Properties

Label 1305.4.a.m.1.7
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(5.12367\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.12367 q^{2} +18.2520 q^{4} +5.00000 q^{5} -21.7657 q^{7} +52.5281 q^{8} +25.6184 q^{10} -57.1430 q^{11} -41.2271 q^{13} -111.520 q^{14} +123.120 q^{16} -73.0149 q^{17} -0.658616 q^{19} +91.2602 q^{20} -292.782 q^{22} +96.1672 q^{23} +25.0000 q^{25} -211.234 q^{26} -397.267 q^{28} +29.0000 q^{29} -2.01051 q^{31} +210.604 q^{32} -374.104 q^{34} -108.828 q^{35} -315.774 q^{37} -3.37453 q^{38} +262.640 q^{40} -219.873 q^{41} +81.2960 q^{43} -1042.98 q^{44} +492.730 q^{46} -440.820 q^{47} +130.744 q^{49} +128.092 q^{50} -752.479 q^{52} -65.8584 q^{53} -285.715 q^{55} -1143.31 q^{56} +148.587 q^{58} +551.520 q^{59} -149.536 q^{61} -10.3012 q^{62} +94.1041 q^{64} -206.136 q^{65} -888.233 q^{67} -1332.67 q^{68} -557.601 q^{70} +570.702 q^{71} +664.264 q^{73} -1617.92 q^{74} -12.0211 q^{76} +1243.75 q^{77} +221.956 q^{79} +615.602 q^{80} -1126.56 q^{82} +740.432 q^{83} -365.074 q^{85} +416.534 q^{86} -3001.61 q^{88} +895.415 q^{89} +897.336 q^{91} +1755.25 q^{92} -2258.62 q^{94} -3.29308 q^{95} -705.666 q^{97} +669.888 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 15 q^{4} + 35 q^{5} - 37 q^{7} + 36 q^{8} + 5 q^{10} + 11 q^{11} - 133 q^{13} + 75 q^{14} - 53 q^{16} - 21 q^{17} - 170 q^{19} + 75 q^{20} - 369 q^{22} + 68 q^{23} + 175 q^{25} - 181 q^{26}+ \cdots - 1068 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.12367 1.81149 0.905746 0.423821i \(-0.139311\pi\)
0.905746 + 0.423821i \(0.139311\pi\)
\(3\) 0 0
\(4\) 18.2520 2.28150
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −21.7657 −1.17523 −0.587617 0.809139i \(-0.699934\pi\)
−0.587617 + 0.809139i \(0.699934\pi\)
\(8\) 52.5281 2.32143
\(9\) 0 0
\(10\) 25.6184 0.810124
\(11\) −57.1430 −1.56630 −0.783148 0.621835i \(-0.786387\pi\)
−0.783148 + 0.621835i \(0.786387\pi\)
\(12\) 0 0
\(13\) −41.2271 −0.879565 −0.439783 0.898104i \(-0.644945\pi\)
−0.439783 + 0.898104i \(0.644945\pi\)
\(14\) −111.520 −2.12893
\(15\) 0 0
\(16\) 123.120 1.92376
\(17\) −73.0149 −1.04169 −0.520844 0.853652i \(-0.674383\pi\)
−0.520844 + 0.853652i \(0.674383\pi\)
\(18\) 0 0
\(19\) −0.658616 −0.00795246 −0.00397623 0.999992i \(-0.501266\pi\)
−0.00397623 + 0.999992i \(0.501266\pi\)
\(20\) 91.2602 1.02032
\(21\) 0 0
\(22\) −292.782 −2.83733
\(23\) 96.1672 0.871837 0.435919 0.899986i \(-0.356424\pi\)
0.435919 + 0.899986i \(0.356424\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −211.234 −1.59333
\(27\) 0 0
\(28\) −397.267 −2.68130
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −2.01051 −0.0116483 −0.00582415 0.999983i \(-0.501854\pi\)
−0.00582415 + 0.999983i \(0.501854\pi\)
\(32\) 210.604 1.16343
\(33\) 0 0
\(34\) −374.104 −1.88701
\(35\) −108.828 −0.525581
\(36\) 0 0
\(37\) −315.774 −1.40305 −0.701526 0.712644i \(-0.747498\pi\)
−0.701526 + 0.712644i \(0.747498\pi\)
\(38\) −3.37453 −0.0144058
\(39\) 0 0
\(40\) 262.640 1.03818
\(41\) −219.873 −0.837522 −0.418761 0.908097i \(-0.637535\pi\)
−0.418761 + 0.908097i \(0.637535\pi\)
\(42\) 0 0
\(43\) 81.2960 0.288315 0.144157 0.989555i \(-0.453953\pi\)
0.144157 + 0.989555i \(0.453953\pi\)
\(44\) −1042.98 −3.57351
\(45\) 0 0
\(46\) 492.730 1.57933
\(47\) −440.820 −1.36809 −0.684044 0.729441i \(-0.739780\pi\)
−0.684044 + 0.729441i \(0.739780\pi\)
\(48\) 0 0
\(49\) 130.744 0.381177
\(50\) 128.092 0.362298
\(51\) 0 0
\(52\) −752.479 −2.00673
\(53\) −65.8584 −0.170686 −0.0853429 0.996352i \(-0.527199\pi\)
−0.0853429 + 0.996352i \(0.527199\pi\)
\(54\) 0 0
\(55\) −285.715 −0.700469
\(56\) −1143.31 −2.72823
\(57\) 0 0
\(58\) 148.587 0.336386
\(59\) 551.520 1.21698 0.608489 0.793562i \(-0.291776\pi\)
0.608489 + 0.793562i \(0.291776\pi\)
\(60\) 0 0
\(61\) −149.536 −0.313871 −0.156936 0.987609i \(-0.550161\pi\)
−0.156936 + 0.987609i \(0.550161\pi\)
\(62\) −10.3012 −0.0211008
\(63\) 0 0
\(64\) 94.1041 0.183797
\(65\) −206.136 −0.393354
\(66\) 0 0
\(67\) −888.233 −1.61963 −0.809813 0.586689i \(-0.800431\pi\)
−0.809813 + 0.586689i \(0.800431\pi\)
\(68\) −1332.67 −2.37662
\(69\) 0 0
\(70\) −557.601 −0.952086
\(71\) 570.702 0.953942 0.476971 0.878919i \(-0.341735\pi\)
0.476971 + 0.878919i \(0.341735\pi\)
\(72\) 0 0
\(73\) 664.264 1.06502 0.532509 0.846425i \(-0.321249\pi\)
0.532509 + 0.846425i \(0.321249\pi\)
\(74\) −1617.92 −2.54162
\(75\) 0 0
\(76\) −12.0211 −0.0181436
\(77\) 1243.75 1.84077
\(78\) 0 0
\(79\) 221.956 0.316102 0.158051 0.987431i \(-0.449479\pi\)
0.158051 + 0.987431i \(0.449479\pi\)
\(80\) 615.602 0.860330
\(81\) 0 0
\(82\) −1126.56 −1.51716
\(83\) 740.432 0.979192 0.489596 0.871949i \(-0.337144\pi\)
0.489596 + 0.871949i \(0.337144\pi\)
\(84\) 0 0
\(85\) −365.074 −0.465857
\(86\) 416.534 0.522280
\(87\) 0 0
\(88\) −3001.61 −3.63605
\(89\) 895.415 1.06645 0.533224 0.845974i \(-0.320980\pi\)
0.533224 + 0.845974i \(0.320980\pi\)
\(90\) 0 0
\(91\) 897.336 1.03370
\(92\) 1755.25 1.98910
\(93\) 0 0
\(94\) −2258.62 −2.47828
\(95\) −3.29308 −0.00355645
\(96\) 0 0
\(97\) −705.666 −0.738655 −0.369327 0.929299i \(-0.620412\pi\)
−0.369327 + 0.929299i \(0.620412\pi\)
\(98\) 669.888 0.690499
\(99\) 0 0
\(100\) 456.301 0.456301
\(101\) 1290.41 1.27129 0.635647 0.771980i \(-0.280734\pi\)
0.635647 + 0.771980i \(0.280734\pi\)
\(102\) 0 0
\(103\) 897.912 0.858970 0.429485 0.903074i \(-0.358695\pi\)
0.429485 + 0.903074i \(0.358695\pi\)
\(104\) −2165.58 −2.04185
\(105\) 0 0
\(106\) −337.437 −0.309196
\(107\) 2080.08 1.87934 0.939669 0.342086i \(-0.111133\pi\)
0.939669 + 0.342086i \(0.111133\pi\)
\(108\) 0 0
\(109\) −1386.38 −1.21827 −0.609133 0.793068i \(-0.708482\pi\)
−0.609133 + 0.793068i \(0.708482\pi\)
\(110\) −1463.91 −1.26889
\(111\) 0 0
\(112\) −2679.80 −2.26087
\(113\) −477.103 −0.397187 −0.198593 0.980082i \(-0.563637\pi\)
−0.198593 + 0.980082i \(0.563637\pi\)
\(114\) 0 0
\(115\) 480.836 0.389897
\(116\) 529.309 0.423665
\(117\) 0 0
\(118\) 2825.81 2.20455
\(119\) 1589.22 1.22423
\(120\) 0 0
\(121\) 1934.32 1.45328
\(122\) −766.174 −0.568575
\(123\) 0 0
\(124\) −36.6958 −0.0265757
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1357.50 −0.948495 −0.474247 0.880392i \(-0.657280\pi\)
−0.474247 + 0.880392i \(0.657280\pi\)
\(128\) −1202.67 −0.830488
\(129\) 0 0
\(130\) −1056.17 −0.712557
\(131\) −2994.84 −1.99741 −0.998704 0.0508962i \(-0.983792\pi\)
−0.998704 + 0.0508962i \(0.983792\pi\)
\(132\) 0 0
\(133\) 14.3352 0.00934601
\(134\) −4551.01 −2.93394
\(135\) 0 0
\(136\) −3835.33 −2.41821
\(137\) 1067.77 0.665878 0.332939 0.942948i \(-0.391960\pi\)
0.332939 + 0.942948i \(0.391960\pi\)
\(138\) 0 0
\(139\) −843.314 −0.514597 −0.257298 0.966332i \(-0.582832\pi\)
−0.257298 + 0.966332i \(0.582832\pi\)
\(140\) −1986.34 −1.19912
\(141\) 0 0
\(142\) 2924.09 1.72806
\(143\) 2355.84 1.37766
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 3403.47 1.92927
\(147\) 0 0
\(148\) −5763.52 −3.20107
\(149\) −1273.71 −0.700313 −0.350157 0.936691i \(-0.613872\pi\)
−0.350157 + 0.936691i \(0.613872\pi\)
\(150\) 0 0
\(151\) −3030.58 −1.63328 −0.816639 0.577149i \(-0.804165\pi\)
−0.816639 + 0.577149i \(0.804165\pi\)
\(152\) −34.5958 −0.0184611
\(153\) 0 0
\(154\) 6372.59 3.33453
\(155\) −10.0525 −0.00520928
\(156\) 0 0
\(157\) −1513.57 −0.769399 −0.384700 0.923042i \(-0.625695\pi\)
−0.384700 + 0.923042i \(0.625695\pi\)
\(158\) 1137.23 0.572616
\(159\) 0 0
\(160\) 1053.02 0.520304
\(161\) −2093.14 −1.02461
\(162\) 0 0
\(163\) −3134.88 −1.50640 −0.753200 0.657792i \(-0.771491\pi\)
−0.753200 + 0.657792i \(0.771491\pi\)
\(164\) −4013.13 −1.91081
\(165\) 0 0
\(166\) 3793.73 1.77380
\(167\) −703.416 −0.325940 −0.162970 0.986631i \(-0.552107\pi\)
−0.162970 + 0.986631i \(0.552107\pi\)
\(168\) 0 0
\(169\) −497.323 −0.226365
\(170\) −1870.52 −0.843897
\(171\) 0 0
\(172\) 1483.82 0.657791
\(173\) 1699.75 0.746993 0.373497 0.927632i \(-0.378159\pi\)
0.373497 + 0.927632i \(0.378159\pi\)
\(174\) 0 0
\(175\) −544.141 −0.235047
\(176\) −7035.47 −3.01317
\(177\) 0 0
\(178\) 4587.81 1.93186
\(179\) 1616.87 0.675143 0.337572 0.941300i \(-0.390394\pi\)
0.337572 + 0.941300i \(0.390394\pi\)
\(180\) 0 0
\(181\) 790.412 0.324590 0.162295 0.986742i \(-0.448110\pi\)
0.162295 + 0.986742i \(0.448110\pi\)
\(182\) 4597.65 1.87253
\(183\) 0 0
\(184\) 5051.48 2.02391
\(185\) −1578.87 −0.627464
\(186\) 0 0
\(187\) 4172.29 1.63159
\(188\) −8045.85 −3.12130
\(189\) 0 0
\(190\) −16.8727 −0.00644248
\(191\) 2966.34 1.12375 0.561877 0.827221i \(-0.310079\pi\)
0.561877 + 0.827221i \(0.310079\pi\)
\(192\) 0 0
\(193\) −1871.55 −0.698018 −0.349009 0.937119i \(-0.613482\pi\)
−0.349009 + 0.937119i \(0.613482\pi\)
\(194\) −3615.60 −1.33807
\(195\) 0 0
\(196\) 2386.34 0.869656
\(197\) 1765.75 0.638603 0.319301 0.947653i \(-0.396552\pi\)
0.319301 + 0.947653i \(0.396552\pi\)
\(198\) 0 0
\(199\) −153.070 −0.0545268 −0.0272634 0.999628i \(-0.508679\pi\)
−0.0272634 + 0.999628i \(0.508679\pi\)
\(200\) 1313.20 0.464287
\(201\) 0 0
\(202\) 6611.64 2.30294
\(203\) −631.204 −0.218236
\(204\) 0 0
\(205\) −1099.37 −0.374551
\(206\) 4600.61 1.55602
\(207\) 0 0
\(208\) −5075.90 −1.69207
\(209\) 37.6353 0.0124559
\(210\) 0 0
\(211\) 5632.85 1.83783 0.918913 0.394460i \(-0.129068\pi\)
0.918913 + 0.394460i \(0.129068\pi\)
\(212\) −1202.05 −0.389420
\(213\) 0 0
\(214\) 10657.7 3.40440
\(215\) 406.480 0.128938
\(216\) 0 0
\(217\) 43.7600 0.0136895
\(218\) −7103.35 −2.20688
\(219\) 0 0
\(220\) −5214.88 −1.59812
\(221\) 3010.19 0.916233
\(222\) 0 0
\(223\) −2962.89 −0.889730 −0.444865 0.895598i \(-0.646748\pi\)
−0.444865 + 0.895598i \(0.646748\pi\)
\(224\) −4583.94 −1.36731
\(225\) 0 0
\(226\) −2444.52 −0.719501
\(227\) 1006.81 0.294381 0.147190 0.989108i \(-0.452977\pi\)
0.147190 + 0.989108i \(0.452977\pi\)
\(228\) 0 0
\(229\) −1297.30 −0.374359 −0.187179 0.982326i \(-0.559935\pi\)
−0.187179 + 0.982326i \(0.559935\pi\)
\(230\) 2463.65 0.706296
\(231\) 0 0
\(232\) 1523.31 0.431080
\(233\) 1649.87 0.463891 0.231946 0.972729i \(-0.425491\pi\)
0.231946 + 0.972729i \(0.425491\pi\)
\(234\) 0 0
\(235\) −2204.10 −0.611828
\(236\) 10066.4 2.77654
\(237\) 0 0
\(238\) 8142.63 2.21768
\(239\) −5704.40 −1.54388 −0.771939 0.635696i \(-0.780713\pi\)
−0.771939 + 0.635696i \(0.780713\pi\)
\(240\) 0 0
\(241\) 7233.99 1.93354 0.966768 0.255657i \(-0.0822916\pi\)
0.966768 + 0.255657i \(0.0822916\pi\)
\(242\) 9910.83 2.63261
\(243\) 0 0
\(244\) −2729.34 −0.716098
\(245\) 653.718 0.170467
\(246\) 0 0
\(247\) 27.1528 0.00699471
\(248\) −105.608 −0.0270408
\(249\) 0 0
\(250\) 640.459 0.162025
\(251\) −5887.94 −1.48065 −0.740326 0.672248i \(-0.765329\pi\)
−0.740326 + 0.672248i \(0.765329\pi\)
\(252\) 0 0
\(253\) −5495.28 −1.36556
\(254\) −6955.40 −1.71819
\(255\) 0 0
\(256\) −6914.95 −1.68822
\(257\) −5751.33 −1.39595 −0.697973 0.716124i \(-0.745914\pi\)
−0.697973 + 0.716124i \(0.745914\pi\)
\(258\) 0 0
\(259\) 6873.03 1.64892
\(260\) −3762.39 −0.897438
\(261\) 0 0
\(262\) −15344.6 −3.61829
\(263\) −5196.53 −1.21837 −0.609186 0.793027i \(-0.708504\pi\)
−0.609186 + 0.793027i \(0.708504\pi\)
\(264\) 0 0
\(265\) −329.292 −0.0763330
\(266\) 73.4489 0.0169302
\(267\) 0 0
\(268\) −16212.1 −3.69518
\(269\) 7201.66 1.63232 0.816158 0.577829i \(-0.196100\pi\)
0.816158 + 0.577829i \(0.196100\pi\)
\(270\) 0 0
\(271\) −1510.97 −0.338690 −0.169345 0.985557i \(-0.554165\pi\)
−0.169345 + 0.985557i \(0.554165\pi\)
\(272\) −8989.62 −2.00396
\(273\) 0 0
\(274\) 5470.88 1.20623
\(275\) −1428.57 −0.313259
\(276\) 0 0
\(277\) 6906.59 1.49811 0.749056 0.662507i \(-0.230507\pi\)
0.749056 + 0.662507i \(0.230507\pi\)
\(278\) −4320.87 −0.932188
\(279\) 0 0
\(280\) −5716.54 −1.22010
\(281\) 5553.49 1.17898 0.589490 0.807776i \(-0.299329\pi\)
0.589490 + 0.807776i \(0.299329\pi\)
\(282\) 0 0
\(283\) −906.811 −0.190475 −0.0952373 0.995455i \(-0.530361\pi\)
−0.0952373 + 0.995455i \(0.530361\pi\)
\(284\) 10416.5 2.17642
\(285\) 0 0
\(286\) 12070.6 2.49562
\(287\) 4785.68 0.984285
\(288\) 0 0
\(289\) 418.172 0.0851154
\(290\) 742.933 0.150436
\(291\) 0 0
\(292\) 12124.2 2.42984
\(293\) −478.454 −0.0953979 −0.0476989 0.998862i \(-0.515189\pi\)
−0.0476989 + 0.998862i \(0.515189\pi\)
\(294\) 0 0
\(295\) 2757.60 0.544249
\(296\) −16587.0 −3.25709
\(297\) 0 0
\(298\) −6526.09 −1.26861
\(299\) −3964.70 −0.766838
\(300\) 0 0
\(301\) −1769.46 −0.338837
\(302\) −15527.7 −2.95867
\(303\) 0 0
\(304\) −81.0890 −0.0152986
\(305\) −747.680 −0.140367
\(306\) 0 0
\(307\) −8071.13 −1.50047 −0.750235 0.661172i \(-0.770059\pi\)
−0.750235 + 0.661172i \(0.770059\pi\)
\(308\) 22701.0 4.19971
\(309\) 0 0
\(310\) −51.5059 −0.00943657
\(311\) 2191.99 0.399667 0.199834 0.979830i \(-0.435960\pi\)
0.199834 + 0.979830i \(0.435960\pi\)
\(312\) 0 0
\(313\) 10935.0 1.97471 0.987353 0.158535i \(-0.0506771\pi\)
0.987353 + 0.158535i \(0.0506771\pi\)
\(314\) −7755.02 −1.39376
\(315\) 0 0
\(316\) 4051.15 0.721187
\(317\) −8640.32 −1.53088 −0.765440 0.643508i \(-0.777478\pi\)
−0.765440 + 0.643508i \(0.777478\pi\)
\(318\) 0 0
\(319\) −1657.15 −0.290854
\(320\) 470.520 0.0821965
\(321\) 0 0
\(322\) −10724.6 −1.85608
\(323\) 48.0887 0.00828399
\(324\) 0 0
\(325\) −1030.68 −0.175913
\(326\) −16062.1 −2.72883
\(327\) 0 0
\(328\) −11549.5 −1.94425
\(329\) 9594.72 1.60782
\(330\) 0 0
\(331\) −10031.0 −1.66571 −0.832857 0.553488i \(-0.813297\pi\)
−0.832857 + 0.553488i \(0.813297\pi\)
\(332\) 13514.4 2.23403
\(333\) 0 0
\(334\) −3604.07 −0.590437
\(335\) −4441.16 −0.724318
\(336\) 0 0
\(337\) 2538.16 0.410274 0.205137 0.978733i \(-0.434236\pi\)
0.205137 + 0.978733i \(0.434236\pi\)
\(338\) −2548.12 −0.410058
\(339\) 0 0
\(340\) −6663.35 −1.06286
\(341\) 114.886 0.0182447
\(342\) 0 0
\(343\) 4619.90 0.727263
\(344\) 4270.32 0.669304
\(345\) 0 0
\(346\) 8708.98 1.35317
\(347\) −8139.07 −1.25916 −0.629579 0.776936i \(-0.716773\pi\)
−0.629579 + 0.776936i \(0.716773\pi\)
\(348\) 0 0
\(349\) 3054.95 0.468561 0.234280 0.972169i \(-0.424727\pi\)
0.234280 + 0.972169i \(0.424727\pi\)
\(350\) −2788.00 −0.425786
\(351\) 0 0
\(352\) −12034.6 −1.82228
\(353\) 4993.98 0.752982 0.376491 0.926420i \(-0.377131\pi\)
0.376491 + 0.926420i \(0.377131\pi\)
\(354\) 0 0
\(355\) 2853.51 0.426616
\(356\) 16343.1 2.43310
\(357\) 0 0
\(358\) 8284.32 1.22302
\(359\) 3701.99 0.544245 0.272122 0.962263i \(-0.412274\pi\)
0.272122 + 0.962263i \(0.412274\pi\)
\(360\) 0 0
\(361\) −6858.57 −0.999937
\(362\) 4049.81 0.587993
\(363\) 0 0
\(364\) 16378.2 2.35838
\(365\) 3321.32 0.476290
\(366\) 0 0
\(367\) −1936.81 −0.275478 −0.137739 0.990469i \(-0.543984\pi\)
−0.137739 + 0.990469i \(0.543984\pi\)
\(368\) 11840.1 1.67720
\(369\) 0 0
\(370\) −8089.61 −1.13665
\(371\) 1433.45 0.200596
\(372\) 0 0
\(373\) 12540.1 1.74075 0.870376 0.492387i \(-0.163876\pi\)
0.870376 + 0.492387i \(0.163876\pi\)
\(374\) 21377.4 2.95562
\(375\) 0 0
\(376\) −23155.4 −3.17593
\(377\) −1195.59 −0.163331
\(378\) 0 0
\(379\) 7644.03 1.03601 0.518005 0.855378i \(-0.326675\pi\)
0.518005 + 0.855378i \(0.326675\pi\)
\(380\) −60.1054 −0.00811405
\(381\) 0 0
\(382\) 15198.6 2.03567
\(383\) −13834.6 −1.84574 −0.922868 0.385115i \(-0.874162\pi\)
−0.922868 + 0.385115i \(0.874162\pi\)
\(384\) 0 0
\(385\) 6218.77 0.823215
\(386\) −9589.24 −1.26445
\(387\) 0 0
\(388\) −12879.8 −1.68524
\(389\) 14818.0 1.93137 0.965684 0.259719i \(-0.0836298\pi\)
0.965684 + 0.259719i \(0.0836298\pi\)
\(390\) 0 0
\(391\) −7021.64 −0.908183
\(392\) 6867.71 0.884877
\(393\) 0 0
\(394\) 9047.14 1.15682
\(395\) 1109.78 0.141365
\(396\) 0 0
\(397\) −2846.02 −0.359792 −0.179896 0.983686i \(-0.557576\pi\)
−0.179896 + 0.983686i \(0.557576\pi\)
\(398\) −784.281 −0.0987750
\(399\) 0 0
\(400\) 3078.01 0.384751
\(401\) −7701.88 −0.959136 −0.479568 0.877505i \(-0.659207\pi\)
−0.479568 + 0.877505i \(0.659207\pi\)
\(402\) 0 0
\(403\) 82.8874 0.0102454
\(404\) 23552.6 2.90046
\(405\) 0 0
\(406\) −3234.08 −0.395332
\(407\) 18044.3 2.19759
\(408\) 0 0
\(409\) −10969.5 −1.32618 −0.663088 0.748541i \(-0.730755\pi\)
−0.663088 + 0.748541i \(0.730755\pi\)
\(410\) −5632.79 −0.678497
\(411\) 0 0
\(412\) 16388.7 1.95974
\(413\) −12004.2 −1.43024
\(414\) 0 0
\(415\) 3702.16 0.437908
\(416\) −8682.61 −1.02332
\(417\) 0 0
\(418\) 192.831 0.0225638
\(419\) 10760.9 1.25467 0.627335 0.778750i \(-0.284146\pi\)
0.627335 + 0.778750i \(0.284146\pi\)
\(420\) 0 0
\(421\) −3562.20 −0.412378 −0.206189 0.978512i \(-0.566106\pi\)
−0.206189 + 0.978512i \(0.566106\pi\)
\(422\) 28860.9 3.32921
\(423\) 0 0
\(424\) −3459.41 −0.396236
\(425\) −1825.37 −0.208338
\(426\) 0 0
\(427\) 3254.75 0.368872
\(428\) 37965.7 4.28772
\(429\) 0 0
\(430\) 2082.67 0.233571
\(431\) 1086.78 0.121458 0.0607290 0.998154i \(-0.480657\pi\)
0.0607290 + 0.998154i \(0.480657\pi\)
\(432\) 0 0
\(433\) 4185.80 0.464565 0.232282 0.972648i \(-0.425381\pi\)
0.232282 + 0.972648i \(0.425381\pi\)
\(434\) 224.212 0.0247984
\(435\) 0 0
\(436\) −25304.2 −2.77948
\(437\) −63.3372 −0.00693325
\(438\) 0 0
\(439\) 3960.69 0.430600 0.215300 0.976548i \(-0.430927\pi\)
0.215300 + 0.976548i \(0.430927\pi\)
\(440\) −15008.1 −1.62609
\(441\) 0 0
\(442\) 15423.3 1.65975
\(443\) −1695.58 −0.181850 −0.0909250 0.995858i \(-0.528982\pi\)
−0.0909250 + 0.995858i \(0.528982\pi\)
\(444\) 0 0
\(445\) 4477.07 0.476930
\(446\) −15180.9 −1.61174
\(447\) 0 0
\(448\) −2048.24 −0.216005
\(449\) −655.044 −0.0688495 −0.0344248 0.999407i \(-0.510960\pi\)
−0.0344248 + 0.999407i \(0.510960\pi\)
\(450\) 0 0
\(451\) 12564.2 1.31181
\(452\) −8708.11 −0.906183
\(453\) 0 0
\(454\) 5158.58 0.533269
\(455\) 4486.68 0.462283
\(456\) 0 0
\(457\) 10691.4 1.09437 0.547183 0.837013i \(-0.315700\pi\)
0.547183 + 0.837013i \(0.315700\pi\)
\(458\) −6646.96 −0.678148
\(459\) 0 0
\(460\) 8776.24 0.889553
\(461\) −15258.6 −1.54157 −0.770783 0.637098i \(-0.780135\pi\)
−0.770783 + 0.637098i \(0.780135\pi\)
\(462\) 0 0
\(463\) −9359.99 −0.939515 −0.469758 0.882795i \(-0.655659\pi\)
−0.469758 + 0.882795i \(0.655659\pi\)
\(464\) 3570.49 0.357233
\(465\) 0 0
\(466\) 8453.40 0.840335
\(467\) −11840.9 −1.17330 −0.586651 0.809840i \(-0.699554\pi\)
−0.586651 + 0.809840i \(0.699554\pi\)
\(468\) 0 0
\(469\) 19333.0 1.90344
\(470\) −11293.1 −1.10832
\(471\) 0 0
\(472\) 28970.3 2.82514
\(473\) −4645.50 −0.451586
\(474\) 0 0
\(475\) −16.4654 −0.00159049
\(476\) 29006.4 2.79308
\(477\) 0 0
\(478\) −29227.5 −2.79672
\(479\) −581.072 −0.0554277 −0.0277139 0.999616i \(-0.508823\pi\)
−0.0277139 + 0.999616i \(0.508823\pi\)
\(480\) 0 0
\(481\) 13018.5 1.23408
\(482\) 37064.6 3.50258
\(483\) 0 0
\(484\) 35305.3 3.31567
\(485\) −3528.33 −0.330336
\(486\) 0 0
\(487\) −5996.94 −0.558003 −0.279001 0.960291i \(-0.590003\pi\)
−0.279001 + 0.960291i \(0.590003\pi\)
\(488\) −7854.84 −0.728631
\(489\) 0 0
\(490\) 3349.44 0.308800
\(491\) −18570.0 −1.70683 −0.853414 0.521234i \(-0.825472\pi\)
−0.853414 + 0.521234i \(0.825472\pi\)
\(492\) 0 0
\(493\) −2117.43 −0.193437
\(494\) 139.122 0.0126709
\(495\) 0 0
\(496\) −247.534 −0.0224085
\(497\) −12421.7 −1.12111
\(498\) 0 0
\(499\) 3462.43 0.310621 0.155310 0.987866i \(-0.450362\pi\)
0.155310 + 0.987866i \(0.450362\pi\)
\(500\) 2281.50 0.204064
\(501\) 0 0
\(502\) −30167.9 −2.68219
\(503\) 2437.40 0.216060 0.108030 0.994148i \(-0.465546\pi\)
0.108030 + 0.994148i \(0.465546\pi\)
\(504\) 0 0
\(505\) 6452.05 0.568540
\(506\) −28156.0 −2.47369
\(507\) 0 0
\(508\) −24777.2 −2.16399
\(509\) 17387.0 1.51407 0.757037 0.653372i \(-0.226646\pi\)
0.757037 + 0.653372i \(0.226646\pi\)
\(510\) 0 0
\(511\) −14458.1 −1.25165
\(512\) −25808.5 −2.22771
\(513\) 0 0
\(514\) −29467.9 −2.52874
\(515\) 4489.56 0.384143
\(516\) 0 0
\(517\) 25189.7 2.14283
\(518\) 35215.1 2.98700
\(519\) 0 0
\(520\) −10827.9 −0.913145
\(521\) 13912.4 1.16989 0.584945 0.811073i \(-0.301116\pi\)
0.584945 + 0.811073i \(0.301116\pi\)
\(522\) 0 0
\(523\) 4178.69 0.349371 0.174686 0.984624i \(-0.444109\pi\)
0.174686 + 0.984624i \(0.444109\pi\)
\(524\) −54661.9 −4.55709
\(525\) 0 0
\(526\) −26625.3 −2.20707
\(527\) 146.797 0.0121339
\(528\) 0 0
\(529\) −2918.86 −0.239900
\(530\) −1687.18 −0.138277
\(531\) 0 0
\(532\) 261.647 0.0213230
\(533\) 9064.73 0.736655
\(534\) 0 0
\(535\) 10400.4 0.840465
\(536\) −46657.1 −3.75985
\(537\) 0 0
\(538\) 36899.0 2.95693
\(539\) −7471.08 −0.597036
\(540\) 0 0
\(541\) 15727.3 1.24985 0.624927 0.780683i \(-0.285129\pi\)
0.624927 + 0.780683i \(0.285129\pi\)
\(542\) −7741.72 −0.613534
\(543\) 0 0
\(544\) −15377.2 −1.21194
\(545\) −6931.89 −0.544825
\(546\) 0 0
\(547\) −17384.0 −1.35884 −0.679420 0.733750i \(-0.737769\pi\)
−0.679420 + 0.733750i \(0.737769\pi\)
\(548\) 19488.9 1.51920
\(549\) 0 0
\(550\) −7319.55 −0.567467
\(551\) −19.0999 −0.00147674
\(552\) 0 0
\(553\) −4831.02 −0.371494
\(554\) 35387.1 2.71382
\(555\) 0 0
\(556\) −15392.2 −1.17405
\(557\) 18853.0 1.43416 0.717080 0.696991i \(-0.245478\pi\)
0.717080 + 0.696991i \(0.245478\pi\)
\(558\) 0 0
\(559\) −3351.60 −0.253592
\(560\) −13399.0 −1.01109
\(561\) 0 0
\(562\) 28454.3 2.13571
\(563\) −6897.37 −0.516323 −0.258161 0.966102i \(-0.583117\pi\)
−0.258161 + 0.966102i \(0.583117\pi\)
\(564\) 0 0
\(565\) −2385.52 −0.177627
\(566\) −4646.20 −0.345043
\(567\) 0 0
\(568\) 29977.9 2.21451
\(569\) −4008.52 −0.295336 −0.147668 0.989037i \(-0.547177\pi\)
−0.147668 + 0.989037i \(0.547177\pi\)
\(570\) 0 0
\(571\) −6259.59 −0.458766 −0.229383 0.973336i \(-0.573671\pi\)
−0.229383 + 0.973336i \(0.573671\pi\)
\(572\) 42998.9 3.14314
\(573\) 0 0
\(574\) 24520.3 1.78302
\(575\) 2404.18 0.174367
\(576\) 0 0
\(577\) −12282.9 −0.886208 −0.443104 0.896470i \(-0.646123\pi\)
−0.443104 + 0.896470i \(0.646123\pi\)
\(578\) 2142.58 0.154186
\(579\) 0 0
\(580\) 2646.54 0.189469
\(581\) −16116.0 −1.15078
\(582\) 0 0
\(583\) 3763.34 0.267344
\(584\) 34892.5 2.47237
\(585\) 0 0
\(586\) −2451.44 −0.172813
\(587\) 3526.91 0.247992 0.123996 0.992283i \(-0.460429\pi\)
0.123996 + 0.992283i \(0.460429\pi\)
\(588\) 0 0
\(589\) 1.32415 9.26327e−5 0
\(590\) 14129.0 0.985903
\(591\) 0 0
\(592\) −38878.2 −2.69913
\(593\) 14783.4 1.02375 0.511875 0.859060i \(-0.328951\pi\)
0.511875 + 0.859060i \(0.328951\pi\)
\(594\) 0 0
\(595\) 7946.08 0.547492
\(596\) −23247.9 −1.59777
\(597\) 0 0
\(598\) −20313.8 −1.38912
\(599\) −23249.3 −1.58588 −0.792940 0.609300i \(-0.791451\pi\)
−0.792940 + 0.609300i \(0.791451\pi\)
\(600\) 0 0
\(601\) −15134.4 −1.02720 −0.513599 0.858031i \(-0.671688\pi\)
−0.513599 + 0.858031i \(0.671688\pi\)
\(602\) −9066.14 −0.613801
\(603\) 0 0
\(604\) −55314.2 −3.72633
\(605\) 9671.60 0.649928
\(606\) 0 0
\(607\) −26346.6 −1.76174 −0.880870 0.473358i \(-0.843042\pi\)
−0.880870 + 0.473358i \(0.843042\pi\)
\(608\) −138.707 −0.00925217
\(609\) 0 0
\(610\) −3830.87 −0.254274
\(611\) 18173.7 1.20332
\(612\) 0 0
\(613\) 3259.35 0.214754 0.107377 0.994218i \(-0.465755\pi\)
0.107377 + 0.994218i \(0.465755\pi\)
\(614\) −41353.9 −2.71809
\(615\) 0 0
\(616\) 65332.0 4.27322
\(617\) 6482.74 0.422990 0.211495 0.977379i \(-0.432167\pi\)
0.211495 + 0.977379i \(0.432167\pi\)
\(618\) 0 0
\(619\) −3720.63 −0.241591 −0.120796 0.992677i \(-0.538545\pi\)
−0.120796 + 0.992677i \(0.538545\pi\)
\(620\) −183.479 −0.0118850
\(621\) 0 0
\(622\) 11231.1 0.723994
\(623\) −19489.3 −1.25333
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 56027.4 3.57717
\(627\) 0 0
\(628\) −27625.6 −1.75539
\(629\) 23056.2 1.46154
\(630\) 0 0
\(631\) −13113.6 −0.827328 −0.413664 0.910430i \(-0.635751\pi\)
−0.413664 + 0.910430i \(0.635751\pi\)
\(632\) 11658.9 0.733809
\(633\) 0 0
\(634\) −44270.2 −2.77318
\(635\) −6787.51 −0.424180
\(636\) 0 0
\(637\) −5390.19 −0.335270
\(638\) −8490.68 −0.526880
\(639\) 0 0
\(640\) −6013.37 −0.371405
\(641\) −25815.2 −1.59070 −0.795352 0.606148i \(-0.792714\pi\)
−0.795352 + 0.606148i \(0.792714\pi\)
\(642\) 0 0
\(643\) 9425.88 0.578103 0.289052 0.957313i \(-0.406660\pi\)
0.289052 + 0.957313i \(0.406660\pi\)
\(644\) −38204.1 −2.33766
\(645\) 0 0
\(646\) 246.391 0.0150064
\(647\) −2734.65 −0.166167 −0.0830836 0.996543i \(-0.526477\pi\)
−0.0830836 + 0.996543i \(0.526477\pi\)
\(648\) 0 0
\(649\) −31515.5 −1.90615
\(650\) −5280.86 −0.318665
\(651\) 0 0
\(652\) −57218.0 −3.43686
\(653\) −602.998 −0.0361365 −0.0180683 0.999837i \(-0.505752\pi\)
−0.0180683 + 0.999837i \(0.505752\pi\)
\(654\) 0 0
\(655\) −14974.2 −0.893268
\(656\) −27070.9 −1.61119
\(657\) 0 0
\(658\) 49160.2 2.91256
\(659\) 23932.8 1.41470 0.707352 0.706862i \(-0.249890\pi\)
0.707352 + 0.706862i \(0.249890\pi\)
\(660\) 0 0
\(661\) −12965.0 −0.762905 −0.381452 0.924388i \(-0.624576\pi\)
−0.381452 + 0.924388i \(0.624576\pi\)
\(662\) −51395.4 −3.01743
\(663\) 0 0
\(664\) 38893.4 2.27313
\(665\) 71.6760 0.00417966
\(666\) 0 0
\(667\) 2788.85 0.161896
\(668\) −12838.8 −0.743633
\(669\) 0 0
\(670\) −22755.1 −1.31210
\(671\) 8544.94 0.491615
\(672\) 0 0
\(673\) −4523.17 −0.259072 −0.129536 0.991575i \(-0.541349\pi\)
−0.129536 + 0.991575i \(0.541349\pi\)
\(674\) 13004.7 0.743208
\(675\) 0 0
\(676\) −9077.16 −0.516452
\(677\) 17685.7 1.00401 0.502007 0.864863i \(-0.332595\pi\)
0.502007 + 0.864863i \(0.332595\pi\)
\(678\) 0 0
\(679\) 15359.3 0.868093
\(680\) −19176.6 −1.08146
\(681\) 0 0
\(682\) 588.640 0.0330501
\(683\) −31140.8 −1.74461 −0.872307 0.488958i \(-0.837377\pi\)
−0.872307 + 0.488958i \(0.837377\pi\)
\(684\) 0 0
\(685\) 5338.83 0.297790
\(686\) 23670.8 1.31743
\(687\) 0 0
\(688\) 10009.2 0.554647
\(689\) 2715.15 0.150129
\(690\) 0 0
\(691\) −18166.3 −1.00012 −0.500058 0.865992i \(-0.666688\pi\)
−0.500058 + 0.865992i \(0.666688\pi\)
\(692\) 31024.0 1.70427
\(693\) 0 0
\(694\) −41701.9 −2.28096
\(695\) −4216.57 −0.230135
\(696\) 0 0
\(697\) 16054.0 0.872437
\(698\) 15652.6 0.848794
\(699\) 0 0
\(700\) −9931.68 −0.536261
\(701\) 11583.6 0.624120 0.312060 0.950062i \(-0.398981\pi\)
0.312060 + 0.950062i \(0.398981\pi\)
\(702\) 0 0
\(703\) 207.974 0.0111577
\(704\) −5377.39 −0.287881
\(705\) 0 0
\(706\) 25587.5 1.36402
\(707\) −28086.6 −1.49407
\(708\) 0 0
\(709\) −20232.9 −1.07174 −0.535869 0.844301i \(-0.680016\pi\)
−0.535869 + 0.844301i \(0.680016\pi\)
\(710\) 14620.5 0.772811
\(711\) 0 0
\(712\) 47034.4 2.47569
\(713\) −193.345 −0.0101554
\(714\) 0 0
\(715\) 11779.2 0.616108
\(716\) 29511.2 1.54034
\(717\) 0 0
\(718\) 18967.8 0.985895
\(719\) −16489.7 −0.855304 −0.427652 0.903943i \(-0.640659\pi\)
−0.427652 + 0.903943i \(0.640659\pi\)
\(720\) 0 0
\(721\) −19543.6 −1.00949
\(722\) −35141.1 −1.81138
\(723\) 0 0
\(724\) 14426.6 0.740554
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) 27239.4 1.38962 0.694810 0.719194i \(-0.255489\pi\)
0.694810 + 0.719194i \(0.255489\pi\)
\(728\) 47135.3 2.39966
\(729\) 0 0
\(730\) 17017.4 0.862796
\(731\) −5935.82 −0.300334
\(732\) 0 0
\(733\) −8145.16 −0.410434 −0.205217 0.978716i \(-0.565790\pi\)
−0.205217 + 0.978716i \(0.565790\pi\)
\(734\) −9923.57 −0.499027
\(735\) 0 0
\(736\) 20253.2 1.01433
\(737\) 50756.3 2.53681
\(738\) 0 0
\(739\) 23926.8 1.19102 0.595508 0.803349i \(-0.296951\pi\)
0.595508 + 0.803349i \(0.296951\pi\)
\(740\) −28817.6 −1.43156
\(741\) 0 0
\(742\) 7344.53 0.363378
\(743\) 2938.74 0.145103 0.0725517 0.997365i \(-0.476886\pi\)
0.0725517 + 0.997365i \(0.476886\pi\)
\(744\) 0 0
\(745\) −6368.57 −0.313190
\(746\) 64251.3 3.15336
\(747\) 0 0
\(748\) 76152.7 3.72249
\(749\) −45274.3 −2.20866
\(750\) 0 0
\(751\) 7625.31 0.370508 0.185254 0.982691i \(-0.440689\pi\)
0.185254 + 0.982691i \(0.440689\pi\)
\(752\) −54273.9 −2.63187
\(753\) 0 0
\(754\) −6125.80 −0.295873
\(755\) −15152.9 −0.730424
\(756\) 0 0
\(757\) −1641.02 −0.0787898 −0.0393949 0.999224i \(-0.512543\pi\)
−0.0393949 + 0.999224i \(0.512543\pi\)
\(758\) 39165.5 1.87672
\(759\) 0 0
\(760\) −172.979 −0.00825606
\(761\) 18376.8 0.875374 0.437687 0.899127i \(-0.355798\pi\)
0.437687 + 0.899127i \(0.355798\pi\)
\(762\) 0 0
\(763\) 30175.4 1.43175
\(764\) 54141.8 2.56385
\(765\) 0 0
\(766\) −70884.2 −3.34354
\(767\) −22737.6 −1.07041
\(768\) 0 0
\(769\) −16315.5 −0.765085 −0.382543 0.923938i \(-0.624951\pi\)
−0.382543 + 0.923938i \(0.624951\pi\)
\(770\) 31863.0 1.49125
\(771\) 0 0
\(772\) −34159.7 −1.59253
\(773\) 1255.81 0.0584325 0.0292163 0.999573i \(-0.490699\pi\)
0.0292163 + 0.999573i \(0.490699\pi\)
\(774\) 0 0
\(775\) −50.2626 −0.00232966
\(776\) −37067.3 −1.71474
\(777\) 0 0
\(778\) 75922.6 3.49866
\(779\) 144.812 0.00666036
\(780\) 0 0
\(781\) −32611.6 −1.49415
\(782\) −35976.6 −1.64517
\(783\) 0 0
\(784\) 16097.2 0.733291
\(785\) −7567.83 −0.344086
\(786\) 0 0
\(787\) −18667.8 −0.845534 −0.422767 0.906238i \(-0.638941\pi\)
−0.422767 + 0.906238i \(0.638941\pi\)
\(788\) 32228.6 1.45697
\(789\) 0 0
\(790\) 5686.16 0.256082
\(791\) 10384.5 0.466788
\(792\) 0 0
\(793\) 6164.94 0.276070
\(794\) −14582.1 −0.651761
\(795\) 0 0
\(796\) −2793.84 −0.124403
\(797\) 7280.08 0.323556 0.161778 0.986827i \(-0.448277\pi\)
0.161778 + 0.986827i \(0.448277\pi\)
\(798\) 0 0
\(799\) 32186.4 1.42512
\(800\) 5265.11 0.232687
\(801\) 0 0
\(802\) −39461.9 −1.73747
\(803\) −37958.1 −1.66813
\(804\) 0 0
\(805\) −10465.7 −0.458221
\(806\) 424.688 0.0185595
\(807\) 0 0
\(808\) 67782.8 2.95122
\(809\) −44097.9 −1.91644 −0.958221 0.286030i \(-0.907664\pi\)
−0.958221 + 0.286030i \(0.907664\pi\)
\(810\) 0 0
\(811\) −17249.1 −0.746854 −0.373427 0.927660i \(-0.621817\pi\)
−0.373427 + 0.927660i \(0.621817\pi\)
\(812\) −11520.8 −0.497905
\(813\) 0 0
\(814\) 92452.9 3.98093
\(815\) −15674.4 −0.673682
\(816\) 0 0
\(817\) −53.5428 −0.00229281
\(818\) −56204.1 −2.40236
\(819\) 0 0
\(820\) −20065.6 −0.854540
\(821\) −11201.7 −0.476177 −0.238088 0.971244i \(-0.576521\pi\)
−0.238088 + 0.971244i \(0.576521\pi\)
\(822\) 0 0
\(823\) 12114.8 0.513118 0.256559 0.966529i \(-0.417411\pi\)
0.256559 + 0.966529i \(0.417411\pi\)
\(824\) 47165.6 1.99404
\(825\) 0 0
\(826\) −61505.5 −2.59086
\(827\) −37074.2 −1.55888 −0.779442 0.626474i \(-0.784498\pi\)
−0.779442 + 0.626474i \(0.784498\pi\)
\(828\) 0 0
\(829\) 611.209 0.0256069 0.0128035 0.999918i \(-0.495924\pi\)
0.0128035 + 0.999918i \(0.495924\pi\)
\(830\) 18968.7 0.793267
\(831\) 0 0
\(832\) −3879.64 −0.161662
\(833\) −9546.23 −0.397068
\(834\) 0 0
\(835\) −3517.08 −0.145765
\(836\) 686.920 0.0284182
\(837\) 0 0
\(838\) 55135.6 2.27282
\(839\) 43306.8 1.78202 0.891010 0.453983i \(-0.149997\pi\)
0.891010 + 0.453983i \(0.149997\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) −18251.6 −0.747020
\(843\) 0 0
\(844\) 102811. 4.19301
\(845\) −2486.62 −0.101233
\(846\) 0 0
\(847\) −42101.7 −1.70795
\(848\) −8108.51 −0.328358
\(849\) 0 0
\(850\) −9352.61 −0.377402
\(851\) −30367.1 −1.22323
\(852\) 0 0
\(853\) −3447.15 −0.138368 −0.0691842 0.997604i \(-0.522040\pi\)
−0.0691842 + 0.997604i \(0.522040\pi\)
\(854\) 16676.3 0.668209
\(855\) 0 0
\(856\) 109263. 4.36276
\(857\) 42416.7 1.69069 0.845347 0.534217i \(-0.179393\pi\)
0.845347 + 0.534217i \(0.179393\pi\)
\(858\) 0 0
\(859\) 29061.5 1.15433 0.577163 0.816629i \(-0.304160\pi\)
0.577163 + 0.816629i \(0.304160\pi\)
\(860\) 7419.09 0.294173
\(861\) 0 0
\(862\) 5568.31 0.220020
\(863\) −20744.0 −0.818232 −0.409116 0.912482i \(-0.634163\pi\)
−0.409116 + 0.912482i \(0.634163\pi\)
\(864\) 0 0
\(865\) 8498.77 0.334066
\(866\) 21446.7 0.841556
\(867\) 0 0
\(868\) 798.708 0.0312326
\(869\) −12683.2 −0.495109
\(870\) 0 0
\(871\) 36619.3 1.42457
\(872\) −72823.8 −2.82812
\(873\) 0 0
\(874\) −324.519 −0.0125595
\(875\) −2720.71 −0.105116
\(876\) 0 0
\(877\) −26329.7 −1.01379 −0.506893 0.862009i \(-0.669206\pi\)
−0.506893 + 0.862009i \(0.669206\pi\)
\(878\) 20293.3 0.780028
\(879\) 0 0
\(880\) −35177.3 −1.34753
\(881\) 7199.40 0.275317 0.137658 0.990480i \(-0.456042\pi\)
0.137658 + 0.990480i \(0.456042\pi\)
\(882\) 0 0
\(883\) 64.9911 0.00247693 0.00123846 0.999999i \(-0.499606\pi\)
0.00123846 + 0.999999i \(0.499606\pi\)
\(884\) 54942.2 2.09039
\(885\) 0 0
\(886\) −8687.61 −0.329420
\(887\) −12243.2 −0.463456 −0.231728 0.972781i \(-0.574438\pi\)
−0.231728 + 0.972781i \(0.574438\pi\)
\(888\) 0 0
\(889\) 29546.9 1.11470
\(890\) 22939.1 0.863954
\(891\) 0 0
\(892\) −54078.8 −2.02992
\(893\) 290.331 0.0108797
\(894\) 0 0
\(895\) 8084.36 0.301933
\(896\) 26177.0 0.976018
\(897\) 0 0
\(898\) −3356.23 −0.124720
\(899\) −58.3047 −0.00216304
\(900\) 0 0
\(901\) 4808.64 0.177801
\(902\) 64374.9 2.37633
\(903\) 0 0
\(904\) −25061.3 −0.922043
\(905\) 3952.06 0.145161
\(906\) 0 0
\(907\) 30619.9 1.12097 0.560483 0.828166i \(-0.310616\pi\)
0.560483 + 0.828166i \(0.310616\pi\)
\(908\) 18376.4 0.671631
\(909\) 0 0
\(910\) 22988.3 0.837422
\(911\) −3062.05 −0.111362 −0.0556808 0.998449i \(-0.517733\pi\)
−0.0556808 + 0.998449i \(0.517733\pi\)
\(912\) 0 0
\(913\) −42310.5 −1.53370
\(914\) 54779.5 1.98243
\(915\) 0 0
\(916\) −23678.4 −0.854101
\(917\) 65184.7 2.34742
\(918\) 0 0
\(919\) −1527.71 −0.0548361 −0.0274180 0.999624i \(-0.508729\pi\)
−0.0274180 + 0.999624i \(0.508729\pi\)
\(920\) 25257.4 0.905121
\(921\) 0 0
\(922\) −78179.9 −2.79253
\(923\) −23528.4 −0.839054
\(924\) 0 0
\(925\) −7894.35 −0.280610
\(926\) −47957.5 −1.70192
\(927\) 0 0
\(928\) 6107.52 0.216044
\(929\) 968.476 0.0342031 0.0171015 0.999854i \(-0.494556\pi\)
0.0171015 + 0.999854i \(0.494556\pi\)
\(930\) 0 0
\(931\) −86.1098 −0.00303129
\(932\) 30113.5 1.05837
\(933\) 0 0
\(934\) −60669.0 −2.12543
\(935\) 20861.4 0.729671
\(936\) 0 0
\(937\) −47051.9 −1.64047 −0.820234 0.572029i \(-0.806157\pi\)
−0.820234 + 0.572029i \(0.806157\pi\)
\(938\) 99055.8 3.44807
\(939\) 0 0
\(940\) −40229.3 −1.39589
\(941\) 31285.3 1.08382 0.541908 0.840438i \(-0.317702\pi\)
0.541908 + 0.840438i \(0.317702\pi\)
\(942\) 0 0
\(943\) −21144.6 −0.730183
\(944\) 67903.3 2.34117
\(945\) 0 0
\(946\) −23802.0 −0.818045
\(947\) 1155.25 0.0396416 0.0198208 0.999804i \(-0.493690\pi\)
0.0198208 + 0.999804i \(0.493690\pi\)
\(948\) 0 0
\(949\) −27385.7 −0.936752
\(950\) −84.3633 −0.00288116
\(951\) 0 0
\(952\) 83478.5 2.84197
\(953\) −8073.69 −0.274431 −0.137215 0.990541i \(-0.543815\pi\)
−0.137215 + 0.990541i \(0.543815\pi\)
\(954\) 0 0
\(955\) 14831.7 0.502558
\(956\) −104117. −3.52236
\(957\) 0 0
\(958\) −2977.22 −0.100407
\(959\) −23240.6 −0.782563
\(960\) 0 0
\(961\) −29787.0 −0.999864
\(962\) 66702.3 2.23552
\(963\) 0 0
\(964\) 132035. 4.41137
\(965\) −9357.77 −0.312163
\(966\) 0 0
\(967\) 30587.8 1.01721 0.508603 0.861001i \(-0.330162\pi\)
0.508603 + 0.861001i \(0.330162\pi\)
\(968\) 101606. 3.37370
\(969\) 0 0
\(970\) −18078.0 −0.598402
\(971\) 37585.6 1.24220 0.621101 0.783730i \(-0.286686\pi\)
0.621101 + 0.783730i \(0.286686\pi\)
\(972\) 0 0
\(973\) 18355.3 0.604772
\(974\) −30726.4 −1.01082
\(975\) 0 0
\(976\) −18410.9 −0.603811
\(977\) −605.357 −0.0198230 −0.00991151 0.999951i \(-0.503155\pi\)
−0.00991151 + 0.999951i \(0.503155\pi\)
\(978\) 0 0
\(979\) −51166.7 −1.67037
\(980\) 11931.7 0.388922
\(981\) 0 0
\(982\) −95146.6 −3.09190
\(983\) −24370.9 −0.790755 −0.395378 0.918519i \(-0.629386\pi\)
−0.395378 + 0.918519i \(0.629386\pi\)
\(984\) 0 0
\(985\) 8828.77 0.285592
\(986\) −10849.0 −0.350409
\(987\) 0 0
\(988\) 495.594 0.0159585
\(989\) 7818.02 0.251363
\(990\) 0 0
\(991\) 53287.8 1.70812 0.854058 0.520178i \(-0.174134\pi\)
0.854058 + 0.520178i \(0.174134\pi\)
\(992\) −423.421 −0.0135520
\(993\) 0 0
\(994\) −63644.7 −2.03087
\(995\) −765.350 −0.0243851
\(996\) 0 0
\(997\) 880.741 0.0279773 0.0139886 0.999902i \(-0.495547\pi\)
0.0139886 + 0.999902i \(0.495547\pi\)
\(998\) 17740.4 0.562687
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.m.1.7 7
3.2 odd 2 435.4.a.j.1.1 7
15.14 odd 2 2175.4.a.m.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.j.1.1 7 3.2 odd 2
1305.4.a.m.1.7 7 1.1 even 1 trivial
2175.4.a.m.1.7 7 15.14 odd 2