Properties

Label 1305.4.a.m.1.1
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.96612\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.96612 q^{2} +7.73008 q^{4} +5.00000 q^{5} -32.8717 q^{7} +1.07055 q^{8} +O(q^{10})\) \(q-3.96612 q^{2} +7.73008 q^{4} +5.00000 q^{5} -32.8717 q^{7} +1.07055 q^{8} -19.8306 q^{10} -12.6426 q^{11} -52.2979 q^{13} +130.373 q^{14} -66.0865 q^{16} +17.2978 q^{17} +48.0486 q^{19} +38.6504 q^{20} +50.1421 q^{22} +130.535 q^{23} +25.0000 q^{25} +207.420 q^{26} -254.100 q^{28} +29.0000 q^{29} +196.614 q^{31} +253.542 q^{32} -68.6049 q^{34} -164.358 q^{35} -119.645 q^{37} -190.566 q^{38} +5.35275 q^{40} +134.133 q^{41} -222.109 q^{43} -97.7283 q^{44} -517.716 q^{46} +569.042 q^{47} +737.546 q^{49} -99.1529 q^{50} -404.267 q^{52} -393.464 q^{53} -63.2131 q^{55} -35.1908 q^{56} -115.017 q^{58} -741.684 q^{59} +758.295 q^{61} -779.796 q^{62} -476.886 q^{64} -261.489 q^{65} -74.7083 q^{67} +133.713 q^{68} +651.864 q^{70} +118.322 q^{71} -498.399 q^{73} +474.525 q^{74} +371.419 q^{76} +415.584 q^{77} +106.032 q^{79} -330.433 q^{80} -531.988 q^{82} -42.5010 q^{83} +86.4888 q^{85} +880.911 q^{86} -13.5346 q^{88} +161.806 q^{89} +1719.12 q^{91} +1009.04 q^{92} -2256.88 q^{94} +240.243 q^{95} +128.506 q^{97} -2925.19 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 15 q^{4} + 35 q^{5} - 37 q^{7} + 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + q^{2} + 15 q^{4} + 35 q^{5} - 37 q^{7} + 36 q^{8} + 5 q^{10} + 11 q^{11} - 133 q^{13} + 75 q^{14} - 53 q^{16} - 21 q^{17} - 170 q^{19} + 75 q^{20} - 369 q^{22} + 68 q^{23} + 175 q^{25} - 181 q^{26} - 637 q^{28} + 203 q^{29} - 480 q^{31} + 779 q^{32} - 897 q^{34} - 185 q^{35} - 1032 q^{37} + 194 q^{38} + 180 q^{40} + 638 q^{41} - 512 q^{43} - 625 q^{44} + 16 q^{46} + 111 q^{47} + 178 q^{49} + 25 q^{50} - 1263 q^{52} - 410 q^{53} + 55 q^{55} - 1174 q^{56} + 29 q^{58} + 426 q^{59} - 1192 q^{61} - 460 q^{62} + 390 q^{64} - 665 q^{65} - 1671 q^{67} - 1509 q^{68} + 375 q^{70} + 1324 q^{71} - 852 q^{73} - 1780 q^{74} - 564 q^{76} + 2107 q^{77} + 366 q^{79} - 265 q^{80} - 318 q^{82} - 470 q^{83} - 105 q^{85} + 2196 q^{86} - 2518 q^{88} - 51 q^{89} - 1297 q^{91} + 684 q^{92} - 1837 q^{94} - 850 q^{95} - 3322 q^{97} - 1068 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.96612 −1.40223 −0.701117 0.713046i \(-0.747315\pi\)
−0.701117 + 0.713046i \(0.747315\pi\)
\(3\) 0 0
\(4\) 7.73008 0.966259
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −32.8717 −1.77490 −0.887451 0.460901i \(-0.847526\pi\)
−0.887451 + 0.460901i \(0.847526\pi\)
\(8\) 1.07055 0.0473121
\(9\) 0 0
\(10\) −19.8306 −0.627098
\(11\) −12.6426 −0.346536 −0.173268 0.984875i \(-0.555433\pi\)
−0.173268 + 0.984875i \(0.555433\pi\)
\(12\) 0 0
\(13\) −52.2979 −1.11576 −0.557878 0.829923i \(-0.688384\pi\)
−0.557878 + 0.829923i \(0.688384\pi\)
\(14\) 130.373 2.48883
\(15\) 0 0
\(16\) −66.0865 −1.03260
\(17\) 17.2978 0.246784 0.123392 0.992358i \(-0.460623\pi\)
0.123392 + 0.992358i \(0.460623\pi\)
\(18\) 0 0
\(19\) 48.0486 0.580163 0.290082 0.957002i \(-0.406318\pi\)
0.290082 + 0.957002i \(0.406318\pi\)
\(20\) 38.6504 0.432124
\(21\) 0 0
\(22\) 50.1421 0.485924
\(23\) 130.535 1.18341 0.591704 0.806156i \(-0.298456\pi\)
0.591704 + 0.806156i \(0.298456\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 207.420 1.56455
\(27\) 0 0
\(28\) −254.100 −1.71502
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) 196.614 1.13913 0.569564 0.821947i \(-0.307112\pi\)
0.569564 + 0.821947i \(0.307112\pi\)
\(32\) 253.542 1.40064
\(33\) 0 0
\(34\) −68.6049 −0.346048
\(35\) −164.358 −0.793761
\(36\) 0 0
\(37\) −119.645 −0.531608 −0.265804 0.964027i \(-0.585637\pi\)
−0.265804 + 0.964027i \(0.585637\pi\)
\(38\) −190.566 −0.813525
\(39\) 0 0
\(40\) 5.35275 0.0211586
\(41\) 134.133 0.510929 0.255465 0.966818i \(-0.417772\pi\)
0.255465 + 0.966818i \(0.417772\pi\)
\(42\) 0 0
\(43\) −222.109 −0.787705 −0.393853 0.919174i \(-0.628858\pi\)
−0.393853 + 0.919174i \(0.628858\pi\)
\(44\) −97.7283 −0.334843
\(45\) 0 0
\(46\) −517.716 −1.65941
\(47\) 569.042 1.76603 0.883013 0.469348i \(-0.155511\pi\)
0.883013 + 0.469348i \(0.155511\pi\)
\(48\) 0 0
\(49\) 737.546 2.15028
\(50\) −99.1529 −0.280447
\(51\) 0 0
\(52\) −404.267 −1.07811
\(53\) −393.464 −1.01974 −0.509872 0.860250i \(-0.670307\pi\)
−0.509872 + 0.860250i \(0.670307\pi\)
\(54\) 0 0
\(55\) −63.2131 −0.154975
\(56\) −35.1908 −0.0839744
\(57\) 0 0
\(58\) −115.017 −0.260388
\(59\) −741.684 −1.63659 −0.818297 0.574795i \(-0.805082\pi\)
−0.818297 + 0.574795i \(0.805082\pi\)
\(60\) 0 0
\(61\) 758.295 1.59163 0.795817 0.605537i \(-0.207042\pi\)
0.795817 + 0.605537i \(0.207042\pi\)
\(62\) −779.796 −1.59732
\(63\) 0 0
\(64\) −476.886 −0.931419
\(65\) −261.489 −0.498981
\(66\) 0 0
\(67\) −74.7083 −0.136225 −0.0681125 0.997678i \(-0.521698\pi\)
−0.0681125 + 0.997678i \(0.521698\pi\)
\(68\) 133.713 0.238457
\(69\) 0 0
\(70\) 651.864 1.11304
\(71\) 118.322 0.197779 0.0988893 0.995098i \(-0.468471\pi\)
0.0988893 + 0.995098i \(0.468471\pi\)
\(72\) 0 0
\(73\) −498.399 −0.799084 −0.399542 0.916715i \(-0.630831\pi\)
−0.399542 + 0.916715i \(0.630831\pi\)
\(74\) 474.525 0.745438
\(75\) 0 0
\(76\) 371.419 0.560588
\(77\) 415.584 0.615067
\(78\) 0 0
\(79\) 106.032 0.151007 0.0755037 0.997146i \(-0.475944\pi\)
0.0755037 + 0.997146i \(0.475944\pi\)
\(80\) −330.433 −0.461794
\(81\) 0 0
\(82\) −531.988 −0.716442
\(83\) −42.5010 −0.0562059 −0.0281030 0.999605i \(-0.508947\pi\)
−0.0281030 + 0.999605i \(0.508947\pi\)
\(84\) 0 0
\(85\) 86.4888 0.110365
\(86\) 880.911 1.10455
\(87\) 0 0
\(88\) −13.5346 −0.0163953
\(89\) 161.806 0.192713 0.0963564 0.995347i \(-0.469281\pi\)
0.0963564 + 0.995347i \(0.469281\pi\)
\(90\) 0 0
\(91\) 1719.12 1.98036
\(92\) 1009.04 1.14348
\(93\) 0 0
\(94\) −2256.88 −2.47638
\(95\) 240.243 0.259457
\(96\) 0 0
\(97\) 128.506 0.134514 0.0672569 0.997736i \(-0.478575\pi\)
0.0672569 + 0.997736i \(0.478575\pi\)
\(98\) −2925.19 −3.01519
\(99\) 0 0
\(100\) 193.252 0.193252
\(101\) 584.973 0.576307 0.288153 0.957584i \(-0.406959\pi\)
0.288153 + 0.957584i \(0.406959\pi\)
\(102\) 0 0
\(103\) −1908.33 −1.82557 −0.912783 0.408446i \(-0.866071\pi\)
−0.912783 + 0.408446i \(0.866071\pi\)
\(104\) −55.9876 −0.0527888
\(105\) 0 0
\(106\) 1560.52 1.42992
\(107\) −646.934 −0.584500 −0.292250 0.956342i \(-0.594404\pi\)
−0.292250 + 0.956342i \(0.594404\pi\)
\(108\) 0 0
\(109\) −1065.19 −0.936028 −0.468014 0.883721i \(-0.655030\pi\)
−0.468014 + 0.883721i \(0.655030\pi\)
\(110\) 250.710 0.217312
\(111\) 0 0
\(112\) 2172.37 1.83277
\(113\) 1368.69 1.13943 0.569713 0.821844i \(-0.307054\pi\)
0.569713 + 0.821844i \(0.307054\pi\)
\(114\) 0 0
\(115\) 652.673 0.529236
\(116\) 224.172 0.179430
\(117\) 0 0
\(118\) 2941.61 2.29489
\(119\) −568.606 −0.438017
\(120\) 0 0
\(121\) −1171.16 −0.879913
\(122\) −3007.49 −2.23184
\(123\) 0 0
\(124\) 1519.84 1.10069
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 2118.32 1.48008 0.740040 0.672562i \(-0.234806\pi\)
0.740040 + 0.672562i \(0.234806\pi\)
\(128\) −136.953 −0.0945704
\(129\) 0 0
\(130\) 1037.10 0.699688
\(131\) 2446.56 1.63173 0.815866 0.578241i \(-0.196260\pi\)
0.815866 + 0.578241i \(0.196260\pi\)
\(132\) 0 0
\(133\) −1579.44 −1.02973
\(134\) 296.302 0.191019
\(135\) 0 0
\(136\) 18.5181 0.0116759
\(137\) −1586.44 −0.989331 −0.494665 0.869084i \(-0.664709\pi\)
−0.494665 + 0.869084i \(0.664709\pi\)
\(138\) 0 0
\(139\) 1793.32 1.09430 0.547150 0.837034i \(-0.315713\pi\)
0.547150 + 0.837034i \(0.315713\pi\)
\(140\) −1270.50 −0.766979
\(141\) 0 0
\(142\) −469.280 −0.277332
\(143\) 661.182 0.386649
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 1976.71 1.12050
\(147\) 0 0
\(148\) −924.863 −0.513671
\(149\) 2640.05 1.45155 0.725777 0.687930i \(-0.241480\pi\)
0.725777 + 0.687930i \(0.241480\pi\)
\(150\) 0 0
\(151\) 1132.79 0.610498 0.305249 0.952273i \(-0.401260\pi\)
0.305249 + 0.952273i \(0.401260\pi\)
\(152\) 51.4385 0.0274487
\(153\) 0 0
\(154\) −1648.25 −0.862468
\(155\) 983.072 0.509434
\(156\) 0 0
\(157\) 912.652 0.463933 0.231967 0.972724i \(-0.425484\pi\)
0.231967 + 0.972724i \(0.425484\pi\)
\(158\) −420.537 −0.211748
\(159\) 0 0
\(160\) 1267.71 0.626384
\(161\) −4290.89 −2.10043
\(162\) 0 0
\(163\) −2303.83 −1.10705 −0.553527 0.832831i \(-0.686718\pi\)
−0.553527 + 0.832831i \(0.686718\pi\)
\(164\) 1036.86 0.493690
\(165\) 0 0
\(166\) 168.564 0.0788138
\(167\) −381.558 −0.176801 −0.0884006 0.996085i \(-0.528176\pi\)
−0.0884006 + 0.996085i \(0.528176\pi\)
\(168\) 0 0
\(169\) 538.070 0.244911
\(170\) −343.025 −0.154758
\(171\) 0 0
\(172\) −1716.92 −0.761128
\(173\) 2697.02 1.18526 0.592631 0.805474i \(-0.298089\pi\)
0.592631 + 0.805474i \(0.298089\pi\)
\(174\) 0 0
\(175\) −821.791 −0.354981
\(176\) 835.506 0.357833
\(177\) 0 0
\(178\) −641.742 −0.270228
\(179\) −30.7370 −0.0128346 −0.00641729 0.999979i \(-0.502043\pi\)
−0.00641729 + 0.999979i \(0.502043\pi\)
\(180\) 0 0
\(181\) 159.556 0.0655231 0.0327615 0.999463i \(-0.489570\pi\)
0.0327615 + 0.999463i \(0.489570\pi\)
\(182\) −6818.22 −2.77692
\(183\) 0 0
\(184\) 139.744 0.0559895
\(185\) −598.224 −0.237742
\(186\) 0 0
\(187\) −218.689 −0.0855193
\(188\) 4398.73 1.70644
\(189\) 0 0
\(190\) −952.831 −0.363819
\(191\) −96.7632 −0.0366573 −0.0183286 0.999832i \(-0.505835\pi\)
−0.0183286 + 0.999832i \(0.505835\pi\)
\(192\) 0 0
\(193\) 1017.92 0.379646 0.189823 0.981818i \(-0.439209\pi\)
0.189823 + 0.981818i \(0.439209\pi\)
\(194\) −509.671 −0.188620
\(195\) 0 0
\(196\) 5701.29 2.07773
\(197\) −5012.65 −1.81288 −0.906438 0.422339i \(-0.861209\pi\)
−0.906438 + 0.422339i \(0.861209\pi\)
\(198\) 0 0
\(199\) −4339.56 −1.54585 −0.772924 0.634499i \(-0.781206\pi\)
−0.772924 + 0.634499i \(0.781206\pi\)
\(200\) 26.7638 0.00946242
\(201\) 0 0
\(202\) −2320.07 −0.808116
\(203\) −953.278 −0.329591
\(204\) 0 0
\(205\) 670.666 0.228494
\(206\) 7568.65 2.55987
\(207\) 0 0
\(208\) 3456.19 1.15213
\(209\) −607.460 −0.201047
\(210\) 0 0
\(211\) −2360.56 −0.770180 −0.385090 0.922879i \(-0.625830\pi\)
−0.385090 + 0.922879i \(0.625830\pi\)
\(212\) −3041.51 −0.985338
\(213\) 0 0
\(214\) 2565.82 0.819605
\(215\) −1110.55 −0.352273
\(216\) 0 0
\(217\) −6463.04 −2.02184
\(218\) 4224.68 1.31253
\(219\) 0 0
\(220\) −488.642 −0.149746
\(221\) −904.636 −0.275350
\(222\) 0 0
\(223\) −6063.08 −1.82069 −0.910345 0.413851i \(-0.864184\pi\)
−0.910345 + 0.413851i \(0.864184\pi\)
\(224\) −8334.36 −2.48600
\(225\) 0 0
\(226\) −5428.37 −1.59774
\(227\) −4428.61 −1.29488 −0.647438 0.762118i \(-0.724160\pi\)
−0.647438 + 0.762118i \(0.724160\pi\)
\(228\) 0 0
\(229\) −4517.28 −1.30354 −0.651768 0.758418i \(-0.725973\pi\)
−0.651768 + 0.758418i \(0.725973\pi\)
\(230\) −2588.58 −0.742112
\(231\) 0 0
\(232\) 31.0460 0.00878564
\(233\) −4051.13 −1.13905 −0.569525 0.821974i \(-0.692873\pi\)
−0.569525 + 0.821974i \(0.692873\pi\)
\(234\) 0 0
\(235\) 2845.21 0.789791
\(236\) −5733.28 −1.58138
\(237\) 0 0
\(238\) 2255.16 0.614202
\(239\) −837.357 −0.226628 −0.113314 0.993559i \(-0.536147\pi\)
−0.113314 + 0.993559i \(0.536147\pi\)
\(240\) 0 0
\(241\) −2011.23 −0.537571 −0.268785 0.963200i \(-0.586622\pi\)
−0.268785 + 0.963200i \(0.586622\pi\)
\(242\) 4644.97 1.23384
\(243\) 0 0
\(244\) 5861.68 1.53793
\(245\) 3687.73 0.961634
\(246\) 0 0
\(247\) −2512.84 −0.647321
\(248\) 210.486 0.0538946
\(249\) 0 0
\(250\) −495.764 −0.125420
\(251\) −6458.29 −1.62408 −0.812039 0.583603i \(-0.801642\pi\)
−0.812039 + 0.583603i \(0.801642\pi\)
\(252\) 0 0
\(253\) −1650.30 −0.410093
\(254\) −8401.49 −2.07542
\(255\) 0 0
\(256\) 4358.26 1.06403
\(257\) −1838.15 −0.446150 −0.223075 0.974801i \(-0.571610\pi\)
−0.223075 + 0.974801i \(0.571610\pi\)
\(258\) 0 0
\(259\) 3932.92 0.943552
\(260\) −2021.33 −0.482145
\(261\) 0 0
\(262\) −9703.34 −2.28807
\(263\) −2263.00 −0.530580 −0.265290 0.964169i \(-0.585468\pi\)
−0.265290 + 0.964169i \(0.585468\pi\)
\(264\) 0 0
\(265\) −1967.32 −0.456044
\(266\) 6264.23 1.44393
\(267\) 0 0
\(268\) −577.501 −0.131629
\(269\) −632.951 −0.143464 −0.0717318 0.997424i \(-0.522853\pi\)
−0.0717318 + 0.997424i \(0.522853\pi\)
\(270\) 0 0
\(271\) −987.158 −0.221275 −0.110638 0.993861i \(-0.535289\pi\)
−0.110638 + 0.993861i \(0.535289\pi\)
\(272\) −1143.15 −0.254829
\(273\) 0 0
\(274\) 6291.99 1.38727
\(275\) −316.065 −0.0693071
\(276\) 0 0
\(277\) 8123.34 1.76204 0.881018 0.473083i \(-0.156859\pi\)
0.881018 + 0.473083i \(0.156859\pi\)
\(278\) −7112.53 −1.53447
\(279\) 0 0
\(280\) −175.954 −0.0375545
\(281\) 5075.60 1.07753 0.538764 0.842457i \(-0.318892\pi\)
0.538764 + 0.842457i \(0.318892\pi\)
\(282\) 0 0
\(283\) −2077.30 −0.436335 −0.218168 0.975911i \(-0.570008\pi\)
−0.218168 + 0.975911i \(0.570008\pi\)
\(284\) 914.641 0.191105
\(285\) 0 0
\(286\) −2622.32 −0.542172
\(287\) −4409.18 −0.906849
\(288\) 0 0
\(289\) −4613.79 −0.939098
\(290\) −575.087 −0.116449
\(291\) 0 0
\(292\) −3852.66 −0.772123
\(293\) 4097.60 0.817011 0.408505 0.912756i \(-0.366050\pi\)
0.408505 + 0.912756i \(0.366050\pi\)
\(294\) 0 0
\(295\) −3708.42 −0.731907
\(296\) −128.086 −0.0251515
\(297\) 0 0
\(298\) −10470.8 −2.03542
\(299\) −6826.69 −1.32039
\(300\) 0 0
\(301\) 7301.10 1.39810
\(302\) −4492.78 −0.856061
\(303\) 0 0
\(304\) −3175.36 −0.599078
\(305\) 3791.47 0.711801
\(306\) 0 0
\(307\) 2800.27 0.520586 0.260293 0.965530i \(-0.416181\pi\)
0.260293 + 0.965530i \(0.416181\pi\)
\(308\) 3212.49 0.594314
\(309\) 0 0
\(310\) −3898.98 −0.714345
\(311\) 1007.23 0.183649 0.0918247 0.995775i \(-0.470730\pi\)
0.0918247 + 0.995775i \(0.470730\pi\)
\(312\) 0 0
\(313\) −8540.20 −1.54224 −0.771119 0.636691i \(-0.780303\pi\)
−0.771119 + 0.636691i \(0.780303\pi\)
\(314\) −3619.68 −0.650543
\(315\) 0 0
\(316\) 819.639 0.145912
\(317\) 6756.75 1.19715 0.598575 0.801067i \(-0.295734\pi\)
0.598575 + 0.801067i \(0.295734\pi\)
\(318\) 0 0
\(319\) −366.636 −0.0643500
\(320\) −2384.43 −0.416543
\(321\) 0 0
\(322\) 17018.2 2.94530
\(323\) 831.133 0.143175
\(324\) 0 0
\(325\) −1307.45 −0.223151
\(326\) 9137.25 1.55235
\(327\) 0 0
\(328\) 143.596 0.0241731
\(329\) −18705.3 −3.13453
\(330\) 0 0
\(331\) −2186.58 −0.363097 −0.181548 0.983382i \(-0.558111\pi\)
−0.181548 + 0.983382i \(0.558111\pi\)
\(332\) −328.536 −0.0543095
\(333\) 0 0
\(334\) 1513.30 0.247917
\(335\) −373.542 −0.0609217
\(336\) 0 0
\(337\) 5592.65 0.904010 0.452005 0.892016i \(-0.350709\pi\)
0.452005 + 0.892016i \(0.350709\pi\)
\(338\) −2134.05 −0.343423
\(339\) 0 0
\(340\) 668.565 0.106641
\(341\) −2485.72 −0.394749
\(342\) 0 0
\(343\) −12969.4 −2.04163
\(344\) −237.779 −0.0372680
\(345\) 0 0
\(346\) −10696.7 −1.66201
\(347\) −3744.53 −0.579300 −0.289650 0.957133i \(-0.593539\pi\)
−0.289650 + 0.957133i \(0.593539\pi\)
\(348\) 0 0
\(349\) −11200.7 −1.71794 −0.858970 0.512025i \(-0.828895\pi\)
−0.858970 + 0.512025i \(0.828895\pi\)
\(350\) 3259.32 0.497766
\(351\) 0 0
\(352\) −3205.44 −0.485371
\(353\) −1695.02 −0.255572 −0.127786 0.991802i \(-0.540787\pi\)
−0.127786 + 0.991802i \(0.540787\pi\)
\(354\) 0 0
\(355\) 591.612 0.0884493
\(356\) 1250.77 0.186210
\(357\) 0 0
\(358\) 121.907 0.0179971
\(359\) 331.341 0.0487117 0.0243559 0.999703i \(-0.492247\pi\)
0.0243559 + 0.999703i \(0.492247\pi\)
\(360\) 0 0
\(361\) −4550.33 −0.663411
\(362\) −632.816 −0.0918787
\(363\) 0 0
\(364\) 13288.9 1.91354
\(365\) −2491.99 −0.357361
\(366\) 0 0
\(367\) −11394.1 −1.62061 −0.810306 0.586006i \(-0.800699\pi\)
−0.810306 + 0.586006i \(0.800699\pi\)
\(368\) −8626.58 −1.22199
\(369\) 0 0
\(370\) 2372.63 0.333370
\(371\) 12933.8 1.80995
\(372\) 0 0
\(373\) 6042.53 0.838794 0.419397 0.907803i \(-0.362241\pi\)
0.419397 + 0.907803i \(0.362241\pi\)
\(374\) 867.345 0.119918
\(375\) 0 0
\(376\) 609.188 0.0835544
\(377\) −1516.64 −0.207191
\(378\) 0 0
\(379\) 3446.58 0.467121 0.233560 0.972342i \(-0.424962\pi\)
0.233560 + 0.972342i \(0.424962\pi\)
\(380\) 1857.10 0.250703
\(381\) 0 0
\(382\) 383.774 0.0514021
\(383\) −6068.80 −0.809664 −0.404832 0.914391i \(-0.632670\pi\)
−0.404832 + 0.914391i \(0.632670\pi\)
\(384\) 0 0
\(385\) 2077.92 0.275066
\(386\) −4037.20 −0.532352
\(387\) 0 0
\(388\) 993.363 0.129975
\(389\) 4788.36 0.624112 0.312056 0.950064i \(-0.398982\pi\)
0.312056 + 0.950064i \(0.398982\pi\)
\(390\) 0 0
\(391\) 2257.96 0.292046
\(392\) 789.580 0.101734
\(393\) 0 0
\(394\) 19880.8 2.54208
\(395\) 530.162 0.0675325
\(396\) 0 0
\(397\) 206.388 0.0260914 0.0130457 0.999915i \(-0.495847\pi\)
0.0130457 + 0.999915i \(0.495847\pi\)
\(398\) 17211.2 2.16764
\(399\) 0 0
\(400\) −1652.16 −0.206520
\(401\) 10080.5 1.25535 0.627675 0.778475i \(-0.284007\pi\)
0.627675 + 0.778475i \(0.284007\pi\)
\(402\) 0 0
\(403\) −10282.5 −1.27099
\(404\) 4521.88 0.556862
\(405\) 0 0
\(406\) 3780.81 0.462164
\(407\) 1512.62 0.184221
\(408\) 0 0
\(409\) 15178.0 1.83497 0.917486 0.397769i \(-0.130215\pi\)
0.917486 + 0.397769i \(0.130215\pi\)
\(410\) −2659.94 −0.320403
\(411\) 0 0
\(412\) −14751.5 −1.76397
\(413\) 24380.4 2.90480
\(414\) 0 0
\(415\) −212.505 −0.0251360
\(416\) −13259.7 −1.56277
\(417\) 0 0
\(418\) 2409.26 0.281915
\(419\) 6104.30 0.711729 0.355864 0.934538i \(-0.384186\pi\)
0.355864 + 0.934538i \(0.384186\pi\)
\(420\) 0 0
\(421\) 8543.56 0.989045 0.494522 0.869165i \(-0.335343\pi\)
0.494522 + 0.869165i \(0.335343\pi\)
\(422\) 9362.27 1.07997
\(423\) 0 0
\(424\) −421.223 −0.0482463
\(425\) 432.444 0.0493567
\(426\) 0 0
\(427\) −24926.4 −2.82500
\(428\) −5000.85 −0.564778
\(429\) 0 0
\(430\) 4404.55 0.493968
\(431\) 7712.54 0.861949 0.430975 0.902364i \(-0.358170\pi\)
0.430975 + 0.902364i \(0.358170\pi\)
\(432\) 0 0
\(433\) −13294.5 −1.47551 −0.737753 0.675071i \(-0.764113\pi\)
−0.737753 + 0.675071i \(0.764113\pi\)
\(434\) 25633.2 2.83510
\(435\) 0 0
\(436\) −8234.03 −0.904446
\(437\) 6272.01 0.686569
\(438\) 0 0
\(439\) −18032.6 −1.96048 −0.980239 0.197816i \(-0.936615\pi\)
−0.980239 + 0.197816i \(0.936615\pi\)
\(440\) −67.6728 −0.00733221
\(441\) 0 0
\(442\) 3587.89 0.386106
\(443\) −16475.7 −1.76700 −0.883502 0.468427i \(-0.844821\pi\)
−0.883502 + 0.468427i \(0.844821\pi\)
\(444\) 0 0
\(445\) 809.031 0.0861837
\(446\) 24046.9 2.55303
\(447\) 0 0
\(448\) 15676.1 1.65318
\(449\) 2651.74 0.278716 0.139358 0.990242i \(-0.455496\pi\)
0.139358 + 0.990242i \(0.455496\pi\)
\(450\) 0 0
\(451\) −1695.79 −0.177055
\(452\) 10580.0 1.10098
\(453\) 0 0
\(454\) 17564.4 1.81572
\(455\) 8595.59 0.885643
\(456\) 0 0
\(457\) −582.597 −0.0596340 −0.0298170 0.999555i \(-0.509492\pi\)
−0.0298170 + 0.999555i \(0.509492\pi\)
\(458\) 17916.0 1.82786
\(459\) 0 0
\(460\) 5045.21 0.511379
\(461\) 6537.72 0.660504 0.330252 0.943893i \(-0.392866\pi\)
0.330252 + 0.943893i \(0.392866\pi\)
\(462\) 0 0
\(463\) −11895.3 −1.19400 −0.596998 0.802243i \(-0.703640\pi\)
−0.596998 + 0.802243i \(0.703640\pi\)
\(464\) −1916.51 −0.191749
\(465\) 0 0
\(466\) 16067.3 1.59721
\(467\) 14742.5 1.46081 0.730406 0.683013i \(-0.239331\pi\)
0.730406 + 0.683013i \(0.239331\pi\)
\(468\) 0 0
\(469\) 2455.79 0.241786
\(470\) −11284.4 −1.10747
\(471\) 0 0
\(472\) −794.011 −0.0774307
\(473\) 2808.04 0.272968
\(474\) 0 0
\(475\) 1201.21 0.116033
\(476\) −4395.37 −0.423238
\(477\) 0 0
\(478\) 3321.06 0.317786
\(479\) −5864.41 −0.559398 −0.279699 0.960088i \(-0.590235\pi\)
−0.279699 + 0.960088i \(0.590235\pi\)
\(480\) 0 0
\(481\) 6257.17 0.593144
\(482\) 7976.76 0.753800
\(483\) 0 0
\(484\) −9053.19 −0.850224
\(485\) 642.531 0.0601564
\(486\) 0 0
\(487\) −15495.7 −1.44184 −0.720920 0.693018i \(-0.756281\pi\)
−0.720920 + 0.693018i \(0.756281\pi\)
\(488\) 811.793 0.0753036
\(489\) 0 0
\(490\) −14626.0 −1.34844
\(491\) −951.715 −0.0874751 −0.0437376 0.999043i \(-0.513927\pi\)
−0.0437376 + 0.999043i \(0.513927\pi\)
\(492\) 0 0
\(493\) 501.635 0.0458266
\(494\) 9966.22 0.907695
\(495\) 0 0
\(496\) −12993.6 −1.17627
\(497\) −3889.45 −0.351038
\(498\) 0 0
\(499\) 12667.6 1.13643 0.568216 0.822880i \(-0.307634\pi\)
0.568216 + 0.822880i \(0.307634\pi\)
\(500\) 966.259 0.0864249
\(501\) 0 0
\(502\) 25614.3 2.27734
\(503\) −17478.7 −1.54938 −0.774690 0.632341i \(-0.782094\pi\)
−0.774690 + 0.632341i \(0.782094\pi\)
\(504\) 0 0
\(505\) 2924.86 0.257732
\(506\) 6545.28 0.575046
\(507\) 0 0
\(508\) 16374.8 1.43014
\(509\) −11463.1 −0.998219 −0.499110 0.866539i \(-0.666339\pi\)
−0.499110 + 0.866539i \(0.666339\pi\)
\(510\) 0 0
\(511\) 16383.2 1.41830
\(512\) −16189.8 −1.39745
\(513\) 0 0
\(514\) 7290.32 0.625607
\(515\) −9541.64 −0.816418
\(516\) 0 0
\(517\) −7194.17 −0.611991
\(518\) −15598.4 −1.32308
\(519\) 0 0
\(520\) −279.938 −0.0236079
\(521\) −13465.1 −1.13228 −0.566141 0.824309i \(-0.691564\pi\)
−0.566141 + 0.824309i \(0.691564\pi\)
\(522\) 0 0
\(523\) 19829.8 1.65793 0.828963 0.559303i \(-0.188931\pi\)
0.828963 + 0.559303i \(0.188931\pi\)
\(524\) 18912.1 1.57668
\(525\) 0 0
\(526\) 8975.32 0.743997
\(527\) 3400.99 0.281118
\(528\) 0 0
\(529\) 4872.30 0.400452
\(530\) 7802.62 0.639480
\(531\) 0 0
\(532\) −12209.2 −0.994990
\(533\) −7014.89 −0.570072
\(534\) 0 0
\(535\) −3234.67 −0.261396
\(536\) −79.9790 −0.00644509
\(537\) 0 0
\(538\) 2510.36 0.201170
\(539\) −9324.51 −0.745148
\(540\) 0 0
\(541\) −8464.80 −0.672699 −0.336349 0.941737i \(-0.609192\pi\)
−0.336349 + 0.941737i \(0.609192\pi\)
\(542\) 3915.18 0.310280
\(543\) 0 0
\(544\) 4385.72 0.345654
\(545\) −5325.97 −0.418605
\(546\) 0 0
\(547\) 7649.90 0.597964 0.298982 0.954259i \(-0.403353\pi\)
0.298982 + 0.954259i \(0.403353\pi\)
\(548\) −12263.3 −0.955950
\(549\) 0 0
\(550\) 1253.55 0.0971848
\(551\) 1393.41 0.107734
\(552\) 0 0
\(553\) −3485.46 −0.268023
\(554\) −32218.1 −2.47079
\(555\) 0 0
\(556\) 13862.5 1.05738
\(557\) −6293.95 −0.478785 −0.239393 0.970923i \(-0.576948\pi\)
−0.239393 + 0.970923i \(0.576948\pi\)
\(558\) 0 0
\(559\) 11615.8 0.878887
\(560\) 10861.9 0.819639
\(561\) 0 0
\(562\) −20130.4 −1.51095
\(563\) 4688.80 0.350993 0.175497 0.984480i \(-0.443847\pi\)
0.175497 + 0.984480i \(0.443847\pi\)
\(564\) 0 0
\(565\) 6843.43 0.509567
\(566\) 8238.83 0.611844
\(567\) 0 0
\(568\) 126.670 0.00935732
\(569\) 20371.9 1.50094 0.750470 0.660904i \(-0.229827\pi\)
0.750470 + 0.660904i \(0.229827\pi\)
\(570\) 0 0
\(571\) −5658.25 −0.414694 −0.207347 0.978267i \(-0.566483\pi\)
−0.207347 + 0.978267i \(0.566483\pi\)
\(572\) 5110.99 0.373603
\(573\) 0 0
\(574\) 17487.3 1.27161
\(575\) 3263.37 0.236681
\(576\) 0 0
\(577\) 809.648 0.0584161 0.0292081 0.999573i \(-0.490701\pi\)
0.0292081 + 0.999573i \(0.490701\pi\)
\(578\) 18298.8 1.31683
\(579\) 0 0
\(580\) 1120.86 0.0802435
\(581\) 1397.08 0.0997600
\(582\) 0 0
\(583\) 4974.42 0.353378
\(584\) −533.561 −0.0378064
\(585\) 0 0
\(586\) −16251.5 −1.14564
\(587\) −9794.78 −0.688712 −0.344356 0.938839i \(-0.611903\pi\)
−0.344356 + 0.938839i \(0.611903\pi\)
\(588\) 0 0
\(589\) 9447.05 0.660881
\(590\) 14708.0 1.02631
\(591\) 0 0
\(592\) 7906.91 0.548939
\(593\) 19668.3 1.36202 0.681011 0.732273i \(-0.261541\pi\)
0.681011 + 0.732273i \(0.261541\pi\)
\(594\) 0 0
\(595\) −2843.03 −0.195887
\(596\) 20407.8 1.40258
\(597\) 0 0
\(598\) 27075.4 1.85150
\(599\) −3461.98 −0.236148 −0.118074 0.993005i \(-0.537672\pi\)
−0.118074 + 0.993005i \(0.537672\pi\)
\(600\) 0 0
\(601\) 1598.93 0.108522 0.0542611 0.998527i \(-0.482720\pi\)
0.0542611 + 0.998527i \(0.482720\pi\)
\(602\) −28957.0 −1.96046
\(603\) 0 0
\(604\) 8756.56 0.589900
\(605\) −5855.82 −0.393509
\(606\) 0 0
\(607\) −9756.63 −0.652405 −0.326202 0.945300i \(-0.605769\pi\)
−0.326202 + 0.945300i \(0.605769\pi\)
\(608\) 12182.4 0.812598
\(609\) 0 0
\(610\) −15037.4 −0.998111
\(611\) −29759.7 −1.97045
\(612\) 0 0
\(613\) −1209.23 −0.0796744 −0.0398372 0.999206i \(-0.512684\pi\)
−0.0398372 + 0.999206i \(0.512684\pi\)
\(614\) −11106.2 −0.729984
\(615\) 0 0
\(616\) 444.903 0.0291001
\(617\) −12543.6 −0.818456 −0.409228 0.912432i \(-0.634202\pi\)
−0.409228 + 0.912432i \(0.634202\pi\)
\(618\) 0 0
\(619\) 11124.6 0.722353 0.361176 0.932498i \(-0.382375\pi\)
0.361176 + 0.932498i \(0.382375\pi\)
\(620\) 7599.22 0.492245
\(621\) 0 0
\(622\) −3994.80 −0.257519
\(623\) −5318.84 −0.342046
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 33871.4 2.16258
\(627\) 0 0
\(628\) 7054.87 0.448280
\(629\) −2069.59 −0.131192
\(630\) 0 0
\(631\) 5229.61 0.329932 0.164966 0.986299i \(-0.447249\pi\)
0.164966 + 0.986299i \(0.447249\pi\)
\(632\) 113.513 0.00714447
\(633\) 0 0
\(634\) −26798.0 −1.67868
\(635\) 10591.6 0.661912
\(636\) 0 0
\(637\) −38572.1 −2.39919
\(638\) 1454.12 0.0902338
\(639\) 0 0
\(640\) −684.763 −0.0422931
\(641\) −8390.44 −0.517008 −0.258504 0.966010i \(-0.583230\pi\)
−0.258504 + 0.966010i \(0.583230\pi\)
\(642\) 0 0
\(643\) 25647.2 1.57298 0.786490 0.617602i \(-0.211896\pi\)
0.786490 + 0.617602i \(0.211896\pi\)
\(644\) −33168.9 −2.02956
\(645\) 0 0
\(646\) −3296.37 −0.200765
\(647\) −24363.6 −1.48042 −0.740210 0.672376i \(-0.765274\pi\)
−0.740210 + 0.672376i \(0.765274\pi\)
\(648\) 0 0
\(649\) 9376.83 0.567138
\(650\) 5185.49 0.312910
\(651\) 0 0
\(652\) −17808.8 −1.06970
\(653\) 20699.7 1.24049 0.620246 0.784407i \(-0.287033\pi\)
0.620246 + 0.784407i \(0.287033\pi\)
\(654\) 0 0
\(655\) 12232.8 0.729733
\(656\) −8864.40 −0.527586
\(657\) 0 0
\(658\) 74187.5 4.39534
\(659\) −18977.9 −1.12181 −0.560905 0.827880i \(-0.689547\pi\)
−0.560905 + 0.827880i \(0.689547\pi\)
\(660\) 0 0
\(661\) 19769.9 1.16333 0.581665 0.813428i \(-0.302401\pi\)
0.581665 + 0.813428i \(0.302401\pi\)
\(662\) 8672.21 0.509147
\(663\) 0 0
\(664\) −45.4995 −0.00265922
\(665\) −7897.18 −0.460511
\(666\) 0 0
\(667\) 3785.51 0.219753
\(668\) −2949.47 −0.170836
\(669\) 0 0
\(670\) 1481.51 0.0854264
\(671\) −9586.83 −0.551558
\(672\) 0 0
\(673\) 5776.20 0.330841 0.165420 0.986223i \(-0.447102\pi\)
0.165420 + 0.986223i \(0.447102\pi\)
\(674\) −22181.1 −1.26763
\(675\) 0 0
\(676\) 4159.32 0.236648
\(677\) −20304.8 −1.15270 −0.576349 0.817203i \(-0.695523\pi\)
−0.576349 + 0.817203i \(0.695523\pi\)
\(678\) 0 0
\(679\) −4224.21 −0.238749
\(680\) 92.5907 0.00522160
\(681\) 0 0
\(682\) 9858.65 0.553530
\(683\) −2014.43 −0.112855 −0.0564276 0.998407i \(-0.517971\pi\)
−0.0564276 + 0.998407i \(0.517971\pi\)
\(684\) 0 0
\(685\) −7932.18 −0.442442
\(686\) 51438.1 2.86285
\(687\) 0 0
\(688\) 14678.4 0.813386
\(689\) 20577.4 1.13779
\(690\) 0 0
\(691\) −25073.6 −1.38038 −0.690190 0.723628i \(-0.742473\pi\)
−0.690190 + 0.723628i \(0.742473\pi\)
\(692\) 20848.1 1.14527
\(693\) 0 0
\(694\) 14851.2 0.812314
\(695\) 8966.62 0.489386
\(696\) 0 0
\(697\) 2320.20 0.126089
\(698\) 44423.4 2.40895
\(699\) 0 0
\(700\) −6352.51 −0.343003
\(701\) 507.308 0.0273335 0.0136667 0.999907i \(-0.495650\pi\)
0.0136667 + 0.999907i \(0.495650\pi\)
\(702\) 0 0
\(703\) −5748.76 −0.308419
\(704\) 6029.09 0.322770
\(705\) 0 0
\(706\) 6722.65 0.358372
\(707\) −19229.0 −1.02289
\(708\) 0 0
\(709\) −24972.7 −1.32280 −0.661402 0.750032i \(-0.730038\pi\)
−0.661402 + 0.750032i \(0.730038\pi\)
\(710\) −2346.40 −0.124027
\(711\) 0 0
\(712\) 173.222 0.00911764
\(713\) 25665.0 1.34805
\(714\) 0 0
\(715\) 3305.91 0.172915
\(716\) −237.599 −0.0124015
\(717\) 0 0
\(718\) −1314.14 −0.0683052
\(719\) −13494.0 −0.699917 −0.349958 0.936765i \(-0.613804\pi\)
−0.349958 + 0.936765i \(0.613804\pi\)
\(720\) 0 0
\(721\) 62729.9 3.24020
\(722\) 18047.1 0.930257
\(723\) 0 0
\(724\) 1233.38 0.0633123
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) 5717.08 0.291657 0.145829 0.989310i \(-0.453415\pi\)
0.145829 + 0.989310i \(0.453415\pi\)
\(728\) 1840.40 0.0936949
\(729\) 0 0
\(730\) 9883.53 0.501104
\(731\) −3841.99 −0.194393
\(732\) 0 0
\(733\) 10147.2 0.511318 0.255659 0.966767i \(-0.417708\pi\)
0.255659 + 0.966767i \(0.417708\pi\)
\(734\) 45190.1 2.27248
\(735\) 0 0
\(736\) 33096.1 1.65752
\(737\) 944.508 0.0472068
\(738\) 0 0
\(739\) 39280.9 1.95531 0.977654 0.210222i \(-0.0674187\pi\)
0.977654 + 0.210222i \(0.0674187\pi\)
\(740\) −4624.32 −0.229721
\(741\) 0 0
\(742\) −51297.0 −2.53797
\(743\) −27166.1 −1.34136 −0.670679 0.741748i \(-0.733997\pi\)
−0.670679 + 0.741748i \(0.733997\pi\)
\(744\) 0 0
\(745\) 13200.3 0.649155
\(746\) −23965.4 −1.17619
\(747\) 0 0
\(748\) −1690.48 −0.0826339
\(749\) 21265.8 1.03743
\(750\) 0 0
\(751\) −2310.40 −0.112261 −0.0561303 0.998423i \(-0.517876\pi\)
−0.0561303 + 0.998423i \(0.517876\pi\)
\(752\) −37606.0 −1.82360
\(753\) 0 0
\(754\) 6015.17 0.290530
\(755\) 5663.95 0.273023
\(756\) 0 0
\(757\) 28647.5 1.37545 0.687723 0.725973i \(-0.258610\pi\)
0.687723 + 0.725973i \(0.258610\pi\)
\(758\) −13669.5 −0.655012
\(759\) 0 0
\(760\) 257.192 0.0122755
\(761\) 28161.6 1.34147 0.670733 0.741699i \(-0.265980\pi\)
0.670733 + 0.741699i \(0.265980\pi\)
\(762\) 0 0
\(763\) 35014.7 1.66136
\(764\) −747.987 −0.0354205
\(765\) 0 0
\(766\) 24069.6 1.13534
\(767\) 38788.5 1.82604
\(768\) 0 0
\(769\) −12197.5 −0.571981 −0.285990 0.958233i \(-0.592323\pi\)
−0.285990 + 0.958233i \(0.592323\pi\)
\(770\) −8241.26 −0.385707
\(771\) 0 0
\(772\) 7868.62 0.366837
\(773\) −21367.3 −0.994216 −0.497108 0.867689i \(-0.665605\pi\)
−0.497108 + 0.867689i \(0.665605\pi\)
\(774\) 0 0
\(775\) 4915.36 0.227826
\(776\) 137.572 0.00636413
\(777\) 0 0
\(778\) −18991.2 −0.875151
\(779\) 6444.91 0.296422
\(780\) 0 0
\(781\) −1495.90 −0.0685373
\(782\) −8955.32 −0.409516
\(783\) 0 0
\(784\) −48741.9 −2.22038
\(785\) 4563.26 0.207477
\(786\) 0 0
\(787\) −20891.1 −0.946236 −0.473118 0.880999i \(-0.656872\pi\)
−0.473118 + 0.880999i \(0.656872\pi\)
\(788\) −38748.2 −1.75171
\(789\) 0 0
\(790\) −2102.68 −0.0946964
\(791\) −44991.0 −2.02237
\(792\) 0 0
\(793\) −39657.2 −1.77588
\(794\) −818.557 −0.0365863
\(795\) 0 0
\(796\) −33545.2 −1.49369
\(797\) 12968.8 0.576386 0.288193 0.957572i \(-0.406946\pi\)
0.288193 + 0.957572i \(0.406946\pi\)
\(798\) 0 0
\(799\) 9843.14 0.435827
\(800\) 6338.56 0.280127
\(801\) 0 0
\(802\) −39980.4 −1.76029
\(803\) 6301.06 0.276911
\(804\) 0 0
\(805\) −21454.5 −0.939342
\(806\) 40781.7 1.78222
\(807\) 0 0
\(808\) 626.243 0.0272663
\(809\) 13867.9 0.602683 0.301342 0.953516i \(-0.402566\pi\)
0.301342 + 0.953516i \(0.402566\pi\)
\(810\) 0 0
\(811\) −32657.3 −1.41400 −0.707000 0.707213i \(-0.749952\pi\)
−0.707000 + 0.707213i \(0.749952\pi\)
\(812\) −7368.91 −0.318471
\(813\) 0 0
\(814\) −5999.24 −0.258321
\(815\) −11519.1 −0.495090
\(816\) 0 0
\(817\) −10672.0 −0.456998
\(818\) −60197.7 −2.57306
\(819\) 0 0
\(820\) 5184.30 0.220785
\(821\) −13615.5 −0.578788 −0.289394 0.957210i \(-0.593454\pi\)
−0.289394 + 0.957210i \(0.593454\pi\)
\(822\) 0 0
\(823\) −13661.8 −0.578640 −0.289320 0.957232i \(-0.593429\pi\)
−0.289320 + 0.957232i \(0.593429\pi\)
\(824\) −2042.96 −0.0863713
\(825\) 0 0
\(826\) −96695.5 −4.07320
\(827\) −31693.6 −1.33264 −0.666320 0.745666i \(-0.732131\pi\)
−0.666320 + 0.745666i \(0.732131\pi\)
\(828\) 0 0
\(829\) −18908.6 −0.792185 −0.396093 0.918211i \(-0.629634\pi\)
−0.396093 + 0.918211i \(0.629634\pi\)
\(830\) 842.819 0.0352466
\(831\) 0 0
\(832\) 24940.2 1.03924
\(833\) 12757.9 0.530654
\(834\) 0 0
\(835\) −1907.79 −0.0790679
\(836\) −4695.71 −0.194264
\(837\) 0 0
\(838\) −24210.3 −0.998010
\(839\) −29382.9 −1.20907 −0.604534 0.796579i \(-0.706641\pi\)
−0.604534 + 0.796579i \(0.706641\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) −33884.8 −1.38687
\(843\) 0 0
\(844\) −18247.3 −0.744193
\(845\) 2690.35 0.109528
\(846\) 0 0
\(847\) 38498.1 1.56176
\(848\) 26002.7 1.05299
\(849\) 0 0
\(850\) −1715.12 −0.0692097
\(851\) −15617.8 −0.629108
\(852\) 0 0
\(853\) 421.011 0.0168994 0.00844968 0.999964i \(-0.497310\pi\)
0.00844968 + 0.999964i \(0.497310\pi\)
\(854\) 98861.0 3.96131
\(855\) 0 0
\(856\) −692.576 −0.0276539
\(857\) 41115.0 1.63881 0.819405 0.573215i \(-0.194304\pi\)
0.819405 + 0.573215i \(0.194304\pi\)
\(858\) 0 0
\(859\) −578.823 −0.0229909 −0.0114954 0.999934i \(-0.503659\pi\)
−0.0114954 + 0.999934i \(0.503659\pi\)
\(860\) −8584.60 −0.340387
\(861\) 0 0
\(862\) −30588.8 −1.20865
\(863\) 30773.6 1.21384 0.606921 0.794762i \(-0.292404\pi\)
0.606921 + 0.794762i \(0.292404\pi\)
\(864\) 0 0
\(865\) 13485.1 0.530065
\(866\) 52727.6 2.06900
\(867\) 0 0
\(868\) −49959.8 −1.95362
\(869\) −1340.53 −0.0523294
\(870\) 0 0
\(871\) 3907.09 0.151994
\(872\) −1140.34 −0.0442855
\(873\) 0 0
\(874\) −24875.5 −0.962731
\(875\) −4108.96 −0.158752
\(876\) 0 0
\(877\) −21118.7 −0.813146 −0.406573 0.913618i \(-0.633276\pi\)
−0.406573 + 0.913618i \(0.633276\pi\)
\(878\) 71519.5 2.74905
\(879\) 0 0
\(880\) 4177.53 0.160028
\(881\) 42520.5 1.62605 0.813026 0.582228i \(-0.197819\pi\)
0.813026 + 0.582228i \(0.197819\pi\)
\(882\) 0 0
\(883\) 25473.5 0.970840 0.485420 0.874281i \(-0.338667\pi\)
0.485420 + 0.874281i \(0.338667\pi\)
\(884\) −6992.91 −0.266060
\(885\) 0 0
\(886\) 65344.5 2.47775
\(887\) −36451.4 −1.37984 −0.689920 0.723885i \(-0.742354\pi\)
−0.689920 + 0.723885i \(0.742354\pi\)
\(888\) 0 0
\(889\) −69632.6 −2.62700
\(890\) −3208.71 −0.120850
\(891\) 0 0
\(892\) −46868.1 −1.75926
\(893\) 27341.6 1.02458
\(894\) 0 0
\(895\) −153.685 −0.00573980
\(896\) 4501.86 0.167853
\(897\) 0 0
\(898\) −10517.1 −0.390825
\(899\) 5701.82 0.211531
\(900\) 0 0
\(901\) −6806.05 −0.251656
\(902\) 6725.72 0.248273
\(903\) 0 0
\(904\) 1465.25 0.0539086
\(905\) 797.778 0.0293028
\(906\) 0 0
\(907\) 36563.0 1.33854 0.669270 0.743020i \(-0.266607\pi\)
0.669270 + 0.743020i \(0.266607\pi\)
\(908\) −34233.5 −1.25119
\(909\) 0 0
\(910\) −34091.1 −1.24188
\(911\) −25321.6 −0.920902 −0.460451 0.887685i \(-0.652312\pi\)
−0.460451 + 0.887685i \(0.652312\pi\)
\(912\) 0 0
\(913\) 537.324 0.0194773
\(914\) 2310.65 0.0836208
\(915\) 0 0
\(916\) −34918.9 −1.25955
\(917\) −80422.5 −2.89617
\(918\) 0 0
\(919\) 16527.1 0.593230 0.296615 0.954997i \(-0.404142\pi\)
0.296615 + 0.954997i \(0.404142\pi\)
\(920\) 698.720 0.0250393
\(921\) 0 0
\(922\) −25929.4 −0.926181
\(923\) −6188.01 −0.220673
\(924\) 0 0
\(925\) −2991.12 −0.106322
\(926\) 47178.0 1.67426
\(927\) 0 0
\(928\) 7352.73 0.260092
\(929\) 32080.4 1.13297 0.566483 0.824073i \(-0.308304\pi\)
0.566483 + 0.824073i \(0.308304\pi\)
\(930\) 0 0
\(931\) 35438.0 1.24751
\(932\) −31315.6 −1.10062
\(933\) 0 0
\(934\) −58470.3 −2.04840
\(935\) −1093.44 −0.0382454
\(936\) 0 0
\(937\) 31282.2 1.09066 0.545328 0.838223i \(-0.316405\pi\)
0.545328 + 0.838223i \(0.316405\pi\)
\(938\) −9739.93 −0.339041
\(939\) 0 0
\(940\) 21993.7 0.763143
\(941\) −23786.8 −0.824047 −0.412024 0.911173i \(-0.635178\pi\)
−0.412024 + 0.911173i \(0.635178\pi\)
\(942\) 0 0
\(943\) 17509.0 0.604637
\(944\) 49015.4 1.68995
\(945\) 0 0
\(946\) −11137.0 −0.382765
\(947\) −38442.2 −1.31912 −0.659558 0.751654i \(-0.729256\pi\)
−0.659558 + 0.751654i \(0.729256\pi\)
\(948\) 0 0
\(949\) 26065.2 0.891583
\(950\) −4764.16 −0.162705
\(951\) 0 0
\(952\) −608.722 −0.0207235
\(953\) −41175.0 −1.39957 −0.699784 0.714355i \(-0.746720\pi\)
−0.699784 + 0.714355i \(0.746720\pi\)
\(954\) 0 0
\(955\) −483.816 −0.0163936
\(956\) −6472.84 −0.218982
\(957\) 0 0
\(958\) 23258.9 0.784407
\(959\) 52148.8 1.75597
\(960\) 0 0
\(961\) 8866.24 0.297615
\(962\) −24816.7 −0.831727
\(963\) 0 0
\(964\) −15546.9 −0.519433
\(965\) 5089.61 0.169783
\(966\) 0 0
\(967\) 20553.4 0.683508 0.341754 0.939790i \(-0.388979\pi\)
0.341754 + 0.939790i \(0.388979\pi\)
\(968\) −1253.79 −0.0416305
\(969\) 0 0
\(970\) −2548.35 −0.0843533
\(971\) −7678.14 −0.253762 −0.126881 0.991918i \(-0.540497\pi\)
−0.126881 + 0.991918i \(0.540497\pi\)
\(972\) 0 0
\(973\) −58949.5 −1.94228
\(974\) 61457.7 2.02180
\(975\) 0 0
\(976\) −50113.1 −1.64353
\(977\) −46149.6 −1.51121 −0.755607 0.655025i \(-0.772658\pi\)
−0.755607 + 0.655025i \(0.772658\pi\)
\(978\) 0 0
\(979\) −2045.65 −0.0667818
\(980\) 28506.4 0.929188
\(981\) 0 0
\(982\) 3774.61 0.122661
\(983\) 17189.7 0.557747 0.278874 0.960328i \(-0.410039\pi\)
0.278874 + 0.960328i \(0.410039\pi\)
\(984\) 0 0
\(985\) −25063.3 −0.810743
\(986\) −1989.54 −0.0642596
\(987\) 0 0
\(988\) −19424.4 −0.625480
\(989\) −28992.9 −0.932176
\(990\) 0 0
\(991\) −14818.9 −0.475012 −0.237506 0.971386i \(-0.576330\pi\)
−0.237506 + 0.971386i \(0.576330\pi\)
\(992\) 49850.1 1.59551
\(993\) 0 0
\(994\) 15426.0 0.492237
\(995\) −21697.8 −0.691324
\(996\) 0 0
\(997\) −60460.3 −1.92056 −0.960280 0.279038i \(-0.909984\pi\)
−0.960280 + 0.279038i \(0.909984\pi\)
\(998\) −50241.2 −1.59354
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.m.1.1 7
3.2 odd 2 435.4.a.j.1.7 7
15.14 odd 2 2175.4.a.m.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.j.1.7 7 3.2 odd 2
1305.4.a.m.1.1 7 1.1 even 1 trivial
2175.4.a.m.1.1 7 15.14 odd 2