.38863
\(339\) 0 0
\(340\) −1489.74 −0.237626
\(341\) −15588.7 −2.47558
\(342\) 0 0
\(343\) −3599.18 −0.566582
\(344\) −19448.6 −3.04825
\(345\) 0 0
\(346\) 9936.27 1.54387
\(347\) −5514.04 −0.853053 −0.426526 0.904475i \(-0.640263\pi\)
−0.426526 + 0.904475i \(0.640263\pi\)
\(348\) 0 0
\(349\) 2521.06 0.386674 0.193337 0.981132i \(-0.438069\pi\)
0.193337 + 0.981132i \(0.438069\pi\)
\(350\) −669.920 −0.102311
\(351\) 0 0
\(352\) −597.227 −0.0904326
\(353\) −5721.03 −0.862606 −0.431303 0.902207i \(-0.641946\pi\)
−0.431303 + 0.902207i \(0.641946\pi\)
\(354\) 0 0
\(355\) −2970.17 −0.444057
\(356\) −14358.3 −2.13761
\(357\) 0 0
\(358\) −1622.20 −0.239486
\(359\) −6403.95 −0.941470 −0.470735 0.882275i \(-0.656011\pi\)
−0.470735 + 0.882275i \(0.656011\pi\)
\(360\) 0 0
\(361\) −644.098 −0.0939055
\(362\) 4118.48 0.597963
\(363\) 0 0
\(364\) −1803.01 −0.259624
\(365\) 3113.04 0.446422
\(366\) 0 0
\(367\) 13350.7 1.89891 0.949456 0.313899i \(-0.101635\pi\)
0.949456 + 0.313899i \(0.101635\pi\)
\(368\) 382.341 0.0541601
\(369\) 0 0
\(370\) −8270.87 −1.16211
\(371\) 794.858 0.111232
\(372\) 0 0
\(373\) −1367.05 −0.189767 −0.0948837 0.995488i \(-0.530248\pi\)
−0.0948837 + 0.995488i \(0.530248\pi\)
\(374\) 4603.07 0.636414
\(375\) 0 0
\(376\) −4320.72 −0.592617
\(377\) 601.312 0.0821463
\(378\) 0 0
\(379\) 9882.96 1.33945 0.669727 0.742607i \(-0.266411\pi\)
0.669727 + 0.742607i \(0.266411\pi\)
\(380\) −6246.09 −0.843204
\(381\) 0 0
\(382\) 11909.3 1.59511
\(383\) −13225.8 −1.76450 −0.882252 0.470777i \(-0.843974\pi\)
−0.882252 + 0.470777i \(0.843974\pi\)
\(384\) 0 0
\(385\) 1375.51 0.182084
\(386\) −19997.0 −2.63684
\(387\) 0 0
\(388\) 1205.35 0.157713
\(389\) 8442.16 1.10035 0.550173 0.835051i \(-0.314562\pi\)
0.550173 + 0.835051i \(0.314562\pi\)
\(390\) 0 0
\(391\) 119.165 0.0154128
\(392\) 11988.0 1.54461
\(393\) 0 0
\(394\) 15757.0 2.01479
\(395\) 6375.92 0.812170
\(396\) 0 0
\(397\) −2268.55 −0.286789 −0.143394 0.989666i \(-0.545802\pi\)
−0.143394 + 0.989666i \(0.545802\pi\)
\(398\) 20601.1 2.59458
\(399\) 0 0
\(400\) 1508.22 0.188527
\(401\) −8294.00 −1.03287 −0.516437 0.856325i \(-0.672742\pi\)
−0.516437 + 0.856325i \(0.672742\pi\)
\(402\) 0 0
\(403\) −6447.51 −0.796957
\(404\) −10356.2 −1.27535
\(405\) 0 0
\(406\) 777.107 0.0949930
\(407\) 16982.1 2.06823
\(408\) 0 0
\(409\) 9913.01 1.19845 0.599226 0.800580i \(-0.295475\pi\)
0.599226 + 0.800580i \(0.295475\pi\)
\(410\) −8631.77 −1.03974
\(411\) 0 0
\(412\) 15367.5 1.83763
\(413\) 1880.78 0.224085
\(414\) 0 0
\(415\) −3695.54 −0.437125
\(416\) −247.015 −0.0291127
\(417\) 0 0
\(418\) 19299.4 2.25829
\(419\) 13332.1 1.55446 0.777228 0.629219i \(-0.216625\pi\)
0.777228 + 0.629219i \(0.216625\pi\)
\(420\) 0 0
\(421\) −2848.13 −0.329714 −0.164857 0.986317i \(-0.552716\pi\)
−0.164857 + 0.986317i \(0.552716\pi\)
\(422\) 13664.9 1.57630
\(423\) 0 0
\(424\) −5549.76 −0.635661
\(425\) 470.068 0.0536509
\(426\) 0 0
\(427\) 1961.70 0.222326
\(428\) 20085.3 2.26836
\(429\) 0 0
\(430\) 12393.9 1.38997
\(431\) −12669.7 −1.41595 −0.707977 0.706235i \(-0.750392\pi\)
−0.707977 + 0.706235i \(0.750392\pi\)
\(432\) 0 0
\(433\) −14545.6 −1.61436 −0.807178 0.590308i \(-0.799006\pi\)
−0.807178 + 0.590308i \(0.799006\pi\)
\(434\) −8332.45 −0.921591
\(435\) 0 0
\(436\) −12805.9 −1.40663
\(437\) 499.625 0.0546917
\(438\) 0 0
\(439\) 11489.4 1.24911 0.624557 0.780979i \(-0.285280\pi\)
0.624557 + 0.780979i \(0.285280\pi\)
\(440\) −9603.90 −1.04056
\(441\) 0 0
\(442\) 1903.84 0.204879
\(443\) 11125.7 1.19322 0.596611 0.802531i \(-0.296514\pi\)
0.596611 + 0.802531i \(0.296514\pi\)
\(444\) 0 0
\(445\) 4530.57 0.482628
\(446\) −12188.6 −1.29405
\(447\) 0 0
\(448\) −2967.66 −0.312966
\(449\) 6676.79 0.701776 0.350888 0.936418i \(-0.385880\pi\)
0.350888 + 0.936418i \(0.385880\pi\)
\(450\) 0 0
\(451\) 17723.1 1.85044
\(452\) 19333.7 2.01190
\(453\) 0 0
\(454\) 16649.7 1.72117
\(455\) 568.914 0.0586178
\(456\) 0 0
\(457\) −10826.9 −1.10823 −0.554114 0.832441i \(-0.686943\pi\)
−0.554114 + 0.832441i \(0.686943\pi\)
\(458\) −23412.6 −2.38864
\(459\) 0 0
\(460\) −502.132 −0.0508957
\(461\) 4114.21 0.415657 0.207829 0.978165i \(-0.433360\pi\)
0.207829 + 0.978165i \(0.433360\pi\)
\(462\) 0 0
\(463\) −6107.19 −0.613014 −0.306507 0.951868i \(-0.599160\pi\)
−0.306507 + 0.951868i \(0.599160\pi\)
\(464\) −1749.54 −0.175043
\(465\) 0 0
\(466\) 9714.53 0.965701
\(467\) 1409.31 0.139647 0.0698235 0.997559i \(-0.477756\pi\)
0.0698235 + 0.997559i \(0.477756\pi\)
\(468\) 0 0
\(469\) −1004.69 −0.0989172
\(470\) 2753.44 0.270227
\(471\) 0 0
\(472\) −13131.7 −1.28059
\(473\) −25447.7 −2.47375
\(474\) 0 0
\(475\) 1970.87 0.190378
\(476\) 1634.99 0.157437
\(477\) 0 0
\(478\) 12572.8 1.20307
\(479\) −12633.9 −1.20513 −0.602566 0.798069i \(-0.705855\pi\)
−0.602566 + 0.798069i \(0.705855\pi\)
\(480\) 0 0
\(481\) 7023.84 0.665821
\(482\) 17987.1 1.69977
\(483\) 0 0
\(484\) 18734.1 1.75940
\(485\) −380.332 −0.0356083
\(486\) 0 0
\(487\) −17024.7 −1.58411 −0.792056 0.610449i \(-0.790989\pi\)
−0.792056 + 0.610449i \(0.790989\pi\)
\(488\) −13696.7 −1.27054
\(489\) 0 0
\(490\) −7639.52 −0.704323
\(491\) 3792.47 0.348578 0.174289 0.984695i \(-0.444237\pi\)
0.174289 + 0.984695i \(0.444237\pi\)
\(492\) 0 0
\(493\) −545.279 −0.0498136
\(494\) 7982.29 0.727004
\(495\) 0 0
\(496\) 18759.2 1.69821
\(497\) 3259.76 0.294206
\(498\) 0 0
\(499\) 6484.19 0.581708 0.290854 0.956767i \(-0.406061\pi\)
0.290854 + 0.956767i \(0.406061\pi\)
\(500\) −1980.76 −0.177164
\(501\) 0 0
\(502\) 22615.6 2.01073
\(503\) 8781.60 0.778434 0.389217 0.921146i \(-0.372746\pi\)
0.389217 + 0.921146i \(0.372746\pi\)
\(504\) 0 0
\(505\) 3267.76 0.287948
\(506\) 1551.51 0.136310
\(507\) 0 0
\(508\) 12910.3 1.12756
\(509\) −21343.3 −1.85860 −0.929299 0.369328i \(-0.879588\pi\)
−0.929299 + 0.369328i \(0.879588\pi\)
\(510\) 0 0
\(511\) −3416.57 −0.295773
\(512\) 19210.3 1.65817
\(513\) 0 0
\(514\) −7861.93 −0.674659
\(515\) −4849.01 −0.414898
\(516\) 0 0
\(517\) −5653.48 −0.480928
\(518\) 9077.28 0.769947
\(519\) 0 0
\(520\) −3972.20 −0.334985
\(521\) −7007.06 −0.589223 −0.294611 0.955617i \(-0.595190\pi\)
−0.294611 + 0.955617i \(0.595190\pi\)
\(522\) 0 0
\(523\) −5901.85 −0.493441 −0.246721 0.969087i \(-0.579353\pi\)
−0.246721 + 0.969087i \(0.579353\pi\)
\(524\) 23672.6 1.97355
\(525\) 0 0
\(526\) −14006.2 −1.16103
\(527\) 5846.70 0.483276
\(528\) 0 0
\(529\) −12126.8 −0.996699
\(530\) 3536.66 0.289854
\(531\) 0 0
\(532\) 6855.08 0.558657
\(533\) 7330.34 0.595707
\(534\) 0 0
\(535\) −6337.64 −0.512149
\(536\) 7014.80 0.565286
\(537\) 0 0
\(538\) −2705.54 −0.216811
\(539\) 15685.8 1.25350
\(540\) 0 0
\(541\) 7826.71 0.621990 0.310995 0.950412i \(-0.399338\pi\)
0.310995 + 0.950412i \(0.399338\pi\)
\(542\) 8916.90 0.706667
\(543\) 0 0
\(544\) 223.997 0.0176540
\(545\) 4040.71 0.317587
\(546\) 0 0
\(547\) 4256.78 0.332737 0.166368 0.986064i \(-0.446796\pi\)
0.166368 + 0.986064i \(0.446796\pi\)
\(548\) 25491.9 1.98716
\(549\) 0 0
\(550\) 6120.21 0.474485
\(551\) −2286.20 −0.176762
\(552\) 0 0
\(553\) −6997.57 −0.538096
\(554\) −7178.38 −0.550506
\(555\) 0 0
\(556\) 817.221 0.0623343
\(557\) 11138.6 0.847324 0.423662 0.905820i \(-0.360744\pi\)
0.423662 + 0.905820i \(0.360744\pi\)
\(558\) 0 0
\(559\) −10525.2 −0.796368
\(560\) −1655.27 −0.124907
\(561\) 0 0
\(562\) 38218.3 2.86858
\(563\) −16458.1 −1.23202 −0.616009 0.787739i \(-0.711252\pi\)
−0.616009 + 0.787739i \(0.711252\pi\)
\(564\) 0 0
\(565\) −6100.48 −0.454246
\(566\) 33190.7 2.46486
\(567\) 0 0
\(568\) −22759.9 −1.68131
\(569\) −2449.68 −0.180485 −0.0902423 0.995920i \(-0.528764\pi\)
−0.0902423 + 0.995920i \(0.528764\pi\)
\(570\) 0 0
\(571\) 156.880 0.0114978 0.00574888 0.999983i \(-0.498170\pi\)
0.00574888 + 0.999983i \(0.498170\pi\)
\(572\) 16471.8 1.20406
\(573\) 0 0
\(574\) 9473.37 0.688869
\(575\) 158.441 0.0114912
\(576\) 0 0
\(577\) −20318.3 −1.46597 −0.732984 0.680246i \(-0.761873\pi\)
−0.732984 + 0.680246i \(0.761873\pi\)
\(578\) 22264.9 1.60225
\(579\) 0 0
\(580\) 2297.68 0.164493
\(581\) 4055.85 0.289613
\(582\) 0 0
\(583\) −7261.62 −0.515859
\(584\) 23854.7 1.69027
\(585\) 0 0
\(586\) 17733.4 1.25010
\(587\) 9510.91 0.668752 0.334376 0.942440i \(-0.391475\pi\)
0.334376 + 0.942440i \(0.391475\pi\)
\(588\) 0 0
\(589\) 24513.6 1.71488
\(590\) 8368.38 0.583934
\(591\) 0 0
\(592\) −20436.1 −1.41878
\(593\) 15977.2 1.10641 0.553207 0.833044i \(-0.313404\pi\)
0.553207 + 0.833044i \(0.313404\pi\)
\(594\) 0 0
\(595\) −515.900 −0.0355459
\(596\) 9639.62 0.662507
\(597\) 0 0
\(598\) 641.707 0.0438819
\(599\) 4002.17 0.272995 0.136498 0.990640i \(-0.456415\pi\)
0.136498 + 0.990640i \(0.456415\pi\)
\(600\) 0 0
\(601\) −1574.81 −0.106885 −0.0534425 0.998571i \(-0.517019\pi\)
−0.0534425 + 0.998571i \(0.517019\pi\)
\(602\) −13602.3 −0.920910
\(603\) 0 0
\(604\) −5412.51 −0.364622
\(605\) −5911.28 −0.397236
\(606\) 0 0
\(607\) −8803.52 −0.588672 −0.294336 0.955702i \(-0.595098\pi\)
−0.294336 + 0.955702i \(0.595098\pi\)
\(608\) 939.156 0.0626444
\(609\) 0 0
\(610\) 8728.44 0.579351
\(611\) −2338.29 −0.154824
\(612\) 0 0
\(613\) 16874.2 1.11181 0.555907 0.831245i \(-0.312371\pi\)
0.555907 + 0.831245i \(0.312371\pi\)
\(614\) 44343.6 2.91460
\(615\) 0 0
\(616\) 10540.3 0.689415
\(617\) −4592.02 −0.299624 −0.149812 0.988715i \(-0.547867\pi\)
−0.149812 + 0.988715i \(0.547867\pi\)
\(618\) 0 0
\(619\) 4982.48 0.323526 0.161763 0.986830i \(-0.448282\pi\)
0.161763 + 0.986830i \(0.448282\pi\)
\(620\) −24636.6 −1.59586
\(621\) 0 0
\(622\) 12978.1 0.836616
\(623\) −4972.30 −0.319761
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 2590.43 0.165391
\(627\) 0 0
\(628\) −5678.88 −0.360847
\(629\) −6369.32 −0.403755
\(630\) 0 0
\(631\) 20584.3 1.29865 0.649325 0.760511i \(-0.275051\pi\)
0.649325 + 0.760511i \(0.275051\pi\)
\(632\) 48857.6 3.07508
\(633\) 0 0
\(634\) 11688.8 0.732213
\(635\) −4073.66 −0.254580
\(636\) 0 0
\(637\) 6487.69 0.403535
\(638\) −7099.45 −0.440548
\(639\) 0 0
\(640\) −12727.9 −0.786115
\(641\) −4840.03 −0.298237 −0.149118 0.988819i \(-0.547644\pi\)
−0.149118 + 0.988819i \(0.547644\pi\)
\(642\) 0 0
\(643\) 1340.16 0.0821941 0.0410970 0.999155i \(-0.486915\pi\)
0.0410970 + 0.999155i \(0.486915\pi\)
\(644\) 551.090 0.0337205
\(645\) 0 0
\(646\) −7238.46 −0.440856
\(647\) −15752.3 −0.957169 −0.478585 0.878041i \(-0.658850\pi\)
−0.478585 + 0.878041i \(0.658850\pi\)
\(648\) 0 0
\(649\) −17182.3 −1.03924
\(650\) 2531.34 0.152750
\(651\) 0 0
\(652\) −26421.1 −1.58701
\(653\) −2290.66 −0.137275 −0.0686373 0.997642i \(-0.521865\pi\)
−0.0686373 + 0.997642i \(0.521865\pi\)
\(654\) 0 0
\(655\) −7469.55 −0.445587
\(656\) −21327.8 −1.26938
\(657\) 0 0
\(658\) −3021.90 −0.179036
\(659\) 3003.49 0.177541 0.0887704 0.996052i \(-0.471706\pi\)
0.0887704 + 0.996052i \(0.471706\pi\)
\(660\) 0 0
\(661\) 8104.71 0.476909 0.238454 0.971154i \(-0.423359\pi\)
0.238454 + 0.971154i \(0.423359\pi\)
\(662\) 38990.4 2.28913
\(663\) 0 0
\(664\) −28318.3 −1.65506
\(665\) −2163.03 −0.126133
\(666\) 0 0
\(667\) −183.791 −0.0106693
\(668\) 29034.7 1.68172
\(669\) 0 0
\(670\) −4470.28 −0.257764
\(671\) −17921.6 −1.03108
\(672\) 0 0
\(673\) 5747.03 0.329170 0.164585 0.986363i \(-0.447371\pi\)
0.164585 + 0.986363i \(0.447371\pi\)
\(674\) −47389.2 −2.70825
\(675\) 0 0
\(676\) −28001.0 −1.59314
\(677\) −25714.2 −1.45979 −0.729895 0.683559i \(-0.760431\pi\)
−0.729895 + 0.683559i \(0.760431\pi\)
\(678\) 0 0
\(679\) 417.415 0.0235919
\(680\) 3602.05 0.203136
\(681\) 0 0
\(682\) 76123.2 4.27406
\(683\) −4007.09 −0.224490 −0.112245 0.993681i \(-0.535804\pi\)
−0.112245 + 0.993681i \(0.535804\pi\)
\(684\) 0 0
\(685\) −8043.62 −0.448658
\(686\) 17575.7 0.978196
\(687\) 0 0
\(688\) 30623.4 1.69696
\(689\) −3003.43 −0.166069
\(690\) 0 0
\(691\) −27863.7 −1.53399 −0.766993 0.641655i \(-0.778248\pi\)
−0.766993 + 0.641655i \(0.778248\pi\)
\(692\) −32243.1 −1.77124
\(693\) 0 0
\(694\) 26926.4 1.47278
\(695\) −257.863 −0.0140738
\(696\) 0 0
\(697\) −6647.26 −0.361238
\(698\) −12311.0 −0.667588
\(699\) 0 0
\(700\) 2173.88 0.117378
\(701\) −12916.0 −0.695906 −0.347953 0.937512i \(-0.613123\pi\)
−0.347953 + 0.937512i \(0.613123\pi\)
\(702\) 0 0
\(703\) −26704.8 −1.43271
\(704\) 27111.8 1.45144
\(705\) 0 0
\(706\) 27937.2 1.48928
\(707\) −3586.37 −0.190777
\(708\) 0 0
\(709\) −30250.8 −1.60239 −0.801193 0.598406i \(-0.795801\pi\)
−0.801193 + 0.598406i \(0.795801\pi\)
\(710\) 14504.1 0.766659
\(711\) 0 0
\(712\) 34716.9 1.82735
\(713\) 1970.68 0.103510
\(714\) 0 0
\(715\) −5197.45 −0.271851
\(716\) 5264.03 0.274757
\(717\) 0 0
\(718\) 31272.1 1.62544
\(719\) −6161.35 −0.319582 −0.159791 0.987151i \(-0.551082\pi\)
−0.159791 + 0.987151i \(0.551082\pi\)
\(720\) 0 0
\(721\) 5321.78 0.274887
\(722\) 3145.29 0.162127
\(723\) 0 0
\(724\) −13364.4 −0.686029
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) −35454.3 −1.80870 −0.904352 0.426786i \(-0.859646\pi\)
−0.904352 + 0.426786i \(0.859646\pi\)
\(728\) 4359.49 0.221941
\(729\) 0 0
\(730\) −15201.7 −0.770742
\(731\) 9544.43 0.482919
\(732\) 0 0
\(733\) −26681.1 −1.34446 −0.672231 0.740342i \(-0.734664\pi\)
−0.672231 + 0.740342i \(0.734664\pi\)
\(734\) −65194.7 −3.27845
\(735\) 0 0
\(736\) 75.5001 0.00378121
\(737\) 9178.57 0.458747
\(738\) 0 0
\(739\) −28886.6 −1.43791 −0.718953 0.695059i \(-0.755378\pi\)
−0.718953 + 0.695059i \(0.755378\pi\)
\(740\) 26838.8 1.33326
\(741\) 0 0
\(742\) −3881.48 −0.192040
\(743\) 16398.0 0.809669 0.404834 0.914390i \(-0.367329\pi\)
0.404834 + 0.914390i \(0.367329\pi\)
\(744\) 0 0
\(745\) −3041.65 −0.149580
\(746\) 6675.64 0.327631
\(747\) 0 0
\(748\) −14936.9 −0.730142
\(749\) 6955.56 0.339320
\(750\) 0 0
\(751\) −5905.21 −0.286930 −0.143465 0.989655i \(-0.545824\pi\)
−0.143465 + 0.989655i \(0.545824\pi\)
\(752\) 6803.33 0.329910
\(753\) 0 0
\(754\) −2936.35 −0.141824
\(755\) 1707.84 0.0823241
\(756\) 0 0
\(757\) −12439.0 −0.597229 −0.298614 0.954374i \(-0.596524\pi\)
−0.298614 + 0.954374i \(0.596524\pi\)
\(758\) −48260.9 −2.31255
\(759\) 0 0
\(760\) 15102.4 0.720818
\(761\) −14270.0 −0.679748 −0.339874 0.940471i \(-0.610384\pi\)
−0.339874 + 0.940471i \(0.610384\pi\)
\(762\) 0 0
\(763\) −4434.68 −0.210414
\(764\) −38645.6 −1.83004
\(765\) 0 0
\(766\) 64584.6 3.04639
\(767\) −7106.66 −0.334559
\(768\) 0 0
\(769\) −15143.9 −0.710147 −0.355074 0.934838i \(-0.615544\pi\)
−0.355074 + 0.934838i \(0.615544\pi\)
\(770\) −6716.94 −0.314366
\(771\) 0 0
\(772\) 64890.1 3.02519
\(773\) 40617.2 1.88991 0.944955 0.327202i \(-0.106106\pi\)
0.944955 + 0.327202i \(0.106106\pi\)
\(774\) 0 0
\(775\) 7773.74 0.360311
\(776\) −2914.42 −0.134822
\(777\) 0 0
\(778\) −41225.1 −1.89973
\(779\) −27870.1 −1.28184
\(780\) 0 0
\(781\) −29780.4 −1.36444
\(782\) −581.910 −0.0266100
\(783\) 0 0
\(784\) −18876.1 −0.859881
\(785\) 1791.89 0.0814718
\(786\) 0 0
\(787\) 43878.2 1.98741 0.993703 0.112048i \(-0.0357412\pi\)
0.993703 + 0.112048i \(0.0357412\pi\)
\(788\) −51131.3 −2.31152
\(789\) 0 0
\(790\) −31135.1 −1.40220
\(791\) 6695.27 0.300956
\(792\) 0 0
\(793\) −7412.43 −0.331933
\(794\) 11077.9 0.495137
\(795\) 0 0
\(796\) −66850.4 −2.97670
\(797\) −14556.0 −0.646925 −0.323463 0.946241i \(-0.604847\pi\)
−0.323463 + 0.946241i \(0.604847\pi\)
\(798\) 0 0
\(799\) 2120.40 0.0938853
\(800\) 297.825 0.0131621
\(801\) 0 0
\(802\) 40501.6 1.78324
\(803\) 31212.9 1.37170
\(804\) 0 0
\(805\) −173.889 −0.00761338
\(806\) 31484.8 1.37593
\(807\) 0 0
\(808\) 25040.3 1.09024
\(809\) 14030.7 0.609755 0.304878 0.952392i \(-0.401384\pi\)
0.304878 + 0.952392i \(0.401384\pi\)
\(810\) 0 0
\(811\) 30195.7 1.30741 0.653707 0.756747i \(-0.273213\pi\)
0.653707 + 0.756747i \(0.273213\pi\)
\(812\) −2521.70 −0.108983
\(813\) 0 0
\(814\) −82927.7 −3.57078
\(815\) 8336.80 0.358313
\(816\) 0 0
\(817\) 40017.2 1.71362
\(818\) −48407.6 −2.06911
\(819\) 0 0
\(820\) 28010.0 1.19287
\(821\) −31237.5 −1.32789 −0.663944 0.747782i \(-0.731119\pi\)
−0.663944 + 0.747782i \(0.731119\pi\)
\(822\) 0 0
\(823\) −22306.9 −0.944798 −0.472399 0.881385i \(-0.656612\pi\)
−0.472399 + 0.881385i \(0.656612\pi\)
\(824\) −37157.1 −1.57091
\(825\) 0 0
\(826\) −9184.30 −0.386880
\(827\) −41561.9 −1.74758 −0.873790 0.486304i \(-0.838345\pi\)
−0.873790 + 0.486304i \(0.838345\pi\)
\(828\) 0 0
\(829\) 42423.6 1.77736 0.888681 0.458527i \(-0.151623\pi\)
0.888681 + 0.458527i \(0.151623\pi\)
\(830\) 18046.2 0.754690
\(831\) 0 0
\(832\) 11213.5 0.467259
\(833\) −5883.13 −0.244704
\(834\) 0 0
\(835\) −9161.51 −0.379697
\(836\) −62626.3 −2.59088
\(837\) 0 0
\(838\) −65104.0 −2.68375
\(839\) 31547.4 1.29814 0.649068 0.760730i \(-0.275159\pi\)
0.649068 + 0.760730i \(0.275159\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 13908.1 0.569247
\(843\) 0 0
\(844\) −44342.5 −1.80845
\(845\) 8835.32 0.359697
\(846\) 0 0
\(847\) 6487.63 0.263185
\(848\) 8738.56 0.353872
\(849\) 0 0
\(850\) −2295.45 −0.0926276
\(851\) −2146.84 −0.0864779
\(852\) 0 0
\(853\) −5030.77 −0.201935 −0.100967 0.994890i \(-0.532194\pi\)
−0.100967 + 0.994890i \(0.532194\pi\)
\(854\) −9579.46 −0.383844
\(855\) 0 0
\(856\) −48564.2 −1.93912
\(857\) 16655.5 0.663875 0.331937 0.943301i \(-0.392298\pi\)
0.331937 + 0.943301i \(0.392298\pi\)
\(858\) 0 0
\(859\) 33206.7 1.31897 0.659486 0.751717i \(-0.270774\pi\)
0.659486 + 0.751717i \(0.270774\pi\)
\(860\) −40218.0 −1.59468
\(861\) 0 0
\(862\) 61869.0 2.44463
\(863\) 12156.5 0.479504 0.239752 0.970834i \(-0.422934\pi\)
0.239752 + 0.970834i \(0.422934\pi\)
\(864\) 0 0
\(865\) 10173.9 0.399909
\(866\) 71029.6 2.78716
\(867\) 0 0
\(868\) 27038.7 1.05732
\(869\) 63928.0 2.49552
\(870\) 0 0
\(871\) 3796.28 0.147683
\(872\) 30963.3 1.20246
\(873\) 0 0
\(874\) −2439.79 −0.0944246
\(875\) −685.938 −0.0265016
\(876\) 0 0
\(877\) 10910.0 0.420075 0.210037 0.977693i \(-0.432641\pi\)
0.210037 + 0.977693i \(0.432641\pi\)
\(878\) −56105.7 −2.15658
\(879\) 0 0
\(880\) 15122.1 0.579281
\(881\) 10796.4 0.412871 0.206435 0.978460i \(-0.433814\pi\)
0.206435 + 0.978460i \(0.433814\pi\)
\(882\) 0 0
\(883\) −23778.3 −0.906232 −0.453116 0.891452i \(-0.649688\pi\)
−0.453116 + 0.891452i \(0.649688\pi\)
\(884\) −6177.94 −0.235053
\(885\) 0 0
\(886\) −54329.4 −2.06008
\(887\) 26229.5 0.992897 0.496449 0.868066i \(-0.334637\pi\)
0.496449 + 0.868066i \(0.334637\pi\)
\(888\) 0 0
\(889\) 4470.85 0.168670
\(890\) −22123.8 −0.833251
\(891\) 0 0
\(892\) 39551.8 1.48463
\(893\) 8890.26 0.333148
\(894\) 0 0
\(895\) −1660.99 −0.0620344
\(896\) 13968.8 0.520833
\(897\) 0 0
\(898\) −32604.4 −1.21161
\(899\) −9017.54 −0.334540
\(900\) 0 0
\(901\) 2723.55 0.100704
\(902\) −86546.3 −3.19476
\(903\) 0 0
\(904\) −46746.9 −1.71989
\(905\) 4216.96 0.154891
\(906\) 0 0
\(907\) 53019.1 1.94098 0.970491 0.241136i \(-0.0775201\pi\)
0.970491 + 0.241136i \(0.0775201\pi\)
\(908\) −54028.1 −1.97465
\(909\) 0 0
\(910\) −2778.14 −0.101203
\(911\) 16886.9 0.614147 0.307074 0.951686i \(-0.400650\pi\)
0.307074 + 0.951686i \(0.400650\pi\)
\(912\) 0 0
\(913\) −37053.2 −1.34314
\(914\) 52870.3 1.91334
\(915\) 0 0
\(916\) 75973.4 2.74043
\(917\) 8197.83 0.295219
\(918\) 0 0
\(919\) −54865.8 −1.96937 −0.984687 0.174330i \(-0.944224\pi\)
−0.984687 + 0.174330i \(0.944224\pi\)
\(920\) 1214.10 0.0435085
\(921\) 0 0
\(922\) −20090.7 −0.717626
\(923\) −12317.2 −0.439249
\(924\) 0 0
\(925\) −8468.62 −0.301023
\(926\) 29822.9 1.05836
\(927\) 0 0
\(928\) −345.477 −0.0122207
\(929\) −27835.6 −0.983053 −0.491527 0.870863i \(-0.663561\pi\)
−0.491527 + 0.870863i \(0.663561\pi\)
\(930\) 0 0
\(931\) −24666.4 −0.868322
\(932\) −31523.5 −1.10793
\(933\) 0 0
\(934\) −6882.01 −0.241099
\(935\) 4713.13 0.164851
\(936\) 0 0
\(937\) −38996.7 −1.35962 −0.679811 0.733387i \(-0.737938\pi\)
−0.679811 + 0.733387i \(0.737938\pi\)
\(938\) 4906.13 0.170779
\(939\) 0 0
\(940\) −8934.87 −0.310025
\(941\) −15686.8 −0.543437 −0.271718 0.962377i \(-0.587592\pi\)
−0.271718 + 0.962377i \(0.587592\pi\)
\(942\) 0 0
\(943\) −2240.52 −0.0773715
\(944\) 20677.0 0.712902
\(945\) 0 0
\(946\) 124267. 4.27090
\(947\) 54527.1 1.87106 0.935530 0.353248i \(-0.114923\pi\)
0.935530 + 0.353248i \(0.114923\pi\)
\(948\) 0 0
\(949\) 12909.7 0.441589
\(950\) −9624.22 −0.328685
\(951\) 0 0
\(952\) −3953.25 −0.134586
\(953\) −48998.7 −1.66550 −0.832752 0.553647i \(-0.813236\pi\)
−0.832752 + 0.553647i \(0.813236\pi\)
\(954\) 0 0
\(955\) 12194.1 0.413184
\(956\) −40798.6 −1.38025
\(957\) 0 0
\(958\) 61694.4 2.08064
\(959\) 8827.88 0.297254
\(960\) 0 0
\(961\) 66898.8 2.24560
\(962\) −34299.1 −1.14953
\(963\) 0 0
\(964\) −58368.0 −1.95011
\(965\) −20475.2 −0.683025
\(966\) 0 0
\(967\) −18866.1 −0.627395 −0.313698 0.949523i \(-0.601568\pi\)
−0.313698 + 0.949523i \(0.601568\pi\)
\(968\) −45297.1 −1.50403
\(969\) 0 0
\(970\) 1857.25 0.0614772
\(971\) −49921.4 −1.64990 −0.824950 0.565205i \(-0.808797\pi\)
−0.824950 + 0.565205i \(0.808797\pi\)
\(972\) 0 0
\(973\) 283.004 0.00932446
\(974\) 83135.6 2.73495
\(975\) 0 0
\(976\) 21566.7 0.707308
\(977\) 2591.52 0.0848618 0.0424309 0.999099i \(-0.486490\pi\)
0.0424309 + 0.999099i \(0.486490\pi\)
\(978\) 0 0
\(979\) 45425.6 1.48295
\(980\) 24790.1 0.808053
\(981\) 0 0
\(982\) −18519.6 −0.601815
\(983\) −18566.6 −0.602423 −0.301211 0.953557i \(-0.597391\pi\)
−0.301211 + 0.953557i \(0.597391\pi\)
\(984\) 0 0
\(985\) 16133.8 0.521894
\(986\) 2662.73 0.0860026
\(987\) 0 0
\(988\) −25902.4 −0.834074
\(989\) 3217.04 0.103434
\(990\) 0 0
\(991\) −34558.3 −1.10775 −0.553875 0.832600i \(-0.686851\pi\)
−0.553875 + 0.832600i \(0.686851\pi\)
\(992\) 3704.34 0.118561
\(993\) 0 0
\(994\) −15918.2 −0.507943
\(995\) 21093.7 0.672076
\(996\) 0 0
\(997\) −11238.6 −0.357000 −0.178500 0.983940i \(-0.557124\pi\)
−0.178500 + 0.983940i \(0.557124\pi\)
\(998\) −31663.9 −1.00431
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.n.1.1 7
3.2 odd 2 435.4.a.i.1.7 7
15.14 odd 2 2175.4.a.n.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.i.1.7 7 3.2 odd 2
1305.4.a.n.1.1 7 1.1 even 1 trivial
2175.4.a.n.1.1 7 15.14 odd 2