Properties

Label 1305.4.a.i.1.6
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 31x^{4} + 9x^{3} + 230x^{2} + 32x - 128 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(4.98965\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.98965 q^{2} +16.8966 q^{4} -5.00000 q^{5} +22.5076 q^{7} +44.3911 q^{8} -24.9483 q^{10} +32.8384 q^{11} +31.3437 q^{13} +112.305 q^{14} +86.3230 q^{16} +66.5556 q^{17} -103.349 q^{19} -84.4831 q^{20} +163.852 q^{22} -5.86439 q^{23} +25.0000 q^{25} +156.394 q^{26} +380.302 q^{28} +29.0000 q^{29} -26.9324 q^{31} +75.5933 q^{32} +332.089 q^{34} -112.538 q^{35} -18.2548 q^{37} -515.675 q^{38} -221.955 q^{40} +115.564 q^{41} +415.780 q^{43} +554.859 q^{44} -29.2613 q^{46} -11.7223 q^{47} +163.592 q^{49} +124.741 q^{50} +529.604 q^{52} +275.059 q^{53} -164.192 q^{55} +999.136 q^{56} +144.700 q^{58} -212.467 q^{59} -766.954 q^{61} -134.383 q^{62} -313.400 q^{64} -156.719 q^{65} +256.113 q^{67} +1124.57 q^{68} -561.525 q^{70} +711.750 q^{71} +45.4465 q^{73} -91.0850 q^{74} -1746.25 q^{76} +739.114 q^{77} +329.147 q^{79} -431.615 q^{80} +576.623 q^{82} +283.281 q^{83} -332.778 q^{85} +2074.60 q^{86} +1457.73 q^{88} +802.821 q^{89} +705.472 q^{91} -99.0885 q^{92} -58.4903 q^{94} +516.744 q^{95} +389.532 q^{97} +816.265 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 15 q^{4} - 30 q^{5} + 23 q^{7} + 51 q^{8} - 5 q^{10} + 111 q^{11} - 83 q^{13} + 102 q^{14} - 37 q^{16} + 35 q^{17} - 76 q^{19} - 75 q^{20} + 66 q^{22} - 166 q^{23} + 150 q^{25} + 282 q^{26}+ \cdots + 1903 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.98965 1.76411 0.882054 0.471148i \(-0.156160\pi\)
0.882054 + 0.471148i \(0.156160\pi\)
\(3\) 0 0
\(4\) 16.8966 2.11208
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 22.5076 1.21530 0.607648 0.794207i \(-0.292113\pi\)
0.607648 + 0.794207i \(0.292113\pi\)
\(8\) 44.3911 1.96183
\(9\) 0 0
\(10\) −24.9483 −0.788933
\(11\) 32.8384 0.900106 0.450053 0.893002i \(-0.351405\pi\)
0.450053 + 0.893002i \(0.351405\pi\)
\(12\) 0 0
\(13\) 31.3437 0.668707 0.334353 0.942448i \(-0.391482\pi\)
0.334353 + 0.942448i \(0.391482\pi\)
\(14\) 112.305 2.14391
\(15\) 0 0
\(16\) 86.3230 1.34880
\(17\) 66.5556 0.949536 0.474768 0.880111i \(-0.342532\pi\)
0.474768 + 0.880111i \(0.342532\pi\)
\(18\) 0 0
\(19\) −103.349 −1.24789 −0.623943 0.781470i \(-0.714470\pi\)
−0.623943 + 0.781470i \(0.714470\pi\)
\(20\) −84.4831 −0.944550
\(21\) 0 0
\(22\) 163.852 1.58788
\(23\) −5.86439 −0.0531657 −0.0265828 0.999647i \(-0.508463\pi\)
−0.0265828 + 0.999647i \(0.508463\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 156.394 1.17967
\(27\) 0 0
\(28\) 380.302 2.56680
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −26.9324 −0.156039 −0.0780195 0.996952i \(-0.524860\pi\)
−0.0780195 + 0.996952i \(0.524860\pi\)
\(32\) 75.5933 0.417598
\(33\) 0 0
\(34\) 332.089 1.67508
\(35\) −112.538 −0.543497
\(36\) 0 0
\(37\) −18.2548 −0.0811099 −0.0405550 0.999177i \(-0.512913\pi\)
−0.0405550 + 0.999177i \(0.512913\pi\)
\(38\) −515.675 −2.20141
\(39\) 0 0
\(40\) −221.955 −0.877356
\(41\) 115.564 0.440196 0.220098 0.975478i \(-0.429362\pi\)
0.220098 + 0.975478i \(0.429362\pi\)
\(42\) 0 0
\(43\) 415.780 1.47455 0.737277 0.675591i \(-0.236111\pi\)
0.737277 + 0.675591i \(0.236111\pi\)
\(44\) 554.859 1.90109
\(45\) 0 0
\(46\) −29.2613 −0.0937900
\(47\) −11.7223 −0.0363804 −0.0181902 0.999835i \(-0.505790\pi\)
−0.0181902 + 0.999835i \(0.505790\pi\)
\(48\) 0 0
\(49\) 163.592 0.476943
\(50\) 124.741 0.352822
\(51\) 0 0
\(52\) 529.604 1.41236
\(53\) 275.059 0.712872 0.356436 0.934320i \(-0.383992\pi\)
0.356436 + 0.934320i \(0.383992\pi\)
\(54\) 0 0
\(55\) −164.192 −0.402540
\(56\) 999.136 2.38420
\(57\) 0 0
\(58\) 144.700 0.327587
\(59\) −212.467 −0.468829 −0.234414 0.972137i \(-0.575317\pi\)
−0.234414 + 0.972137i \(0.575317\pi\)
\(60\) 0 0
\(61\) −766.954 −1.60981 −0.804905 0.593403i \(-0.797784\pi\)
−0.804905 + 0.593403i \(0.797784\pi\)
\(62\) −134.383 −0.275270
\(63\) 0 0
\(64\) −313.400 −0.612110
\(65\) −156.719 −0.299055
\(66\) 0 0
\(67\) 256.113 0.467003 0.233501 0.972356i \(-0.424982\pi\)
0.233501 + 0.972356i \(0.424982\pi\)
\(68\) 1124.57 2.00549
\(69\) 0 0
\(70\) −561.525 −0.958787
\(71\) 711.750 1.18971 0.594854 0.803834i \(-0.297210\pi\)
0.594854 + 0.803834i \(0.297210\pi\)
\(72\) 0 0
\(73\) 45.4465 0.0728646 0.0364323 0.999336i \(-0.488401\pi\)
0.0364323 + 0.999336i \(0.488401\pi\)
\(74\) −91.0850 −0.143087
\(75\) 0 0
\(76\) −1746.25 −2.63563
\(77\) 739.114 1.09389
\(78\) 0 0
\(79\) 329.147 0.468759 0.234380 0.972145i \(-0.424694\pi\)
0.234380 + 0.972145i \(0.424694\pi\)
\(80\) −431.615 −0.603201
\(81\) 0 0
\(82\) 576.623 0.776553
\(83\) 283.281 0.374628 0.187314 0.982300i \(-0.440022\pi\)
0.187314 + 0.982300i \(0.440022\pi\)
\(84\) 0 0
\(85\) −332.778 −0.424645
\(86\) 2074.60 2.60127
\(87\) 0 0
\(88\) 1457.73 1.76585
\(89\) 802.821 0.956167 0.478083 0.878314i \(-0.341332\pi\)
0.478083 + 0.878314i \(0.341332\pi\)
\(90\) 0 0
\(91\) 705.472 0.812677
\(92\) −99.0885 −0.112290
\(93\) 0 0
\(94\) −58.4903 −0.0641789
\(95\) 516.744 0.558072
\(96\) 0 0
\(97\) 389.532 0.407742 0.203871 0.978998i \(-0.434648\pi\)
0.203871 + 0.978998i \(0.434648\pi\)
\(98\) 816.265 0.841379
\(99\) 0 0
\(100\) 422.416 0.422416
\(101\) −274.559 −0.270492 −0.135246 0.990812i \(-0.543182\pi\)
−0.135246 + 0.990812i \(0.543182\pi\)
\(102\) 0 0
\(103\) −841.113 −0.804635 −0.402317 0.915500i \(-0.631795\pi\)
−0.402317 + 0.915500i \(0.631795\pi\)
\(104\) 1391.38 1.31189
\(105\) 0 0
\(106\) 1372.45 1.25758
\(107\) 1489.04 1.34534 0.672670 0.739943i \(-0.265147\pi\)
0.672670 + 0.739943i \(0.265147\pi\)
\(108\) 0 0
\(109\) −987.120 −0.867422 −0.433711 0.901052i \(-0.642796\pi\)
−0.433711 + 0.901052i \(0.642796\pi\)
\(110\) −819.262 −0.710123
\(111\) 0 0
\(112\) 1942.92 1.63919
\(113\) −135.446 −0.112758 −0.0563791 0.998409i \(-0.517956\pi\)
−0.0563791 + 0.998409i \(0.517956\pi\)
\(114\) 0 0
\(115\) 29.3220 0.0237764
\(116\) 490.002 0.392203
\(117\) 0 0
\(118\) −1060.14 −0.827065
\(119\) 1498.01 1.15397
\(120\) 0 0
\(121\) −252.636 −0.189809
\(122\) −3826.84 −2.83988
\(123\) 0 0
\(124\) −455.067 −0.329567
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1539.42 1.07560 0.537802 0.843071i \(-0.319255\pi\)
0.537802 + 0.843071i \(0.319255\pi\)
\(128\) −2168.50 −1.49743
\(129\) 0 0
\(130\) −781.972 −0.527565
\(131\) −1625.05 −1.08383 −0.541914 0.840434i \(-0.682300\pi\)
−0.541914 + 0.840434i \(0.682300\pi\)
\(132\) 0 0
\(133\) −2326.13 −1.51655
\(134\) 1277.91 0.823843
\(135\) 0 0
\(136\) 2954.48 1.86282
\(137\) 925.116 0.576920 0.288460 0.957492i \(-0.406857\pi\)
0.288460 + 0.957492i \(0.406857\pi\)
\(138\) 0 0
\(139\) −3232.14 −1.97228 −0.986138 0.165928i \(-0.946938\pi\)
−0.986138 + 0.165928i \(0.946938\pi\)
\(140\) −1901.51 −1.14791
\(141\) 0 0
\(142\) 3551.39 2.09877
\(143\) 1029.28 0.601907
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) 226.762 0.128541
\(147\) 0 0
\(148\) −308.444 −0.171311
\(149\) −764.349 −0.420255 −0.210127 0.977674i \(-0.567388\pi\)
−0.210127 + 0.977674i \(0.567388\pi\)
\(150\) 0 0
\(151\) 2721.64 1.46678 0.733390 0.679808i \(-0.237937\pi\)
0.733390 + 0.679808i \(0.237937\pi\)
\(152\) −4587.76 −2.44814
\(153\) 0 0
\(154\) 3687.92 1.92975
\(155\) 134.662 0.0697827
\(156\) 0 0
\(157\) 1760.38 0.894862 0.447431 0.894319i \(-0.352339\pi\)
0.447431 + 0.894319i \(0.352339\pi\)
\(158\) 1642.33 0.826942
\(159\) 0 0
\(160\) −377.966 −0.186755
\(161\) −131.993 −0.0646120
\(162\) 0 0
\(163\) −3566.14 −1.71363 −0.856816 0.515622i \(-0.827561\pi\)
−0.856816 + 0.515622i \(0.827561\pi\)
\(164\) 1952.64 0.929728
\(165\) 0 0
\(166\) 1413.47 0.660885
\(167\) 1976.07 0.915647 0.457824 0.889043i \(-0.348629\pi\)
0.457824 + 0.889043i \(0.348629\pi\)
\(168\) 0 0
\(169\) −1214.57 −0.552831
\(170\) −1660.45 −0.749120
\(171\) 0 0
\(172\) 7025.28 3.11437
\(173\) 1836.14 0.806934 0.403467 0.914994i \(-0.367805\pi\)
0.403467 + 0.914994i \(0.367805\pi\)
\(174\) 0 0
\(175\) 562.690 0.243059
\(176\) 2834.71 1.21406
\(177\) 0 0
\(178\) 4005.80 1.68678
\(179\) −2241.87 −0.936117 −0.468058 0.883698i \(-0.655046\pi\)
−0.468058 + 0.883698i \(0.655046\pi\)
\(180\) 0 0
\(181\) 2084.75 0.856122 0.428061 0.903750i \(-0.359197\pi\)
0.428061 + 0.903750i \(0.359197\pi\)
\(182\) 3520.06 1.43365
\(183\) 0 0
\(184\) −260.327 −0.104302
\(185\) 91.2739 0.0362735
\(186\) 0 0
\(187\) 2185.58 0.854682
\(188\) −198.068 −0.0768382
\(189\) 0 0
\(190\) 2578.37 0.984499
\(191\) −4206.24 −1.59347 −0.796735 0.604328i \(-0.793442\pi\)
−0.796735 + 0.604328i \(0.793442\pi\)
\(192\) 0 0
\(193\) −2047.28 −0.763558 −0.381779 0.924254i \(-0.624688\pi\)
−0.381779 + 0.924254i \(0.624688\pi\)
\(194\) 1943.63 0.719301
\(195\) 0 0
\(196\) 2764.15 1.00734
\(197\) −4461.88 −1.61369 −0.806843 0.590766i \(-0.798826\pi\)
−0.806843 + 0.590766i \(0.798826\pi\)
\(198\) 0 0
\(199\) −1926.80 −0.686367 −0.343183 0.939268i \(-0.611505\pi\)
−0.343183 + 0.939268i \(0.611505\pi\)
\(200\) 1109.78 0.392365
\(201\) 0 0
\(202\) −1369.95 −0.477177
\(203\) 652.720 0.225675
\(204\) 0 0
\(205\) −577.819 −0.196862
\(206\) −4196.86 −1.41946
\(207\) 0 0
\(208\) 2705.69 0.901950
\(209\) −3393.81 −1.12323
\(210\) 0 0
\(211\) −4487.22 −1.46404 −0.732021 0.681282i \(-0.761423\pi\)
−0.732021 + 0.681282i \(0.761423\pi\)
\(212\) 4647.57 1.50564
\(213\) 0 0
\(214\) 7429.81 2.37332
\(215\) −2078.90 −0.659441
\(216\) 0 0
\(217\) −606.184 −0.189633
\(218\) −4925.39 −1.53023
\(219\) 0 0
\(220\) −2774.30 −0.850195
\(221\) 2086.10 0.634961
\(222\) 0 0
\(223\) −5113.28 −1.53547 −0.767737 0.640765i \(-0.778617\pi\)
−0.767737 + 0.640765i \(0.778617\pi\)
\(224\) 1701.42 0.507505
\(225\) 0 0
\(226\) −675.827 −0.198918
\(227\) 5258.42 1.53751 0.768753 0.639546i \(-0.220878\pi\)
0.768753 + 0.639546i \(0.220878\pi\)
\(228\) 0 0
\(229\) −5242.30 −1.51276 −0.756378 0.654135i \(-0.773033\pi\)
−0.756378 + 0.654135i \(0.773033\pi\)
\(230\) 146.306 0.0419442
\(231\) 0 0
\(232\) 1287.34 0.364302
\(233\) 6046.86 1.70018 0.850092 0.526635i \(-0.176547\pi\)
0.850092 + 0.526635i \(0.176547\pi\)
\(234\) 0 0
\(235\) 58.6116 0.0162698
\(236\) −3589.98 −0.990203
\(237\) 0 0
\(238\) 7474.53 2.03572
\(239\) 212.645 0.0575518 0.0287759 0.999586i \(-0.490839\pi\)
0.0287759 + 0.999586i \(0.490839\pi\)
\(240\) 0 0
\(241\) −5857.59 −1.56565 −0.782823 0.622245i \(-0.786221\pi\)
−0.782823 + 0.622245i \(0.786221\pi\)
\(242\) −1260.57 −0.334844
\(243\) 0 0
\(244\) −12958.9 −3.40005
\(245\) −817.958 −0.213295
\(246\) 0 0
\(247\) −3239.34 −0.834470
\(248\) −1195.56 −0.306121
\(249\) 0 0
\(250\) −623.707 −0.157787
\(251\) 3510.70 0.882842 0.441421 0.897300i \(-0.354475\pi\)
0.441421 + 0.897300i \(0.354475\pi\)
\(252\) 0 0
\(253\) −192.578 −0.0478547
\(254\) 7681.18 1.89748
\(255\) 0 0
\(256\) −8312.88 −2.02951
\(257\) −2682.10 −0.650990 −0.325495 0.945544i \(-0.605531\pi\)
−0.325495 + 0.945544i \(0.605531\pi\)
\(258\) 0 0
\(259\) −410.871 −0.0985725
\(260\) −2648.02 −0.631627
\(261\) 0 0
\(262\) −8108.45 −1.91199
\(263\) −4147.94 −0.972521 −0.486261 0.873814i \(-0.661639\pi\)
−0.486261 + 0.873814i \(0.661639\pi\)
\(264\) 0 0
\(265\) −1375.29 −0.318806
\(266\) −11606.6 −2.67536
\(267\) 0 0
\(268\) 4327.45 0.986346
\(269\) 7462.57 1.69145 0.845726 0.533617i \(-0.179168\pi\)
0.845726 + 0.533617i \(0.179168\pi\)
\(270\) 0 0
\(271\) 6848.81 1.53519 0.767594 0.640937i \(-0.221454\pi\)
0.767594 + 0.640937i \(0.221454\pi\)
\(272\) 5745.28 1.28073
\(273\) 0 0
\(274\) 4616.01 1.01775
\(275\) 820.961 0.180021
\(276\) 0 0
\(277\) −100.396 −0.0217769 −0.0108884 0.999941i \(-0.503466\pi\)
−0.0108884 + 0.999941i \(0.503466\pi\)
\(278\) −16127.2 −3.47931
\(279\) 0 0
\(280\) −4995.68 −1.06625
\(281\) −3619.61 −0.768426 −0.384213 0.923244i \(-0.625527\pi\)
−0.384213 + 0.923244i \(0.625527\pi\)
\(282\) 0 0
\(283\) −3692.84 −0.775677 −0.387839 0.921727i \(-0.626778\pi\)
−0.387839 + 0.921727i \(0.626778\pi\)
\(284\) 12026.2 2.51276
\(285\) 0 0
\(286\) 5135.75 1.06183
\(287\) 2601.06 0.534968
\(288\) 0 0
\(289\) −483.352 −0.0983823
\(290\) −723.500 −0.146501
\(291\) 0 0
\(292\) 767.893 0.153896
\(293\) 1172.85 0.233851 0.116926 0.993141i \(-0.462696\pi\)
0.116926 + 0.993141i \(0.462696\pi\)
\(294\) 0 0
\(295\) 1062.34 0.209667
\(296\) −810.349 −0.159124
\(297\) 0 0
\(298\) −3813.84 −0.741375
\(299\) −183.812 −0.0355523
\(300\) 0 0
\(301\) 9358.20 1.79202
\(302\) 13580.0 2.58756
\(303\) 0 0
\(304\) −8921.38 −1.68315
\(305\) 3834.77 0.719929
\(306\) 0 0
\(307\) −4625.08 −0.859829 −0.429915 0.902870i \(-0.641456\pi\)
−0.429915 + 0.902870i \(0.641456\pi\)
\(308\) 12488.5 2.31039
\(309\) 0 0
\(310\) 671.917 0.123104
\(311\) −5757.91 −1.04984 −0.524921 0.851151i \(-0.675905\pi\)
−0.524921 + 0.851151i \(0.675905\pi\)
\(312\) 0 0
\(313\) −7518.69 −1.35777 −0.678884 0.734246i \(-0.737536\pi\)
−0.678884 + 0.734246i \(0.737536\pi\)
\(314\) 8783.66 1.57863
\(315\) 0 0
\(316\) 5561.48 0.990056
\(317\) −695.769 −0.123275 −0.0616376 0.998099i \(-0.519632\pi\)
−0.0616376 + 0.998099i \(0.519632\pi\)
\(318\) 0 0
\(319\) 952.315 0.167145
\(320\) 1567.00 0.273744
\(321\) 0 0
\(322\) −658.601 −0.113983
\(323\) −6878.44 −1.18491
\(324\) 0 0
\(325\) 783.594 0.133741
\(326\) −17793.8 −3.02303
\(327\) 0 0
\(328\) 5130.00 0.863588
\(329\) −263.841 −0.0442129
\(330\) 0 0
\(331\) −7536.11 −1.25143 −0.625713 0.780053i \(-0.715192\pi\)
−0.625713 + 0.780053i \(0.715192\pi\)
\(332\) 4786.50 0.791245
\(333\) 0 0
\(334\) 9859.92 1.61530
\(335\) −1280.56 −0.208850
\(336\) 0 0
\(337\) 6481.09 1.04762 0.523809 0.851836i \(-0.324511\pi\)
0.523809 + 0.851836i \(0.324511\pi\)
\(338\) −6060.28 −0.975254
\(339\) 0 0
\(340\) −5622.83 −0.896884
\(341\) −884.419 −0.140452
\(342\) 0 0
\(343\) −4038.05 −0.635669
\(344\) 18456.9 2.89282
\(345\) 0 0
\(346\) 9161.72 1.42352
\(347\) 1154.45 0.178600 0.0893000 0.996005i \(-0.471537\pi\)
0.0893000 + 0.996005i \(0.471537\pi\)
\(348\) 0 0
\(349\) 7656.69 1.17436 0.587182 0.809455i \(-0.300237\pi\)
0.587182 + 0.809455i \(0.300237\pi\)
\(350\) 2807.63 0.428783
\(351\) 0 0
\(352\) 2482.37 0.375882
\(353\) −1112.90 −0.167801 −0.0839003 0.996474i \(-0.526738\pi\)
−0.0839003 + 0.996474i \(0.526738\pi\)
\(354\) 0 0
\(355\) −3558.75 −0.532053
\(356\) 13565.0 2.01950
\(357\) 0 0
\(358\) −11186.1 −1.65141
\(359\) −12401.6 −1.82321 −0.911604 0.411068i \(-0.865156\pi\)
−0.911604 + 0.411068i \(0.865156\pi\)
\(360\) 0 0
\(361\) 3821.97 0.557220
\(362\) 10402.2 1.51029
\(363\) 0 0
\(364\) 11920.1 1.71644
\(365\) −227.233 −0.0325860
\(366\) 0 0
\(367\) 11259.8 1.60152 0.800759 0.598987i \(-0.204430\pi\)
0.800759 + 0.598987i \(0.204430\pi\)
\(368\) −506.232 −0.0717097
\(369\) 0 0
\(370\) 455.425 0.0639903
\(371\) 6190.91 0.866350
\(372\) 0 0
\(373\) −8049.64 −1.11741 −0.558706 0.829366i \(-0.688702\pi\)
−0.558706 + 0.829366i \(0.688702\pi\)
\(374\) 10905.3 1.50775
\(375\) 0 0
\(376\) −520.367 −0.0713720
\(377\) 908.969 0.124176
\(378\) 0 0
\(379\) 9811.51 1.32977 0.664886 0.746945i \(-0.268480\pi\)
0.664886 + 0.746945i \(0.268480\pi\)
\(380\) 8731.23 1.17869
\(381\) 0 0
\(382\) −20987.7 −2.81106
\(383\) −6660.10 −0.888551 −0.444276 0.895890i \(-0.646539\pi\)
−0.444276 + 0.895890i \(0.646539\pi\)
\(384\) 0 0
\(385\) −3695.57 −0.489205
\(386\) −10215.2 −1.34700
\(387\) 0 0
\(388\) 6581.78 0.861183
\(389\) 15036.0 1.95979 0.979894 0.199521i \(-0.0639386\pi\)
0.979894 + 0.199521i \(0.0639386\pi\)
\(390\) 0 0
\(391\) −390.308 −0.0504827
\(392\) 7262.00 0.935680
\(393\) 0 0
\(394\) −22263.2 −2.84672
\(395\) −1645.74 −0.209636
\(396\) 0 0
\(397\) −2227.56 −0.281607 −0.140804 0.990038i \(-0.544969\pi\)
−0.140804 + 0.990038i \(0.544969\pi\)
\(398\) −9614.05 −1.21083
\(399\) 0 0
\(400\) 2158.08 0.269759
\(401\) 7601.22 0.946600 0.473300 0.880901i \(-0.343063\pi\)
0.473300 + 0.880901i \(0.343063\pi\)
\(402\) 0 0
\(403\) −844.163 −0.104344
\(404\) −4639.13 −0.571300
\(405\) 0 0
\(406\) 3256.85 0.398115
\(407\) −599.458 −0.0730075
\(408\) 0 0
\(409\) −13097.7 −1.58347 −0.791733 0.610867i \(-0.790821\pi\)
−0.791733 + 0.610867i \(0.790821\pi\)
\(410\) −2883.12 −0.347285
\(411\) 0 0
\(412\) −14212.0 −1.69945
\(413\) −4782.13 −0.569765
\(414\) 0 0
\(415\) −1416.41 −0.167539
\(416\) 2369.38 0.279251
\(417\) 0 0
\(418\) −16934.0 −1.98150
\(419\) −10997.7 −1.28227 −0.641135 0.767428i \(-0.721536\pi\)
−0.641135 + 0.767428i \(0.721536\pi\)
\(420\) 0 0
\(421\) −13032.2 −1.50867 −0.754333 0.656492i \(-0.772040\pi\)
−0.754333 + 0.656492i \(0.772040\pi\)
\(422\) −22389.7 −2.58273
\(423\) 0 0
\(424\) 12210.2 1.39853
\(425\) 1663.89 0.189907
\(426\) 0 0
\(427\) −17262.3 −1.95640
\(428\) 25159.8 2.84146
\(429\) 0 0
\(430\) −10373.0 −1.16332
\(431\) 781.858 0.0873800 0.0436900 0.999045i \(-0.486089\pi\)
0.0436900 + 0.999045i \(0.486089\pi\)
\(432\) 0 0
\(433\) 9159.83 1.01661 0.508306 0.861176i \(-0.330272\pi\)
0.508306 + 0.861176i \(0.330272\pi\)
\(434\) −3024.65 −0.334534
\(435\) 0 0
\(436\) −16679.0 −1.83206
\(437\) 606.078 0.0663447
\(438\) 0 0
\(439\) −4048.62 −0.440160 −0.220080 0.975482i \(-0.570632\pi\)
−0.220080 + 0.975482i \(0.570632\pi\)
\(440\) −7288.67 −0.789713
\(441\) 0 0
\(442\) 10408.9 1.12014
\(443\) 6522.28 0.699510 0.349755 0.936841i \(-0.386265\pi\)
0.349755 + 0.936841i \(0.386265\pi\)
\(444\) 0 0
\(445\) −4014.10 −0.427611
\(446\) −25513.5 −2.70874
\(447\) 0 0
\(448\) −7053.88 −0.743894
\(449\) 4946.78 0.519940 0.259970 0.965617i \(-0.416287\pi\)
0.259970 + 0.965617i \(0.416287\pi\)
\(450\) 0 0
\(451\) 3794.94 0.396223
\(452\) −2288.58 −0.238154
\(453\) 0 0
\(454\) 26237.7 2.71233
\(455\) −3527.36 −0.363440
\(456\) 0 0
\(457\) 16111.7 1.64918 0.824590 0.565731i \(-0.191406\pi\)
0.824590 + 0.565731i \(0.191406\pi\)
\(458\) −26157.3 −2.66866
\(459\) 0 0
\(460\) 495.443 0.0502177
\(461\) −3232.48 −0.326576 −0.163288 0.986578i \(-0.552210\pi\)
−0.163288 + 0.986578i \(0.552210\pi\)
\(462\) 0 0
\(463\) 6763.53 0.678894 0.339447 0.940625i \(-0.389760\pi\)
0.339447 + 0.940625i \(0.389760\pi\)
\(464\) 2503.37 0.250465
\(465\) 0 0
\(466\) 30171.7 2.99931
\(467\) −2459.52 −0.243711 −0.121855 0.992548i \(-0.538884\pi\)
−0.121855 + 0.992548i \(0.538884\pi\)
\(468\) 0 0
\(469\) 5764.48 0.567546
\(470\) 292.452 0.0287017
\(471\) 0 0
\(472\) −9431.66 −0.919761
\(473\) 13653.6 1.32725
\(474\) 0 0
\(475\) −2583.72 −0.249577
\(476\) 25311.3 2.43727
\(477\) 0 0
\(478\) 1061.03 0.101528
\(479\) −3207.84 −0.305991 −0.152996 0.988227i \(-0.548892\pi\)
−0.152996 + 0.988227i \(0.548892\pi\)
\(480\) 0 0
\(481\) −572.173 −0.0542388
\(482\) −29227.3 −2.76197
\(483\) 0 0
\(484\) −4268.70 −0.400892
\(485\) −1947.66 −0.182348
\(486\) 0 0
\(487\) 12362.0 1.15026 0.575130 0.818062i \(-0.304952\pi\)
0.575130 + 0.818062i \(0.304952\pi\)
\(488\) −34045.9 −3.15817
\(489\) 0 0
\(490\) −4081.32 −0.376276
\(491\) −18430.3 −1.69399 −0.846993 0.531604i \(-0.821590\pi\)
−0.846993 + 0.531604i \(0.821590\pi\)
\(492\) 0 0
\(493\) 1930.11 0.176324
\(494\) −16163.2 −1.47210
\(495\) 0 0
\(496\) −2324.89 −0.210465
\(497\) 16019.8 1.44585
\(498\) 0 0
\(499\) 9338.78 0.837798 0.418899 0.908033i \(-0.362416\pi\)
0.418899 + 0.908033i \(0.362416\pi\)
\(500\) −2112.08 −0.188910
\(501\) 0 0
\(502\) 17517.2 1.55743
\(503\) −19444.6 −1.72364 −0.861819 0.507216i \(-0.830674\pi\)
−0.861819 + 0.507216i \(0.830674\pi\)
\(504\) 0 0
\(505\) 1372.80 0.120968
\(506\) −960.895 −0.0844210
\(507\) 0 0
\(508\) 26011.0 2.27176
\(509\) −11959.2 −1.04142 −0.520711 0.853733i \(-0.674333\pi\)
−0.520711 + 0.853733i \(0.674333\pi\)
\(510\) 0 0
\(511\) 1022.89 0.0885520
\(512\) −24130.3 −2.08285
\(513\) 0 0
\(514\) −13382.7 −1.14842
\(515\) 4205.57 0.359844
\(516\) 0 0
\(517\) −384.943 −0.0327462
\(518\) −2050.10 −0.173893
\(519\) 0 0
\(520\) −6956.91 −0.586694
\(521\) 2757.67 0.231892 0.115946 0.993256i \(-0.463010\pi\)
0.115946 + 0.993256i \(0.463010\pi\)
\(522\) 0 0
\(523\) 3886.64 0.324954 0.162477 0.986712i \(-0.448052\pi\)
0.162477 + 0.986712i \(0.448052\pi\)
\(524\) −27457.9 −2.28913
\(525\) 0 0
\(526\) −20696.8 −1.71563
\(527\) −1792.50 −0.148165
\(528\) 0 0
\(529\) −12132.6 −0.997173
\(530\) −6862.24 −0.562409
\(531\) 0 0
\(532\) −39303.8 −3.20307
\(533\) 3622.20 0.294362
\(534\) 0 0
\(535\) −7445.22 −0.601654
\(536\) 11369.1 0.916178
\(537\) 0 0
\(538\) 37235.6 2.98390
\(539\) 5372.09 0.429299
\(540\) 0 0
\(541\) −11307.5 −0.898610 −0.449305 0.893379i \(-0.648328\pi\)
−0.449305 + 0.893379i \(0.648328\pi\)
\(542\) 34173.2 2.70824
\(543\) 0 0
\(544\) 5031.15 0.396524
\(545\) 4935.60 0.387923
\(546\) 0 0
\(547\) 9195.12 0.718748 0.359374 0.933194i \(-0.382990\pi\)
0.359374 + 0.933194i \(0.382990\pi\)
\(548\) 15631.3 1.21850
\(549\) 0 0
\(550\) 4096.31 0.317577
\(551\) −2997.11 −0.231727
\(552\) 0 0
\(553\) 7408.32 0.569681
\(554\) −500.940 −0.0384168
\(555\) 0 0
\(556\) −54612.2 −4.16560
\(557\) −12391.1 −0.942596 −0.471298 0.881974i \(-0.656214\pi\)
−0.471298 + 0.881974i \(0.656214\pi\)
\(558\) 0 0
\(559\) 13032.1 0.986045
\(560\) −9714.62 −0.733067
\(561\) 0 0
\(562\) −18060.6 −1.35559
\(563\) −9161.81 −0.685834 −0.342917 0.939366i \(-0.611415\pi\)
−0.342917 + 0.939366i \(0.611415\pi\)
\(564\) 0 0
\(565\) 677.229 0.0504270
\(566\) −18426.0 −1.36838
\(567\) 0 0
\(568\) 31595.4 2.33400
\(569\) 15614.8 1.15045 0.575226 0.817994i \(-0.304914\pi\)
0.575226 + 0.817994i \(0.304914\pi\)
\(570\) 0 0
\(571\) 13526.3 0.991345 0.495673 0.868509i \(-0.334922\pi\)
0.495673 + 0.868509i \(0.334922\pi\)
\(572\) 17391.4 1.27128
\(573\) 0 0
\(574\) 12978.4 0.943742
\(575\) −146.610 −0.0106331
\(576\) 0 0
\(577\) 21208.3 1.53018 0.765090 0.643923i \(-0.222694\pi\)
0.765090 + 0.643923i \(0.222694\pi\)
\(578\) −2411.76 −0.173557
\(579\) 0 0
\(580\) −2450.01 −0.175399
\(581\) 6375.98 0.455284
\(582\) 0 0
\(583\) 9032.50 0.641660
\(584\) 2017.42 0.142948
\(585\) 0 0
\(586\) 5852.09 0.412539
\(587\) −7975.12 −0.560764 −0.280382 0.959888i \(-0.590461\pi\)
−0.280382 + 0.959888i \(0.590461\pi\)
\(588\) 0 0
\(589\) 2783.43 0.194719
\(590\) 5300.69 0.369875
\(591\) 0 0
\(592\) −1575.81 −0.109401
\(593\) 6169.18 0.427214 0.213607 0.976920i \(-0.431479\pi\)
0.213607 + 0.976920i \(0.431479\pi\)
\(594\) 0 0
\(595\) −7490.03 −0.516069
\(596\) −12914.9 −0.887611
\(597\) 0 0
\(598\) −917.158 −0.0627181
\(599\) −10909.8 −0.744180 −0.372090 0.928197i \(-0.621359\pi\)
−0.372090 + 0.928197i \(0.621359\pi\)
\(600\) 0 0
\(601\) −11926.7 −0.809483 −0.404741 0.914431i \(-0.632638\pi\)
−0.404741 + 0.914431i \(0.632638\pi\)
\(602\) 46694.2 3.16132
\(603\) 0 0
\(604\) 45986.5 3.09795
\(605\) 1263.18 0.0848853
\(606\) 0 0
\(607\) −12043.2 −0.805301 −0.402650 0.915354i \(-0.631911\pi\)
−0.402650 + 0.915354i \(0.631911\pi\)
\(608\) −7812.47 −0.521114
\(609\) 0 0
\(610\) 19134.2 1.27003
\(611\) −367.422 −0.0243278
\(612\) 0 0
\(613\) 11777.4 0.775992 0.387996 0.921661i \(-0.373168\pi\)
0.387996 + 0.921661i \(0.373168\pi\)
\(614\) −23077.6 −1.51683
\(615\) 0 0
\(616\) 32810.1 2.14603
\(617\) 2907.19 0.189691 0.0948454 0.995492i \(-0.469764\pi\)
0.0948454 + 0.995492i \(0.469764\pi\)
\(618\) 0 0
\(619\) −839.647 −0.0545206 −0.0272603 0.999628i \(-0.508678\pi\)
−0.0272603 + 0.999628i \(0.508678\pi\)
\(620\) 2275.34 0.147387
\(621\) 0 0
\(622\) −28730.0 −1.85204
\(623\) 18069.6 1.16203
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −37515.6 −2.39525
\(627\) 0 0
\(628\) 29744.4 1.89002
\(629\) −1214.96 −0.0770167
\(630\) 0 0
\(631\) 9825.37 0.619876 0.309938 0.950757i \(-0.399692\pi\)
0.309938 + 0.950757i \(0.399692\pi\)
\(632\) 14611.2 0.919625
\(633\) 0 0
\(634\) −3471.64 −0.217471
\(635\) −7697.11 −0.481024
\(636\) 0 0
\(637\) 5127.57 0.318935
\(638\) 4751.72 0.294863
\(639\) 0 0
\(640\) 10842.5 0.669669
\(641\) 22040.3 1.35810 0.679049 0.734093i \(-0.262392\pi\)
0.679049 + 0.734093i \(0.262392\pi\)
\(642\) 0 0
\(643\) −21366.9 −1.31047 −0.655233 0.755427i \(-0.727429\pi\)
−0.655233 + 0.755427i \(0.727429\pi\)
\(644\) −2230.24 −0.136466
\(645\) 0 0
\(646\) −34321.0 −2.09031
\(647\) 5826.03 0.354011 0.177005 0.984210i \(-0.443359\pi\)
0.177005 + 0.984210i \(0.443359\pi\)
\(648\) 0 0
\(649\) −6977.10 −0.421995
\(650\) 3909.86 0.235934
\(651\) 0 0
\(652\) −60255.8 −3.61933
\(653\) 20058.4 1.20206 0.601030 0.799227i \(-0.294757\pi\)
0.601030 + 0.799227i \(0.294757\pi\)
\(654\) 0 0
\(655\) 8125.26 0.484703
\(656\) 9975.82 0.593735
\(657\) 0 0
\(658\) −1316.48 −0.0779963
\(659\) 28535.3 1.68676 0.843382 0.537315i \(-0.180561\pi\)
0.843382 + 0.537315i \(0.180561\pi\)
\(660\) 0 0
\(661\) 15044.6 0.885274 0.442637 0.896701i \(-0.354043\pi\)
0.442637 + 0.896701i \(0.354043\pi\)
\(662\) −37602.6 −2.20765
\(663\) 0 0
\(664\) 12575.2 0.734956
\(665\) 11630.7 0.678222
\(666\) 0 0
\(667\) −170.067 −0.00987262
\(668\) 33389.0 1.93392
\(669\) 0 0
\(670\) −6389.57 −0.368434
\(671\) −25185.6 −1.44900
\(672\) 0 0
\(673\) 15511.3 0.888434 0.444217 0.895919i \(-0.353482\pi\)
0.444217 + 0.895919i \(0.353482\pi\)
\(674\) 32338.4 1.84811
\(675\) 0 0
\(676\) −20522.1 −1.16762
\(677\) 10695.3 0.607170 0.303585 0.952804i \(-0.401816\pi\)
0.303585 + 0.952804i \(0.401816\pi\)
\(678\) 0 0
\(679\) 8767.43 0.495527
\(680\) −14772.4 −0.833081
\(681\) 0 0
\(682\) −4412.94 −0.247772
\(683\) 11144.8 0.624367 0.312184 0.950022i \(-0.398940\pi\)
0.312184 + 0.950022i \(0.398940\pi\)
\(684\) 0 0
\(685\) −4625.58 −0.258006
\(686\) −20148.5 −1.12139
\(687\) 0 0
\(688\) 35891.4 1.98887
\(689\) 8621.37 0.476703
\(690\) 0 0
\(691\) −5380.30 −0.296203 −0.148102 0.988972i \(-0.547316\pi\)
−0.148102 + 0.988972i \(0.547316\pi\)
\(692\) 31024.7 1.70431
\(693\) 0 0
\(694\) 5760.31 0.315070
\(695\) 16160.7 0.882029
\(696\) 0 0
\(697\) 7691.42 0.417982
\(698\) 38204.2 2.07171
\(699\) 0 0
\(700\) 9507.56 0.513360
\(701\) −21377.2 −1.15179 −0.575896 0.817523i \(-0.695347\pi\)
−0.575896 + 0.817523i \(0.695347\pi\)
\(702\) 0 0
\(703\) 1886.61 0.101216
\(704\) −10291.6 −0.550964
\(705\) 0 0
\(706\) −5552.97 −0.296018
\(707\) −6179.67 −0.328727
\(708\) 0 0
\(709\) −1384.02 −0.0733116 −0.0366558 0.999328i \(-0.511671\pi\)
−0.0366558 + 0.999328i \(0.511671\pi\)
\(710\) −17756.9 −0.938600
\(711\) 0 0
\(712\) 35638.1 1.87583
\(713\) 157.942 0.00829592
\(714\) 0 0
\(715\) −5146.40 −0.269181
\(716\) −37880.0 −1.97715
\(717\) 0 0
\(718\) −61879.7 −3.21634
\(719\) 10439.9 0.541504 0.270752 0.962649i \(-0.412728\pi\)
0.270752 + 0.962649i \(0.412728\pi\)
\(720\) 0 0
\(721\) −18931.4 −0.977869
\(722\) 19070.3 0.982996
\(723\) 0 0
\(724\) 35225.2 1.80820
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) 24684.5 1.25928 0.629640 0.776887i \(-0.283203\pi\)
0.629640 + 0.776887i \(0.283203\pi\)
\(728\) 31316.7 1.59433
\(729\) 0 0
\(730\) −1133.81 −0.0574853
\(731\) 27672.5 1.40014
\(732\) 0 0
\(733\) −858.035 −0.0432363 −0.0216182 0.999766i \(-0.506882\pi\)
−0.0216182 + 0.999766i \(0.506882\pi\)
\(734\) 56182.5 2.82525
\(735\) 0 0
\(736\) −443.309 −0.0222019
\(737\) 8410.35 0.420352
\(738\) 0 0
\(739\) −10331.9 −0.514299 −0.257149 0.966372i \(-0.582783\pi\)
−0.257149 + 0.966372i \(0.582783\pi\)
\(740\) 1542.22 0.0766124
\(741\) 0 0
\(742\) 30890.5 1.52834
\(743\) 27385.1 1.35217 0.676084 0.736824i \(-0.263676\pi\)
0.676084 + 0.736824i \(0.263676\pi\)
\(744\) 0 0
\(745\) 3821.75 0.187944
\(746\) −40164.9 −1.97123
\(747\) 0 0
\(748\) 36929.0 1.80516
\(749\) 33514.8 1.63499
\(750\) 0 0
\(751\) −40267.8 −1.95658 −0.978291 0.207234i \(-0.933554\pi\)
−0.978291 + 0.207234i \(0.933554\pi\)
\(752\) −1011.91 −0.0490697
\(753\) 0 0
\(754\) 4535.44 0.219060
\(755\) −13608.2 −0.655964
\(756\) 0 0
\(757\) −7047.02 −0.338346 −0.169173 0.985586i \(-0.554110\pi\)
−0.169173 + 0.985586i \(0.554110\pi\)
\(758\) 48956.0 2.34586
\(759\) 0 0
\(760\) 22938.8 1.09484
\(761\) −38699.3 −1.84343 −0.921714 0.387871i \(-0.873211\pi\)
−0.921714 + 0.387871i \(0.873211\pi\)
\(762\) 0 0
\(763\) −22217.7 −1.05417
\(764\) −71071.3 −3.36554
\(765\) 0 0
\(766\) −33231.6 −1.56750
\(767\) −6659.52 −0.313509
\(768\) 0 0
\(769\) −2374.27 −0.111337 −0.0556686 0.998449i \(-0.517729\pi\)
−0.0556686 + 0.998449i \(0.517729\pi\)
\(770\) −18439.6 −0.863010
\(771\) 0 0
\(772\) −34592.2 −1.61270
\(773\) 12947.9 0.602464 0.301232 0.953551i \(-0.402602\pi\)
0.301232 + 0.953551i \(0.402602\pi\)
\(774\) 0 0
\(775\) −673.311 −0.0312078
\(776\) 17291.7 0.799920
\(777\) 0 0
\(778\) 75024.6 3.45728
\(779\) −11943.4 −0.549314
\(780\) 0 0
\(781\) 23372.8 1.07086
\(782\) −1947.50 −0.0890570
\(783\) 0 0
\(784\) 14121.7 0.643300
\(785\) −8801.88 −0.400194
\(786\) 0 0
\(787\) −15659.1 −0.709260 −0.354630 0.935007i \(-0.615393\pi\)
−0.354630 + 0.935007i \(0.615393\pi\)
\(788\) −75390.8 −3.40823
\(789\) 0 0
\(790\) −8211.66 −0.369820
\(791\) −3048.56 −0.137034
\(792\) 0 0
\(793\) −24039.2 −1.07649
\(794\) −11114.7 −0.496786
\(795\) 0 0
\(796\) −32556.4 −1.44966
\(797\) −36033.7 −1.60148 −0.800739 0.599013i \(-0.795560\pi\)
−0.800739 + 0.599013i \(0.795560\pi\)
\(798\) 0 0
\(799\) −780.186 −0.0345444
\(800\) 1889.83 0.0835195
\(801\) 0 0
\(802\) 37927.4 1.66991
\(803\) 1492.39 0.0655858
\(804\) 0 0
\(805\) 659.967 0.0288954
\(806\) −4212.08 −0.184075
\(807\) 0 0
\(808\) −12188.0 −0.530658
\(809\) −8941.26 −0.388576 −0.194288 0.980945i \(-0.562240\pi\)
−0.194288 + 0.980945i \(0.562240\pi\)
\(810\) 0 0
\(811\) 31988.8 1.38506 0.692528 0.721391i \(-0.256497\pi\)
0.692528 + 0.721391i \(0.256497\pi\)
\(812\) 11028.8 0.476643
\(813\) 0 0
\(814\) −2991.09 −0.128793
\(815\) 17830.7 0.766359
\(816\) 0 0
\(817\) −42970.3 −1.84008
\(818\) −65352.8 −2.79341
\(819\) 0 0
\(820\) −9763.19 −0.415787
\(821\) 27919.3 1.18683 0.593417 0.804895i \(-0.297778\pi\)
0.593417 + 0.804895i \(0.297778\pi\)
\(822\) 0 0
\(823\) 44835.5 1.89899 0.949494 0.313784i \(-0.101597\pi\)
0.949494 + 0.313784i \(0.101597\pi\)
\(824\) −37337.9 −1.57855
\(825\) 0 0
\(826\) −23861.2 −1.00513
\(827\) 26829.4 1.12811 0.564056 0.825737i \(-0.309240\pi\)
0.564056 + 0.825737i \(0.309240\pi\)
\(828\) 0 0
\(829\) −34790.3 −1.45756 −0.728780 0.684748i \(-0.759912\pi\)
−0.728780 + 0.684748i \(0.759912\pi\)
\(830\) −7067.37 −0.295557
\(831\) 0 0
\(832\) −9823.14 −0.409322
\(833\) 10887.9 0.452874
\(834\) 0 0
\(835\) −9880.36 −0.409490
\(836\) −57344.0 −2.37235
\(837\) 0 0
\(838\) −54874.6 −2.26206
\(839\) −23387.9 −0.962383 −0.481192 0.876615i \(-0.659796\pi\)
−0.481192 + 0.876615i \(0.659796\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) −65025.9 −2.66145
\(843\) 0 0
\(844\) −75818.9 −3.09217
\(845\) 6072.85 0.247234
\(846\) 0 0
\(847\) −5686.23 −0.230675
\(848\) 23743.9 0.961520
\(849\) 0 0
\(850\) 8302.23 0.335017
\(851\) 107.053 0.00431226
\(852\) 0 0
\(853\) 3915.34 0.157161 0.0785807 0.996908i \(-0.474961\pi\)
0.0785807 + 0.996908i \(0.474961\pi\)
\(854\) −86132.8 −3.45129
\(855\) 0 0
\(856\) 66100.3 2.63932
\(857\) −31094.8 −1.23942 −0.619708 0.784833i \(-0.712749\pi\)
−0.619708 + 0.784833i \(0.712749\pi\)
\(858\) 0 0
\(859\) 9069.15 0.360227 0.180114 0.983646i \(-0.442353\pi\)
0.180114 + 0.983646i \(0.442353\pi\)
\(860\) −35126.4 −1.39279
\(861\) 0 0
\(862\) 3901.20 0.154148
\(863\) 18282.8 0.721151 0.360576 0.932730i \(-0.382580\pi\)
0.360576 + 0.932730i \(0.382580\pi\)
\(864\) 0 0
\(865\) −9180.72 −0.360872
\(866\) 45704.3 1.79341
\(867\) 0 0
\(868\) −10242.5 −0.400521
\(869\) 10808.7 0.421933
\(870\) 0 0
\(871\) 8027.54 0.312288
\(872\) −43819.3 −1.70173
\(873\) 0 0
\(874\) 3024.12 0.117039
\(875\) −2813.45 −0.108699
\(876\) 0 0
\(877\) 4534.49 0.174594 0.0872970 0.996182i \(-0.472177\pi\)
0.0872970 + 0.996182i \(0.472177\pi\)
\(878\) −20201.2 −0.776490
\(879\) 0 0
\(880\) −14173.6 −0.542944
\(881\) −27949.4 −1.06883 −0.534415 0.845223i \(-0.679468\pi\)
−0.534415 + 0.845223i \(0.679468\pi\)
\(882\) 0 0
\(883\) 7755.96 0.295593 0.147797 0.989018i \(-0.452782\pi\)
0.147797 + 0.989018i \(0.452782\pi\)
\(884\) 35248.1 1.34109
\(885\) 0 0
\(886\) 32543.9 1.23401
\(887\) −28219.5 −1.06823 −0.534115 0.845412i \(-0.679355\pi\)
−0.534115 + 0.845412i \(0.679355\pi\)
\(888\) 0 0
\(889\) 34648.7 1.30718
\(890\) −20029.0 −0.754352
\(891\) 0 0
\(892\) −86397.2 −3.24304
\(893\) 1211.49 0.0453985
\(894\) 0 0
\(895\) 11209.3 0.418644
\(896\) −48807.8 −1.81981
\(897\) 0 0
\(898\) 24682.7 0.917230
\(899\) −781.041 −0.0289757
\(900\) 0 0
\(901\) 18306.7 0.676897
\(902\) 18935.4 0.698980
\(903\) 0 0
\(904\) −6012.58 −0.221212
\(905\) −10423.7 −0.382869
\(906\) 0 0
\(907\) 182.994 0.00669926 0.00334963 0.999994i \(-0.498934\pi\)
0.00334963 + 0.999994i \(0.498934\pi\)
\(908\) 88849.6 3.24733
\(909\) 0 0
\(910\) −17600.3 −0.641148
\(911\) 15870.4 0.577179 0.288590 0.957453i \(-0.406814\pi\)
0.288590 + 0.957453i \(0.406814\pi\)
\(912\) 0 0
\(913\) 9302.52 0.337205
\(914\) 80391.9 2.90933
\(915\) 0 0
\(916\) −88577.2 −3.19506
\(917\) −36576.0 −1.31717
\(918\) 0 0
\(919\) −14707.3 −0.527908 −0.263954 0.964535i \(-0.585027\pi\)
−0.263954 + 0.964535i \(0.585027\pi\)
\(920\) 1301.63 0.0466452
\(921\) 0 0
\(922\) −16129.0 −0.576116
\(923\) 22308.9 0.795566
\(924\) 0 0
\(925\) −456.369 −0.0162220
\(926\) 33747.6 1.19764
\(927\) 0 0
\(928\) 2192.20 0.0775459
\(929\) −4008.12 −0.141552 −0.0707762 0.997492i \(-0.522548\pi\)
−0.0707762 + 0.997492i \(0.522548\pi\)
\(930\) 0 0
\(931\) −16907.0 −0.595171
\(932\) 102171. 3.59092
\(933\) 0 0
\(934\) −12272.1 −0.429932
\(935\) −10927.9 −0.382226
\(936\) 0 0
\(937\) 17088.4 0.595788 0.297894 0.954599i \(-0.403716\pi\)
0.297894 + 0.954599i \(0.403716\pi\)
\(938\) 28762.8 1.00121
\(939\) 0 0
\(940\) 990.339 0.0343631
\(941\) −1981.60 −0.0686486 −0.0343243 0.999411i \(-0.510928\pi\)
−0.0343243 + 0.999411i \(0.510928\pi\)
\(942\) 0 0
\(943\) −677.712 −0.0234033
\(944\) −18340.8 −0.632355
\(945\) 0 0
\(946\) 68126.5 2.34142
\(947\) 19125.0 0.656260 0.328130 0.944633i \(-0.393582\pi\)
0.328130 + 0.944633i \(0.393582\pi\)
\(948\) 0 0
\(949\) 1424.46 0.0487251
\(950\) −12891.9 −0.440281
\(951\) 0 0
\(952\) 66498.1 2.26388
\(953\) −10338.6 −0.351416 −0.175708 0.984442i \(-0.556222\pi\)
−0.175708 + 0.984442i \(0.556222\pi\)
\(954\) 0 0
\(955\) 21031.2 0.712622
\(956\) 3592.99 0.121554
\(957\) 0 0
\(958\) −16006.0 −0.539802
\(959\) 20822.1 0.701128
\(960\) 0 0
\(961\) −29065.6 −0.975652
\(962\) −2854.94 −0.0956831
\(963\) 0 0
\(964\) −98973.5 −3.30677
\(965\) 10236.4 0.341474
\(966\) 0 0
\(967\) −18633.6 −0.619664 −0.309832 0.950791i \(-0.600273\pi\)
−0.309832 + 0.950791i \(0.600273\pi\)
\(968\) −11214.8 −0.372373
\(969\) 0 0
\(970\) −9718.15 −0.321681
\(971\) 39486.5 1.30503 0.652515 0.757776i \(-0.273714\pi\)
0.652515 + 0.757776i \(0.273714\pi\)
\(972\) 0 0
\(973\) −72747.6 −2.39690
\(974\) 61682.1 2.02918
\(975\) 0 0
\(976\) −66205.8 −2.17131
\(977\) −33392.3 −1.09346 −0.546731 0.837308i \(-0.684128\pi\)
−0.546731 + 0.837308i \(0.684128\pi\)
\(978\) 0 0
\(979\) 26363.4 0.860651
\(980\) −13820.7 −0.450497
\(981\) 0 0
\(982\) −91960.7 −2.98838
\(983\) −20923.0 −0.678880 −0.339440 0.940628i \(-0.610238\pi\)
−0.339440 + 0.940628i \(0.610238\pi\)
\(984\) 0 0
\(985\) 22309.4 0.721662
\(986\) 9630.59 0.311055
\(987\) 0 0
\(988\) −54733.9 −1.76247
\(989\) −2438.30 −0.0783957
\(990\) 0 0
\(991\) 44681.6 1.43225 0.716124 0.697973i \(-0.245914\pi\)
0.716124 + 0.697973i \(0.245914\pi\)
\(992\) −2035.91 −0.0651615
\(993\) 0 0
\(994\) 79933.2 2.55063
\(995\) 9633.98 0.306953
\(996\) 0 0
\(997\) −49844.7 −1.58335 −0.791674 0.610944i \(-0.790790\pi\)
−0.791674 + 0.610944i \(0.790790\pi\)
\(998\) 46597.2 1.47797
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.i.1.6 6
3.2 odd 2 435.4.a.g.1.1 6
15.14 odd 2 2175.4.a.l.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.g.1.1 6 3.2 odd 2
1305.4.a.i.1.6 6 1.1 even 1 trivial
2175.4.a.l.1.6 6 15.14 odd 2