Properties

Label 1305.4.a.m
Level $1305$
Weight $4$
Character orbit 1305.a
Self dual yes
Analytic conductor $76.997$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + \beta_1 + 2) q^{4} + 5 q^{5} + ( - \beta_{6} - \beta_{5} + \beta_{4} + \cdots - 6) q^{7} + (\beta_{5} + \beta_{4} - \beta_{3} + \cdots + 4) q^{8} + 5 \beta_1 q^{10} + ( - \beta_{6} - 5 \beta_{5} + \beta_{4} + \cdots + 2) q^{11}+ \cdots + ( - 34 \beta_{6} - 87 \beta_{5} + \cdots - 224) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 15 q^{4} + 35 q^{5} - 37 q^{7} + 36 q^{8} + 5 q^{10} + 11 q^{11} - 133 q^{13} + 75 q^{14} - 53 q^{16} - 21 q^{17} - 170 q^{19} + 75 q^{20} - 369 q^{22} + 68 q^{23} + 175 q^{25} - 181 q^{26}+ \cdots - 1068 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - x^{6} - 35x^{5} + 18x^{4} + 329x^{3} - 167x^{2} - 767x + 638 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} - 4\nu^{5} - 23\nu^{4} + 67\nu^{3} + 128\nu^{2} - 131\nu - 94 ) / 20 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{6} - 2\nu^{5} - 99\nu^{4} + \nu^{3} + 814\nu^{2} + 157\nu - 1262 ) / 20 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} - \nu^{5} + 38\nu^{4} + 43\nu^{3} - 363\nu^{2} - 304\nu + 744 ) / 10 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 17\nu^{6} + 2\nu^{5} - 581\nu^{4} - 381\nu^{3} + 4946\nu^{2} + 3183\nu - 8898 ) / 40 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} - \beta_{3} + 2\beta_{2} + 18\beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{6} + 6\beta_{5} - \beta_{4} - 2\beta_{3} + 24\beta_{2} + 42\beta _1 + 166 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 6\beta_{6} + 38\beta_{5} + 19\beta_{4} - 32\beta_{3} + 69\beta_{2} + 388\beta _1 + 246 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 70\beta_{6} + 223\beta_{5} - 14\beta_{4} - 87\beta_{3} + 566\beta_{2} + 1315\beta _1 + 3348 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.96612
−3.52131
−2.08033
1.10304
1.26184
3.07921
5.12367
−3.96612 0 7.73008 5.00000 0 −32.8717 1.07055 0 −19.8306
1.2 −3.52131 0 4.39964 5.00000 0 −8.86571 12.6780 0 −17.6066
1.3 −2.08033 0 −3.67221 5.00000 0 15.0555 24.2821 0 −10.4017
1.4 1.10304 0 −6.78329 5.00000 0 1.72550 −16.3066 0 5.51522
1.5 1.26184 0 −6.40776 5.00000 0 −13.4311 −18.1803 0 6.30920
1.6 3.07921 0 1.48151 5.00000 0 23.1532 −20.0718 0 15.3960
1.7 5.12367 0 18.2520 5.00000 0 −21.7657 52.5281 0 25.6184
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(29\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1305.4.a.m 7
3.b odd 2 1 435.4.a.j 7
15.d odd 2 1 2175.4.a.m 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.4.a.j 7 3.b odd 2 1
1305.4.a.m 7 1.a even 1 1 trivial
2175.4.a.m 7 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{7} - T_{2}^{6} - 35T_{2}^{5} + 18T_{2}^{4} + 329T_{2}^{3} - 167T_{2}^{2} - 767T_{2} + 638 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1305))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{7} - T^{6} + \cdots + 638 \) Copy content Toggle raw display
$3$ \( T^{7} \) Copy content Toggle raw display
$5$ \( (T - 5)^{7} \) Copy content Toggle raw display
$7$ \( T^{7} + 37 T^{6} + \cdots - 51243488 \) Copy content Toggle raw display
$11$ \( T^{7} - 11 T^{6} + \cdots + 344198304 \) Copy content Toggle raw display
$13$ \( T^{7} + \cdots + 724528410064 \) Copy content Toggle raw display
$17$ \( T^{7} + \cdots + 1088280942608 \) Copy content Toggle raw display
$19$ \( T^{7} + \cdots + 206799749120 \) Copy content Toggle raw display
$23$ \( T^{7} + \cdots + 199055640559616 \) Copy content Toggle raw display
$29$ \( (T - 29)^{7} \) Copy content Toggle raw display
$31$ \( T^{7} + \cdots - 2046710061056 \) Copy content Toggle raw display
$37$ \( T^{7} + \cdots + 48\!\cdots\!52 \) Copy content Toggle raw display
$41$ \( T^{7} + \cdots - 24\!\cdots\!48 \) Copy content Toggle raw display
$43$ \( T^{7} + \cdots - 24\!\cdots\!48 \) Copy content Toggle raw display
$47$ \( T^{7} + \cdots + 41\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( T^{7} + \cdots + 40\!\cdots\!68 \) Copy content Toggle raw display
$59$ \( T^{7} + \cdots + 19\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{7} + \cdots + 36\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{7} + \cdots + 43\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( T^{7} + \cdots - 57\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{7} + \cdots - 24\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{7} + \cdots + 16\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{7} + \cdots - 20\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{7} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{7} + \cdots + 27\!\cdots\!76 \) Copy content Toggle raw display
show more
show less