Properties

Label 1305.4.a.h.1.5
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-3.54861\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.54861 q^{2} +4.59262 q^{4} +5.00000 q^{5} -21.2667 q^{7} -12.0915 q^{8} +O(q^{10})\) \(q+3.54861 q^{2} +4.59262 q^{4} +5.00000 q^{5} -21.2667 q^{7} -12.0915 q^{8} +17.7430 q^{10} +40.9431 q^{11} -8.89857 q^{13} -75.4671 q^{14} -79.6488 q^{16} +7.68473 q^{17} +40.7787 q^{19} +22.9631 q^{20} +145.291 q^{22} +80.7285 q^{23} +25.0000 q^{25} -31.5775 q^{26} -97.6698 q^{28} -29.0000 q^{29} +82.1098 q^{31} -185.911 q^{32} +27.2701 q^{34} -106.333 q^{35} +223.283 q^{37} +144.708 q^{38} -60.4573 q^{40} +274.422 q^{41} +53.7872 q^{43} +188.036 q^{44} +286.474 q^{46} -17.0236 q^{47} +109.272 q^{49} +88.7152 q^{50} -40.8678 q^{52} +23.0475 q^{53} +204.716 q^{55} +257.145 q^{56} -102.910 q^{58} +399.574 q^{59} +388.308 q^{61} +291.376 q^{62} -22.5340 q^{64} -44.4929 q^{65} +399.434 q^{67} +35.2930 q^{68} -377.336 q^{70} -92.2884 q^{71} +979.407 q^{73} +792.343 q^{74} +187.281 q^{76} -870.724 q^{77} +62.2586 q^{79} -398.244 q^{80} +973.817 q^{82} -163.597 q^{83} +38.4236 q^{85} +190.870 q^{86} -495.062 q^{88} -1371.94 q^{89} +189.243 q^{91} +370.755 q^{92} -60.4101 q^{94} +203.894 q^{95} +1263.64 q^{97} +387.763 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + 51 q^{4} + 30 q^{5} + 47 q^{7} - 51 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} + 51 q^{4} + 30 q^{5} + 47 q^{7} - 51 q^{8} - 5 q^{10} - 81 q^{11} + 169 q^{13} + 30 q^{14} + 131 q^{16} + q^{17} + 116 q^{19} + 255 q^{20} + 90 q^{22} + 52 q^{23} + 150 q^{25} - 294 q^{26} + 344 q^{28} - 174 q^{29} + 340 q^{31} - 499 q^{32} + 920 q^{34} + 235 q^{35} + 332 q^{37} + 378 q^{38} - 255 q^{40} + 616 q^{41} + 334 q^{43} + 52 q^{44} - 158 q^{46} + 85 q^{47} + 879 q^{49} - 25 q^{50} + 2220 q^{52} + 850 q^{53} - 405 q^{55} + 624 q^{56} + 29 q^{58} + 758 q^{59} - 36 q^{61} + 152 q^{62} + 1795 q^{64} + 845 q^{65} + 939 q^{67} + 186 q^{68} + 150 q^{70} + 1388 q^{71} + 1708 q^{73} + 814 q^{74} + 566 q^{76} - 2585 q^{77} + 1250 q^{79} + 655 q^{80} + 1372 q^{82} + 748 q^{83} + 5 q^{85} + 800 q^{86} + 536 q^{88} - 1099 q^{89} + 539 q^{91} - 1698 q^{92} - 4542 q^{94} + 580 q^{95} - 22 q^{97} + 1433 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.54861 1.25462 0.627311 0.778769i \(-0.284155\pi\)
0.627311 + 0.778769i \(0.284155\pi\)
\(3\) 0 0
\(4\) 4.59262 0.574078
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −21.2667 −1.14829 −0.574146 0.818753i \(-0.694666\pi\)
−0.574146 + 0.818753i \(0.694666\pi\)
\(8\) −12.0915 −0.534372
\(9\) 0 0
\(10\) 17.7430 0.561084
\(11\) 40.9431 1.12226 0.561128 0.827729i \(-0.310368\pi\)
0.561128 + 0.827729i \(0.310368\pi\)
\(12\) 0 0
\(13\) −8.89857 −0.189848 −0.0949238 0.995485i \(-0.530261\pi\)
−0.0949238 + 0.995485i \(0.530261\pi\)
\(14\) −75.4671 −1.44067
\(15\) 0 0
\(16\) −79.6488 −1.24451
\(17\) 7.68473 0.109636 0.0548182 0.998496i \(-0.482542\pi\)
0.0548182 + 0.998496i \(0.482542\pi\)
\(18\) 0 0
\(19\) 40.7787 0.492383 0.246192 0.969221i \(-0.420821\pi\)
0.246192 + 0.969221i \(0.420821\pi\)
\(20\) 22.9631 0.256735
\(21\) 0 0
\(22\) 145.291 1.40801
\(23\) 80.7285 0.731872 0.365936 0.930640i \(-0.380749\pi\)
0.365936 + 0.930640i \(0.380749\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −31.5775 −0.238187
\(27\) 0 0
\(28\) −97.6698 −0.659209
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) 82.1098 0.475721 0.237861 0.971299i \(-0.423554\pi\)
0.237861 + 0.971299i \(0.423554\pi\)
\(32\) −185.911 −1.02702
\(33\) 0 0
\(34\) 27.2701 0.137552
\(35\) −106.333 −0.513532
\(36\) 0 0
\(37\) 223.283 0.992093 0.496047 0.868296i \(-0.334785\pi\)
0.496047 + 0.868296i \(0.334785\pi\)
\(38\) 144.708 0.617755
\(39\) 0 0
\(40\) −60.4573 −0.238978
\(41\) 274.422 1.04531 0.522653 0.852545i \(-0.324942\pi\)
0.522653 + 0.852545i \(0.324942\pi\)
\(42\) 0 0
\(43\) 53.7872 0.190755 0.0953775 0.995441i \(-0.469594\pi\)
0.0953775 + 0.995441i \(0.469594\pi\)
\(44\) 188.036 0.644262
\(45\) 0 0
\(46\) 286.474 0.918223
\(47\) −17.0236 −0.0528329 −0.0264165 0.999651i \(-0.508410\pi\)
−0.0264165 + 0.999651i \(0.508410\pi\)
\(48\) 0 0
\(49\) 109.272 0.318577
\(50\) 88.7152 0.250924
\(51\) 0 0
\(52\) −40.8678 −0.108987
\(53\) 23.0475 0.0597325 0.0298662 0.999554i \(-0.490492\pi\)
0.0298662 + 0.999554i \(0.490492\pi\)
\(54\) 0 0
\(55\) 204.716 0.501888
\(56\) 257.145 0.613615
\(57\) 0 0
\(58\) −102.910 −0.232978
\(59\) 399.574 0.881697 0.440848 0.897582i \(-0.354678\pi\)
0.440848 + 0.897582i \(0.354678\pi\)
\(60\) 0 0
\(61\) 388.308 0.815046 0.407523 0.913195i \(-0.366393\pi\)
0.407523 + 0.913195i \(0.366393\pi\)
\(62\) 291.376 0.596851
\(63\) 0 0
\(64\) −22.5340 −0.0440118
\(65\) −44.4929 −0.0849025
\(66\) 0 0
\(67\) 399.434 0.728337 0.364169 0.931333i \(-0.381353\pi\)
0.364169 + 0.931333i \(0.381353\pi\)
\(68\) 35.2930 0.0629398
\(69\) 0 0
\(70\) −377.336 −0.644289
\(71\) −92.2884 −0.154262 −0.0771311 0.997021i \(-0.524576\pi\)
−0.0771311 + 0.997021i \(0.524576\pi\)
\(72\) 0 0
\(73\) 979.407 1.57029 0.785144 0.619314i \(-0.212589\pi\)
0.785144 + 0.619314i \(0.212589\pi\)
\(74\) 792.343 1.24470
\(75\) 0 0
\(76\) 187.281 0.282666
\(77\) −870.724 −1.28868
\(78\) 0 0
\(79\) 62.2586 0.0886664 0.0443332 0.999017i \(-0.485884\pi\)
0.0443332 + 0.999017i \(0.485884\pi\)
\(80\) −398.244 −0.556563
\(81\) 0 0
\(82\) 973.817 1.31146
\(83\) −163.597 −0.216350 −0.108175 0.994132i \(-0.534501\pi\)
−0.108175 + 0.994132i \(0.534501\pi\)
\(84\) 0 0
\(85\) 38.4236 0.0490309
\(86\) 190.870 0.239326
\(87\) 0 0
\(88\) −495.062 −0.599702
\(89\) −1371.94 −1.63399 −0.816994 0.576646i \(-0.804361\pi\)
−0.816994 + 0.576646i \(0.804361\pi\)
\(90\) 0 0
\(91\) 189.243 0.218001
\(92\) 370.755 0.420151
\(93\) 0 0
\(94\) −60.4101 −0.0662853
\(95\) 203.894 0.220200
\(96\) 0 0
\(97\) 1263.64 1.32271 0.661355 0.750073i \(-0.269982\pi\)
0.661355 + 0.750073i \(0.269982\pi\)
\(98\) 387.763 0.399693
\(99\) 0 0
\(100\) 114.816 0.114816
\(101\) −148.533 −0.146332 −0.0731661 0.997320i \(-0.523310\pi\)
−0.0731661 + 0.997320i \(0.523310\pi\)
\(102\) 0 0
\(103\) 1485.59 1.42116 0.710580 0.703616i \(-0.248433\pi\)
0.710580 + 0.703616i \(0.248433\pi\)
\(104\) 107.597 0.101449
\(105\) 0 0
\(106\) 81.7866 0.0749417
\(107\) −461.476 −0.416940 −0.208470 0.978029i \(-0.566848\pi\)
−0.208470 + 0.978029i \(0.566848\pi\)
\(108\) 0 0
\(109\) 1516.06 1.33222 0.666112 0.745851i \(-0.267957\pi\)
0.666112 + 0.745851i \(0.267957\pi\)
\(110\) 726.455 0.629680
\(111\) 0 0
\(112\) 1693.87 1.42906
\(113\) −160.406 −0.133537 −0.0667686 0.997768i \(-0.521269\pi\)
−0.0667686 + 0.997768i \(0.521269\pi\)
\(114\) 0 0
\(115\) 403.643 0.327303
\(116\) −133.186 −0.106604
\(117\) 0 0
\(118\) 1417.93 1.10620
\(119\) −163.429 −0.125895
\(120\) 0 0
\(121\) 345.339 0.259458
\(122\) 1377.95 1.02257
\(123\) 0 0
\(124\) 377.099 0.273101
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 2583.64 1.80520 0.902601 0.430477i \(-0.141655\pi\)
0.902601 + 0.430477i \(0.141655\pi\)
\(128\) 1407.32 0.971803
\(129\) 0 0
\(130\) −157.888 −0.106521
\(131\) 151.210 0.100850 0.0504249 0.998728i \(-0.483942\pi\)
0.0504249 + 0.998728i \(0.483942\pi\)
\(132\) 0 0
\(133\) −867.228 −0.565400
\(134\) 1417.43 0.913788
\(135\) 0 0
\(136\) −92.9195 −0.0585866
\(137\) 257.407 0.160524 0.0802619 0.996774i \(-0.474424\pi\)
0.0802619 + 0.996774i \(0.474424\pi\)
\(138\) 0 0
\(139\) −2294.42 −1.40007 −0.700037 0.714106i \(-0.746833\pi\)
−0.700037 + 0.714106i \(0.746833\pi\)
\(140\) −488.349 −0.294807
\(141\) 0 0
\(142\) −327.495 −0.193541
\(143\) −364.335 −0.213058
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) 3475.53 1.97012
\(147\) 0 0
\(148\) 1025.45 0.569538
\(149\) 835.743 0.459508 0.229754 0.973249i \(-0.426208\pi\)
0.229754 + 0.973249i \(0.426208\pi\)
\(150\) 0 0
\(151\) −3370.60 −1.81653 −0.908263 0.418400i \(-0.862591\pi\)
−0.908263 + 0.418400i \(0.862591\pi\)
\(152\) −493.074 −0.263116
\(153\) 0 0
\(154\) −3089.86 −1.61680
\(155\) 410.549 0.212749
\(156\) 0 0
\(157\) −137.311 −0.0698002 −0.0349001 0.999391i \(-0.511111\pi\)
−0.0349001 + 0.999391i \(0.511111\pi\)
\(158\) 220.932 0.111243
\(159\) 0 0
\(160\) −929.554 −0.459298
\(161\) −1716.83 −0.840404
\(162\) 0 0
\(163\) −859.793 −0.413155 −0.206577 0.978430i \(-0.566233\pi\)
−0.206577 + 0.978430i \(0.566233\pi\)
\(164\) 1260.32 0.600087
\(165\) 0 0
\(166\) −580.541 −0.271438
\(167\) 900.368 0.417201 0.208601 0.978001i \(-0.433109\pi\)
0.208601 + 0.978001i \(0.433109\pi\)
\(168\) 0 0
\(169\) −2117.82 −0.963958
\(170\) 136.350 0.0615153
\(171\) 0 0
\(172\) 247.024 0.109508
\(173\) 465.780 0.204697 0.102348 0.994749i \(-0.467364\pi\)
0.102348 + 0.994749i \(0.467364\pi\)
\(174\) 0 0
\(175\) −531.667 −0.229659
\(176\) −3261.07 −1.39666
\(177\) 0 0
\(178\) −4868.47 −2.05004
\(179\) −1143.90 −0.477650 −0.238825 0.971063i \(-0.576762\pi\)
−0.238825 + 0.971063i \(0.576762\pi\)
\(180\) 0 0
\(181\) −345.618 −0.141931 −0.0709657 0.997479i \(-0.522608\pi\)
−0.0709657 + 0.997479i \(0.522608\pi\)
\(182\) 671.550 0.273509
\(183\) 0 0
\(184\) −976.125 −0.391092
\(185\) 1116.41 0.443677
\(186\) 0 0
\(187\) 314.637 0.123040
\(188\) −78.1829 −0.0303302
\(189\) 0 0
\(190\) 723.539 0.276268
\(191\) −3080.33 −1.16694 −0.583469 0.812135i \(-0.698305\pi\)
−0.583469 + 0.812135i \(0.698305\pi\)
\(192\) 0 0
\(193\) 4561.76 1.70136 0.850680 0.525684i \(-0.176190\pi\)
0.850680 + 0.525684i \(0.176190\pi\)
\(194\) 4484.15 1.65950
\(195\) 0 0
\(196\) 501.844 0.182888
\(197\) −2521.13 −0.911794 −0.455897 0.890033i \(-0.650681\pi\)
−0.455897 + 0.890033i \(0.650681\pi\)
\(198\) 0 0
\(199\) −3000.49 −1.06884 −0.534420 0.845219i \(-0.679470\pi\)
−0.534420 + 0.845219i \(0.679470\pi\)
\(200\) −302.286 −0.106874
\(201\) 0 0
\(202\) −527.084 −0.183592
\(203\) 616.734 0.213233
\(204\) 0 0
\(205\) 1372.11 0.467475
\(206\) 5271.78 1.78302
\(207\) 0 0
\(208\) 708.761 0.236268
\(209\) 1669.61 0.552580
\(210\) 0 0
\(211\) 843.401 0.275176 0.137588 0.990490i \(-0.456065\pi\)
0.137588 + 0.990490i \(0.456065\pi\)
\(212\) 105.849 0.0342911
\(213\) 0 0
\(214\) −1637.60 −0.523103
\(215\) 268.936 0.0853083
\(216\) 0 0
\(217\) −1746.20 −0.546267
\(218\) 5379.91 1.67144
\(219\) 0 0
\(220\) 940.181 0.288123
\(221\) −68.3831 −0.0208142
\(222\) 0 0
\(223\) 1068.88 0.320975 0.160488 0.987038i \(-0.448693\pi\)
0.160488 + 0.987038i \(0.448693\pi\)
\(224\) 3953.70 1.17932
\(225\) 0 0
\(226\) −569.217 −0.167539
\(227\) −1688.90 −0.493817 −0.246909 0.969039i \(-0.579415\pi\)
−0.246909 + 0.969039i \(0.579415\pi\)
\(228\) 0 0
\(229\) −3085.30 −0.890317 −0.445158 0.895452i \(-0.646853\pi\)
−0.445158 + 0.895452i \(0.646853\pi\)
\(230\) 1432.37 0.410642
\(231\) 0 0
\(232\) 350.652 0.0992304
\(233\) 4810.41 1.35254 0.676268 0.736656i \(-0.263596\pi\)
0.676268 + 0.736656i \(0.263596\pi\)
\(234\) 0 0
\(235\) −85.1180 −0.0236276
\(236\) 1835.09 0.506162
\(237\) 0 0
\(238\) −579.944 −0.157950
\(239\) 1730.66 0.468399 0.234200 0.972189i \(-0.424753\pi\)
0.234200 + 0.972189i \(0.424753\pi\)
\(240\) 0 0
\(241\) −1671.50 −0.446767 −0.223383 0.974731i \(-0.571710\pi\)
−0.223383 + 0.974731i \(0.571710\pi\)
\(242\) 1225.47 0.325522
\(243\) 0 0
\(244\) 1783.35 0.467900
\(245\) 546.359 0.142472
\(246\) 0 0
\(247\) −362.872 −0.0934778
\(248\) −992.827 −0.254212
\(249\) 0 0
\(250\) 443.576 0.112217
\(251\) 5324.14 1.33887 0.669436 0.742870i \(-0.266536\pi\)
0.669436 + 0.742870i \(0.266536\pi\)
\(252\) 0 0
\(253\) 3305.28 0.821348
\(254\) 9168.32 2.26485
\(255\) 0 0
\(256\) 5174.31 1.26326
\(257\) −1994.20 −0.484026 −0.242013 0.970273i \(-0.577808\pi\)
−0.242013 + 0.970273i \(0.577808\pi\)
\(258\) 0 0
\(259\) −4748.48 −1.13921
\(260\) −204.339 −0.0487406
\(261\) 0 0
\(262\) 536.586 0.126528
\(263\) 1671.01 0.391782 0.195891 0.980626i \(-0.437240\pi\)
0.195891 + 0.980626i \(0.437240\pi\)
\(264\) 0 0
\(265\) 115.238 0.0267132
\(266\) −3077.45 −0.709364
\(267\) 0 0
\(268\) 1834.45 0.418122
\(269\) −890.546 −0.201850 −0.100925 0.994894i \(-0.532180\pi\)
−0.100925 + 0.994894i \(0.532180\pi\)
\(270\) 0 0
\(271\) 6649.82 1.49058 0.745292 0.666739i \(-0.232310\pi\)
0.745292 + 0.666739i \(0.232310\pi\)
\(272\) −612.079 −0.136444
\(273\) 0 0
\(274\) 913.436 0.201397
\(275\) 1023.58 0.224451
\(276\) 0 0
\(277\) 6233.58 1.35213 0.676064 0.736843i \(-0.263684\pi\)
0.676064 + 0.736843i \(0.263684\pi\)
\(278\) −8142.01 −1.75657
\(279\) 0 0
\(280\) 1285.73 0.274417
\(281\) 3089.87 0.655964 0.327982 0.944684i \(-0.393631\pi\)
0.327982 + 0.944684i \(0.393631\pi\)
\(282\) 0 0
\(283\) 1644.01 0.345323 0.172662 0.984981i \(-0.444763\pi\)
0.172662 + 0.984981i \(0.444763\pi\)
\(284\) −423.845 −0.0885584
\(285\) 0 0
\(286\) −1292.88 −0.267307
\(287\) −5836.05 −1.20032
\(288\) 0 0
\(289\) −4853.94 −0.987980
\(290\) −514.548 −0.104191
\(291\) 0 0
\(292\) 4498.05 0.901467
\(293\) 66.3144 0.0132223 0.00661114 0.999978i \(-0.497896\pi\)
0.00661114 + 0.999978i \(0.497896\pi\)
\(294\) 0 0
\(295\) 1997.87 0.394307
\(296\) −2699.81 −0.530147
\(297\) 0 0
\(298\) 2965.72 0.576510
\(299\) −718.369 −0.138944
\(300\) 0 0
\(301\) −1143.87 −0.219043
\(302\) −11960.9 −2.27905
\(303\) 0 0
\(304\) −3247.98 −0.612777
\(305\) 1941.54 0.364500
\(306\) 0 0
\(307\) −6736.52 −1.25236 −0.626179 0.779679i \(-0.715382\pi\)
−0.626179 + 0.779679i \(0.715382\pi\)
\(308\) −3998.91 −0.739801
\(309\) 0 0
\(310\) 1456.88 0.266920
\(311\) 5470.56 0.997450 0.498725 0.866760i \(-0.333802\pi\)
0.498725 + 0.866760i \(0.333802\pi\)
\(312\) 0 0
\(313\) 903.461 0.163152 0.0815761 0.996667i \(-0.474005\pi\)
0.0815761 + 0.996667i \(0.474005\pi\)
\(314\) −487.264 −0.0875729
\(315\) 0 0
\(316\) 285.930 0.0509014
\(317\) 880.773 0.156054 0.0780270 0.996951i \(-0.475138\pi\)
0.0780270 + 0.996951i \(0.475138\pi\)
\(318\) 0 0
\(319\) −1187.35 −0.208398
\(320\) −112.670 −0.0196827
\(321\) 0 0
\(322\) −6092.35 −1.05439
\(323\) 313.373 0.0539832
\(324\) 0 0
\(325\) −222.464 −0.0379695
\(326\) −3051.07 −0.518353
\(327\) 0 0
\(328\) −3318.16 −0.558582
\(329\) 362.035 0.0606677
\(330\) 0 0
\(331\) 609.140 0.101152 0.0505761 0.998720i \(-0.483894\pi\)
0.0505761 + 0.998720i \(0.483894\pi\)
\(332\) −751.338 −0.124202
\(333\) 0 0
\(334\) 3195.05 0.523430
\(335\) 1997.17 0.325722
\(336\) 0 0
\(337\) −9473.47 −1.53131 −0.765657 0.643250i \(-0.777586\pi\)
−0.765657 + 0.643250i \(0.777586\pi\)
\(338\) −7515.30 −1.20940
\(339\) 0 0
\(340\) 176.465 0.0281476
\(341\) 3361.83 0.533881
\(342\) 0 0
\(343\) 4970.62 0.782474
\(344\) −650.365 −0.101934
\(345\) 0 0
\(346\) 1652.87 0.256817
\(347\) −3436.86 −0.531702 −0.265851 0.964014i \(-0.585653\pi\)
−0.265851 + 0.964014i \(0.585653\pi\)
\(348\) 0 0
\(349\) 703.930 0.107967 0.0539835 0.998542i \(-0.482808\pi\)
0.0539835 + 0.998542i \(0.482808\pi\)
\(350\) −1886.68 −0.288135
\(351\) 0 0
\(352\) −7611.77 −1.15258
\(353\) −2982.17 −0.449646 −0.224823 0.974400i \(-0.572180\pi\)
−0.224823 + 0.974400i \(0.572180\pi\)
\(354\) 0 0
\(355\) −461.442 −0.0689881
\(356\) −6300.78 −0.938036
\(357\) 0 0
\(358\) −4059.27 −0.599271
\(359\) −8585.52 −1.26219 −0.631095 0.775705i \(-0.717394\pi\)
−0.631095 + 0.775705i \(0.717394\pi\)
\(360\) 0 0
\(361\) −5196.10 −0.757559
\(362\) −1226.46 −0.178070
\(363\) 0 0
\(364\) 869.122 0.125149
\(365\) 4897.04 0.702254
\(366\) 0 0
\(367\) 6989.50 0.994139 0.497070 0.867711i \(-0.334409\pi\)
0.497070 + 0.867711i \(0.334409\pi\)
\(368\) −6429.93 −0.910824
\(369\) 0 0
\(370\) 3961.71 0.556648
\(371\) −490.144 −0.0685904
\(372\) 0 0
\(373\) −1100.55 −0.152773 −0.0763865 0.997078i \(-0.524338\pi\)
−0.0763865 + 0.997078i \(0.524338\pi\)
\(374\) 1116.52 0.154369
\(375\) 0 0
\(376\) 205.840 0.0282324
\(377\) 258.059 0.0352538
\(378\) 0 0
\(379\) 7950.59 1.07756 0.538779 0.842447i \(-0.318886\pi\)
0.538779 + 0.842447i \(0.318886\pi\)
\(380\) 936.406 0.126412
\(381\) 0 0
\(382\) −10930.9 −1.46407
\(383\) −10160.2 −1.35551 −0.677755 0.735288i \(-0.737047\pi\)
−0.677755 + 0.735288i \(0.737047\pi\)
\(384\) 0 0
\(385\) −4353.62 −0.576315
\(386\) 16187.9 2.13456
\(387\) 0 0
\(388\) 5803.40 0.759338
\(389\) −9770.47 −1.27348 −0.636738 0.771080i \(-0.719717\pi\)
−0.636738 + 0.771080i \(0.719717\pi\)
\(390\) 0 0
\(391\) 620.377 0.0802399
\(392\) −1321.25 −0.170238
\(393\) 0 0
\(394\) −8946.52 −1.14396
\(395\) 311.293 0.0396528
\(396\) 0 0
\(397\) −3191.11 −0.403418 −0.201709 0.979445i \(-0.564650\pi\)
−0.201709 + 0.979445i \(0.564650\pi\)
\(398\) −10647.6 −1.34099
\(399\) 0 0
\(400\) −1991.22 −0.248903
\(401\) −11101.4 −1.38249 −0.691247 0.722619i \(-0.742938\pi\)
−0.691247 + 0.722619i \(0.742938\pi\)
\(402\) 0 0
\(403\) −730.660 −0.0903146
\(404\) −682.154 −0.0840060
\(405\) 0 0
\(406\) 2188.55 0.267526
\(407\) 9141.89 1.11338
\(408\) 0 0
\(409\) −5263.84 −0.636382 −0.318191 0.948027i \(-0.603075\pi\)
−0.318191 + 0.948027i \(0.603075\pi\)
\(410\) 4869.09 0.586505
\(411\) 0 0
\(412\) 6822.75 0.815856
\(413\) −8497.61 −1.01245
\(414\) 0 0
\(415\) −817.984 −0.0967548
\(416\) 1654.34 0.194978
\(417\) 0 0
\(418\) 5924.78 0.693279
\(419\) −5365.09 −0.625541 −0.312771 0.949829i \(-0.601257\pi\)
−0.312771 + 0.949829i \(0.601257\pi\)
\(420\) 0 0
\(421\) 4453.87 0.515602 0.257801 0.966198i \(-0.417002\pi\)
0.257801 + 0.966198i \(0.417002\pi\)
\(422\) 2992.90 0.345242
\(423\) 0 0
\(424\) −278.678 −0.0319193
\(425\) 192.118 0.0219273
\(426\) 0 0
\(427\) −8258.03 −0.935911
\(428\) −2119.39 −0.239356
\(429\) 0 0
\(430\) 954.348 0.107030
\(431\) 15164.6 1.69478 0.847392 0.530968i \(-0.178172\pi\)
0.847392 + 0.530968i \(0.178172\pi\)
\(432\) 0 0
\(433\) 5748.48 0.638001 0.319000 0.947755i \(-0.396653\pi\)
0.319000 + 0.947755i \(0.396653\pi\)
\(434\) −6196.59 −0.685359
\(435\) 0 0
\(436\) 6962.70 0.764800
\(437\) 3292.01 0.360362
\(438\) 0 0
\(439\) −2413.19 −0.262358 −0.131179 0.991359i \(-0.541876\pi\)
−0.131179 + 0.991359i \(0.541876\pi\)
\(440\) −2475.31 −0.268195
\(441\) 0 0
\(442\) −242.665 −0.0261140
\(443\) 5598.47 0.600432 0.300216 0.953871i \(-0.402941\pi\)
0.300216 + 0.953871i \(0.402941\pi\)
\(444\) 0 0
\(445\) −6859.68 −0.730742
\(446\) 3793.03 0.402703
\(447\) 0 0
\(448\) 479.224 0.0505384
\(449\) −1387.50 −0.145836 −0.0729179 0.997338i \(-0.523231\pi\)
−0.0729179 + 0.997338i \(0.523231\pi\)
\(450\) 0 0
\(451\) 11235.7 1.17310
\(452\) −736.682 −0.0766607
\(453\) 0 0
\(454\) −5993.26 −0.619554
\(455\) 946.216 0.0974929
\(456\) 0 0
\(457\) −1208.57 −0.123707 −0.0618537 0.998085i \(-0.519701\pi\)
−0.0618537 + 0.998085i \(0.519701\pi\)
\(458\) −10948.5 −1.11701
\(459\) 0 0
\(460\) 1853.78 0.187897
\(461\) 1838.27 0.185720 0.0928599 0.995679i \(-0.470399\pi\)
0.0928599 + 0.995679i \(0.470399\pi\)
\(462\) 0 0
\(463\) −13925.4 −1.39777 −0.698885 0.715234i \(-0.746320\pi\)
−0.698885 + 0.715234i \(0.746320\pi\)
\(464\) 2309.82 0.231100
\(465\) 0 0
\(466\) 17070.3 1.69692
\(467\) 8692.90 0.861369 0.430685 0.902502i \(-0.358272\pi\)
0.430685 + 0.902502i \(0.358272\pi\)
\(468\) 0 0
\(469\) −8494.63 −0.836344
\(470\) −302.050 −0.0296437
\(471\) 0 0
\(472\) −4831.43 −0.471154
\(473\) 2202.21 0.214076
\(474\) 0 0
\(475\) 1019.47 0.0984766
\(476\) −750.566 −0.0722734
\(477\) 0 0
\(478\) 6141.45 0.587664
\(479\) −9915.68 −0.945843 −0.472922 0.881105i \(-0.656801\pi\)
−0.472922 + 0.881105i \(0.656801\pi\)
\(480\) 0 0
\(481\) −1986.90 −0.188347
\(482\) −5931.50 −0.560523
\(483\) 0 0
\(484\) 1586.01 0.148949
\(485\) 6318.18 0.591534
\(486\) 0 0
\(487\) 16633.8 1.54774 0.773871 0.633344i \(-0.218318\pi\)
0.773871 + 0.633344i \(0.218318\pi\)
\(488\) −4695.21 −0.435538
\(489\) 0 0
\(490\) 1938.81 0.178748
\(491\) 291.435 0.0267867 0.0133933 0.999910i \(-0.495737\pi\)
0.0133933 + 0.999910i \(0.495737\pi\)
\(492\) 0 0
\(493\) −222.857 −0.0203590
\(494\) −1287.69 −0.117279
\(495\) 0 0
\(496\) −6539.95 −0.592041
\(497\) 1962.67 0.177138
\(498\) 0 0
\(499\) 11845.7 1.06270 0.531350 0.847152i \(-0.321685\pi\)
0.531350 + 0.847152i \(0.321685\pi\)
\(500\) 574.078 0.0513471
\(501\) 0 0
\(502\) 18893.3 1.67978
\(503\) 16484.6 1.46126 0.730629 0.682775i \(-0.239227\pi\)
0.730629 + 0.682775i \(0.239227\pi\)
\(504\) 0 0
\(505\) −742.663 −0.0654417
\(506\) 11729.1 1.03048
\(507\) 0 0
\(508\) 11865.7 1.03633
\(509\) −11521.1 −1.00327 −0.501636 0.865079i \(-0.667268\pi\)
−0.501636 + 0.865079i \(0.667268\pi\)
\(510\) 0 0
\(511\) −20828.7 −1.80315
\(512\) 7103.01 0.613109
\(513\) 0 0
\(514\) −7076.63 −0.607270
\(515\) 7427.95 0.635562
\(516\) 0 0
\(517\) −696.999 −0.0592920
\(518\) −16850.5 −1.42928
\(519\) 0 0
\(520\) 537.983 0.0453695
\(521\) −6623.78 −0.556993 −0.278496 0.960437i \(-0.589836\pi\)
−0.278496 + 0.960437i \(0.589836\pi\)
\(522\) 0 0
\(523\) −13552.8 −1.13312 −0.566559 0.824021i \(-0.691726\pi\)
−0.566559 + 0.824021i \(0.691726\pi\)
\(524\) 694.452 0.0578956
\(525\) 0 0
\(526\) 5929.75 0.491538
\(527\) 630.992 0.0521564
\(528\) 0 0
\(529\) −5649.91 −0.464363
\(530\) 408.933 0.0335149
\(531\) 0 0
\(532\) −3982.85 −0.324584
\(533\) −2441.97 −0.198449
\(534\) 0 0
\(535\) −2307.38 −0.186461
\(536\) −4829.73 −0.389203
\(537\) 0 0
\(538\) −3160.20 −0.253245
\(539\) 4473.93 0.357524
\(540\) 0 0
\(541\) 10971.0 0.871866 0.435933 0.899979i \(-0.356418\pi\)
0.435933 + 0.899979i \(0.356418\pi\)
\(542\) 23597.6 1.87012
\(543\) 0 0
\(544\) −1428.67 −0.112599
\(545\) 7580.32 0.595789
\(546\) 0 0
\(547\) −12428.0 −0.971453 −0.485726 0.874111i \(-0.661445\pi\)
−0.485726 + 0.874111i \(0.661445\pi\)
\(548\) 1182.17 0.0921531
\(549\) 0 0
\(550\) 3632.28 0.281601
\(551\) −1182.58 −0.0914333
\(552\) 0 0
\(553\) −1324.03 −0.101815
\(554\) 22120.5 1.69641
\(555\) 0 0
\(556\) −10537.4 −0.803751
\(557\) −22737.5 −1.72966 −0.864828 0.502069i \(-0.832572\pi\)
−0.864828 + 0.502069i \(0.832572\pi\)
\(558\) 0 0
\(559\) −478.629 −0.0362144
\(560\) 8469.33 0.639097
\(561\) 0 0
\(562\) 10964.7 0.822988
\(563\) 20051.1 1.50099 0.750493 0.660878i \(-0.229816\pi\)
0.750493 + 0.660878i \(0.229816\pi\)
\(564\) 0 0
\(565\) −802.028 −0.0597196
\(566\) 5833.96 0.433250
\(567\) 0 0
\(568\) 1115.90 0.0824334
\(569\) −10035.7 −0.739397 −0.369699 0.929152i \(-0.620539\pi\)
−0.369699 + 0.929152i \(0.620539\pi\)
\(570\) 0 0
\(571\) 22946.3 1.68174 0.840870 0.541237i \(-0.182044\pi\)
0.840870 + 0.541237i \(0.182044\pi\)
\(572\) −1673.25 −0.122312
\(573\) 0 0
\(574\) −20709.9 −1.50595
\(575\) 2018.21 0.146374
\(576\) 0 0
\(577\) 14230.3 1.02672 0.513358 0.858174i \(-0.328401\pi\)
0.513358 + 0.858174i \(0.328401\pi\)
\(578\) −17224.7 −1.23954
\(579\) 0 0
\(580\) −665.930 −0.0476745
\(581\) 3479.16 0.248434
\(582\) 0 0
\(583\) 943.637 0.0670351
\(584\) −11842.5 −0.839117
\(585\) 0 0
\(586\) 235.324 0.0165890
\(587\) −12173.9 −0.855999 −0.428000 0.903779i \(-0.640782\pi\)
−0.428000 + 0.903779i \(0.640782\pi\)
\(588\) 0 0
\(589\) 3348.33 0.234237
\(590\) 7089.66 0.494706
\(591\) 0 0
\(592\) −17784.2 −1.23467
\(593\) −21548.0 −1.49219 −0.746097 0.665838i \(-0.768074\pi\)
−0.746097 + 0.665838i \(0.768074\pi\)
\(594\) 0 0
\(595\) −817.143 −0.0563019
\(596\) 3838.25 0.263793
\(597\) 0 0
\(598\) −2549.21 −0.174323
\(599\) −22162.4 −1.51174 −0.755870 0.654722i \(-0.772786\pi\)
−0.755870 + 0.654722i \(0.772786\pi\)
\(600\) 0 0
\(601\) 2344.90 0.159152 0.0795761 0.996829i \(-0.474643\pi\)
0.0795761 + 0.996829i \(0.474643\pi\)
\(602\) −4059.16 −0.274816
\(603\) 0 0
\(604\) −15479.9 −1.04283
\(605\) 1726.69 0.116033
\(606\) 0 0
\(607\) 4273.53 0.285761 0.142881 0.989740i \(-0.454363\pi\)
0.142881 + 0.989740i \(0.454363\pi\)
\(608\) −7581.20 −0.505688
\(609\) 0 0
\(610\) 6889.77 0.457309
\(611\) 151.486 0.0100302
\(612\) 0 0
\(613\) −28945.8 −1.90719 −0.953597 0.301085i \(-0.902651\pi\)
−0.953597 + 0.301085i \(0.902651\pi\)
\(614\) −23905.3 −1.57124
\(615\) 0 0
\(616\) 10528.3 0.688633
\(617\) −885.511 −0.0577785 −0.0288892 0.999583i \(-0.509197\pi\)
−0.0288892 + 0.999583i \(0.509197\pi\)
\(618\) 0 0
\(619\) −6120.02 −0.397390 −0.198695 0.980061i \(-0.563670\pi\)
−0.198695 + 0.980061i \(0.563670\pi\)
\(620\) 1885.50 0.122134
\(621\) 0 0
\(622\) 19412.9 1.25142
\(623\) 29176.5 1.87630
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 3206.03 0.204694
\(627\) 0 0
\(628\) −630.618 −0.0400707
\(629\) 1715.87 0.108770
\(630\) 0 0
\(631\) 9436.47 0.595341 0.297670 0.954669i \(-0.403790\pi\)
0.297670 + 0.954669i \(0.403790\pi\)
\(632\) −752.798 −0.0473808
\(633\) 0 0
\(634\) 3125.52 0.195789
\(635\) 12918.2 0.807311
\(636\) 0 0
\(637\) −972.363 −0.0604810
\(638\) −4213.44 −0.261460
\(639\) 0 0
\(640\) 7036.61 0.434604
\(641\) 12119.8 0.746807 0.373403 0.927669i \(-0.378191\pi\)
0.373403 + 0.927669i \(0.378191\pi\)
\(642\) 0 0
\(643\) −7693.03 −0.471825 −0.235912 0.971774i \(-0.575808\pi\)
−0.235912 + 0.971774i \(0.575808\pi\)
\(644\) −7884.74 −0.482457
\(645\) 0 0
\(646\) 1112.04 0.0677285
\(647\) −9921.81 −0.602885 −0.301443 0.953484i \(-0.597468\pi\)
−0.301443 + 0.953484i \(0.597468\pi\)
\(648\) 0 0
\(649\) 16359.8 0.989489
\(650\) −789.439 −0.0476374
\(651\) 0 0
\(652\) −3948.70 −0.237183
\(653\) −9973.03 −0.597665 −0.298832 0.954306i \(-0.596597\pi\)
−0.298832 + 0.954306i \(0.596597\pi\)
\(654\) 0 0
\(655\) 756.052 0.0451014
\(656\) −21857.4 −1.30090
\(657\) 0 0
\(658\) 1284.72 0.0761150
\(659\) 24918.9 1.47299 0.736495 0.676443i \(-0.236479\pi\)
0.736495 + 0.676443i \(0.236479\pi\)
\(660\) 0 0
\(661\) 14562.7 0.856922 0.428461 0.903560i \(-0.359056\pi\)
0.428461 + 0.903560i \(0.359056\pi\)
\(662\) 2161.60 0.126908
\(663\) 0 0
\(664\) 1978.12 0.115612
\(665\) −4336.14 −0.252855
\(666\) 0 0
\(667\) −2341.13 −0.135905
\(668\) 4135.05 0.239506
\(669\) 0 0
\(670\) 7087.17 0.408658
\(671\) 15898.6 0.914690
\(672\) 0 0
\(673\) 10744.1 0.615388 0.307694 0.951485i \(-0.400443\pi\)
0.307694 + 0.951485i \(0.400443\pi\)
\(674\) −33617.6 −1.92122
\(675\) 0 0
\(676\) −9726.32 −0.553387
\(677\) −842.278 −0.0478159 −0.0239080 0.999714i \(-0.507611\pi\)
−0.0239080 + 0.999714i \(0.507611\pi\)
\(678\) 0 0
\(679\) −26873.4 −1.51886
\(680\) −464.598 −0.0262007
\(681\) 0 0
\(682\) 11929.8 0.669819
\(683\) 8313.36 0.465742 0.232871 0.972508i \(-0.425188\pi\)
0.232871 + 0.972508i \(0.425188\pi\)
\(684\) 0 0
\(685\) 1287.03 0.0717884
\(686\) 17638.8 0.981709
\(687\) 0 0
\(688\) −4284.08 −0.237397
\(689\) −205.090 −0.0113401
\(690\) 0 0
\(691\) 16891.1 0.929909 0.464954 0.885335i \(-0.346071\pi\)
0.464954 + 0.885335i \(0.346071\pi\)
\(692\) 2139.15 0.117512
\(693\) 0 0
\(694\) −12196.1 −0.667085
\(695\) −11472.1 −0.626132
\(696\) 0 0
\(697\) 2108.86 0.114604
\(698\) 2497.97 0.135458
\(699\) 0 0
\(700\) −2441.75 −0.131842
\(701\) −26296.2 −1.41682 −0.708412 0.705799i \(-0.750588\pi\)
−0.708412 + 0.705799i \(0.750588\pi\)
\(702\) 0 0
\(703\) 9105.18 0.488490
\(704\) −922.613 −0.0493925
\(705\) 0 0
\(706\) −10582.6 −0.564136
\(707\) 3158.80 0.168032
\(708\) 0 0
\(709\) 26644.7 1.41137 0.705686 0.708525i \(-0.250639\pi\)
0.705686 + 0.708525i \(0.250639\pi\)
\(710\) −1637.48 −0.0865541
\(711\) 0 0
\(712\) 16588.7 0.873158
\(713\) 6628.61 0.348167
\(714\) 0 0
\(715\) −1821.68 −0.0952823
\(716\) −5253.52 −0.274208
\(717\) 0 0
\(718\) −30466.7 −1.58357
\(719\) −5825.10 −0.302141 −0.151071 0.988523i \(-0.548272\pi\)
−0.151071 + 0.988523i \(0.548272\pi\)
\(720\) 0 0
\(721\) −31593.6 −1.63191
\(722\) −18438.9 −0.950450
\(723\) 0 0
\(724\) −1587.29 −0.0814797
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) 6715.29 0.342581 0.171290 0.985221i \(-0.445206\pi\)
0.171290 + 0.985221i \(0.445206\pi\)
\(728\) −2288.22 −0.116493
\(729\) 0 0
\(730\) 17377.7 0.881063
\(731\) 413.340 0.0209137
\(732\) 0 0
\(733\) 14206.6 0.715870 0.357935 0.933747i \(-0.383481\pi\)
0.357935 + 0.933747i \(0.383481\pi\)
\(734\) 24803.0 1.24727
\(735\) 0 0
\(736\) −15008.3 −0.751649
\(737\) 16354.1 0.817381
\(738\) 0 0
\(739\) −30931.2 −1.53968 −0.769840 0.638237i \(-0.779664\pi\)
−0.769840 + 0.638237i \(0.779664\pi\)
\(740\) 5127.26 0.254705
\(741\) 0 0
\(742\) −1739.33 −0.0860550
\(743\) 32851.1 1.62206 0.811030 0.585005i \(-0.198907\pi\)
0.811030 + 0.585005i \(0.198907\pi\)
\(744\) 0 0
\(745\) 4178.72 0.205498
\(746\) −3905.42 −0.191672
\(747\) 0 0
\(748\) 1445.01 0.0706346
\(749\) 9814.07 0.478769
\(750\) 0 0
\(751\) 36055.8 1.75192 0.875961 0.482382i \(-0.160228\pi\)
0.875961 + 0.482382i \(0.160228\pi\)
\(752\) 1355.91 0.0657512
\(753\) 0 0
\(754\) 915.749 0.0442302
\(755\) −16853.0 −0.812375
\(756\) 0 0
\(757\) −7094.16 −0.340610 −0.170305 0.985391i \(-0.554475\pi\)
−0.170305 + 0.985391i \(0.554475\pi\)
\(758\) 28213.5 1.35193
\(759\) 0 0
\(760\) −2465.37 −0.117669
\(761\) −23664.3 −1.12724 −0.563620 0.826034i \(-0.690592\pi\)
−0.563620 + 0.826034i \(0.690592\pi\)
\(762\) 0 0
\(763\) −32241.6 −1.52978
\(764\) −14146.8 −0.669913
\(765\) 0 0
\(766\) −36054.5 −1.70065
\(767\) −3555.64 −0.167388
\(768\) 0 0
\(769\) 16743.8 0.785172 0.392586 0.919715i \(-0.371581\pi\)
0.392586 + 0.919715i \(0.371581\pi\)
\(770\) −15449.3 −0.723057
\(771\) 0 0
\(772\) 20950.4 0.976713
\(773\) 2198.53 0.102297 0.0511485 0.998691i \(-0.483712\pi\)
0.0511485 + 0.998691i \(0.483712\pi\)
\(774\) 0 0
\(775\) 2052.75 0.0951443
\(776\) −15279.2 −0.706819
\(777\) 0 0
\(778\) −34671.6 −1.59773
\(779\) 11190.6 0.514691
\(780\) 0 0
\(781\) −3778.57 −0.173122
\(782\) 2201.47 0.100671
\(783\) 0 0
\(784\) −8703.37 −0.396473
\(785\) −686.556 −0.0312156
\(786\) 0 0
\(787\) −10092.7 −0.457134 −0.228567 0.973528i \(-0.573404\pi\)
−0.228567 + 0.973528i \(0.573404\pi\)
\(788\) −11578.6 −0.523440
\(789\) 0 0
\(790\) 1104.66 0.0497493
\(791\) 3411.30 0.153340
\(792\) 0 0
\(793\) −3455.39 −0.154735
\(794\) −11324.0 −0.506138
\(795\) 0 0
\(796\) −13780.1 −0.613597
\(797\) 35534.7 1.57930 0.789652 0.613555i \(-0.210261\pi\)
0.789652 + 0.613555i \(0.210261\pi\)
\(798\) 0 0
\(799\) −130.822 −0.00579241
\(800\) −4647.77 −0.205404
\(801\) 0 0
\(802\) −39394.7 −1.73451
\(803\) 40100.0 1.76226
\(804\) 0 0
\(805\) −8584.14 −0.375840
\(806\) −2592.83 −0.113311
\(807\) 0 0
\(808\) 1795.98 0.0781958
\(809\) −27966.3 −1.21538 −0.607691 0.794173i \(-0.707904\pi\)
−0.607691 + 0.794173i \(0.707904\pi\)
\(810\) 0 0
\(811\) −19134.4 −0.828481 −0.414241 0.910167i \(-0.635953\pi\)
−0.414241 + 0.910167i \(0.635953\pi\)
\(812\) 2832.42 0.122412
\(813\) 0 0
\(814\) 32441.0 1.39687
\(815\) −4298.97 −0.184768
\(816\) 0 0
\(817\) 2193.37 0.0939246
\(818\) −18679.3 −0.798420
\(819\) 0 0
\(820\) 6301.59 0.268367
\(821\) 21420.6 0.910577 0.455288 0.890344i \(-0.349536\pi\)
0.455288 + 0.890344i \(0.349536\pi\)
\(822\) 0 0
\(823\) −16122.4 −0.682855 −0.341428 0.939908i \(-0.610910\pi\)
−0.341428 + 0.939908i \(0.610910\pi\)
\(824\) −17962.9 −0.759428
\(825\) 0 0
\(826\) −30154.7 −1.27024
\(827\) −22131.9 −0.930596 −0.465298 0.885154i \(-0.654053\pi\)
−0.465298 + 0.885154i \(0.654053\pi\)
\(828\) 0 0
\(829\) 135.660 0.00568355 0.00284178 0.999996i \(-0.499095\pi\)
0.00284178 + 0.999996i \(0.499095\pi\)
\(830\) −2902.70 −0.121391
\(831\) 0 0
\(832\) 200.521 0.00835553
\(833\) 839.724 0.0349276
\(834\) 0 0
\(835\) 4501.84 0.186578
\(836\) 7667.88 0.317224
\(837\) 0 0
\(838\) −19038.6 −0.784818
\(839\) 32154.4 1.32311 0.661557 0.749895i \(-0.269896\pi\)
0.661557 + 0.749895i \(0.269896\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 15805.0 0.646886
\(843\) 0 0
\(844\) 3873.42 0.157972
\(845\) −10589.1 −0.431095
\(846\) 0 0
\(847\) −7344.21 −0.297934
\(848\) −1835.71 −0.0743378
\(849\) 0 0
\(850\) 681.752 0.0275105
\(851\) 18025.3 0.726085
\(852\) 0 0
\(853\) 2797.50 0.112291 0.0561457 0.998423i \(-0.482119\pi\)
0.0561457 + 0.998423i \(0.482119\pi\)
\(854\) −29304.5 −1.17422
\(855\) 0 0
\(856\) 5579.92 0.222801
\(857\) −9053.14 −0.360851 −0.180425 0.983589i \(-0.557747\pi\)
−0.180425 + 0.983589i \(0.557747\pi\)
\(858\) 0 0
\(859\) 23178.7 0.920660 0.460330 0.887748i \(-0.347731\pi\)
0.460330 + 0.887748i \(0.347731\pi\)
\(860\) 1235.12 0.0489736
\(861\) 0 0
\(862\) 53813.1 2.12631
\(863\) 7117.61 0.280749 0.140374 0.990098i \(-0.455169\pi\)
0.140374 + 0.990098i \(0.455169\pi\)
\(864\) 0 0
\(865\) 2328.90 0.0915432
\(866\) 20399.1 0.800450
\(867\) 0 0
\(868\) −8019.65 −0.313600
\(869\) 2549.06 0.0995064
\(870\) 0 0
\(871\) −3554.39 −0.138273
\(872\) −18331.4 −0.711904
\(873\) 0 0
\(874\) 11682.0 0.452118
\(875\) −2658.34 −0.102706
\(876\) 0 0
\(877\) 44014.6 1.69472 0.847359 0.531020i \(-0.178191\pi\)
0.847359 + 0.531020i \(0.178191\pi\)
\(878\) −8563.47 −0.329161
\(879\) 0 0
\(880\) −16305.4 −0.624606
\(881\) 31970.4 1.22260 0.611299 0.791399i \(-0.290647\pi\)
0.611299 + 0.791399i \(0.290647\pi\)
\(882\) 0 0
\(883\) 13620.9 0.519116 0.259558 0.965727i \(-0.416423\pi\)
0.259558 + 0.965727i \(0.416423\pi\)
\(884\) −314.058 −0.0119490
\(885\) 0 0
\(886\) 19866.8 0.753315
\(887\) −23494.2 −0.889357 −0.444678 0.895690i \(-0.646682\pi\)
−0.444678 + 0.895690i \(0.646682\pi\)
\(888\) 0 0
\(889\) −54945.4 −2.07290
\(890\) −24342.3 −0.916805
\(891\) 0 0
\(892\) 4908.96 0.184265
\(893\) −694.200 −0.0260140
\(894\) 0 0
\(895\) −5719.52 −0.213612
\(896\) −29929.1 −1.11591
\(897\) 0 0
\(898\) −4923.70 −0.182969
\(899\) −2381.19 −0.0883392
\(900\) 0 0
\(901\) 177.114 0.00654886
\(902\) 39871.1 1.47180
\(903\) 0 0
\(904\) 1939.54 0.0713585
\(905\) −1728.09 −0.0634737
\(906\) 0 0
\(907\) 11695.6 0.428165 0.214083 0.976816i \(-0.431324\pi\)
0.214083 + 0.976816i \(0.431324\pi\)
\(908\) −7756.49 −0.283489
\(909\) 0 0
\(910\) 3357.75 0.122317
\(911\) 30991.2 1.12710 0.563549 0.826083i \(-0.309436\pi\)
0.563549 + 0.826083i \(0.309436\pi\)
\(912\) 0 0
\(913\) −6698.16 −0.242800
\(914\) −4288.72 −0.155206
\(915\) 0 0
\(916\) −14169.6 −0.511111
\(917\) −3215.74 −0.115805
\(918\) 0 0
\(919\) −16612.6 −0.596300 −0.298150 0.954519i \(-0.596370\pi\)
−0.298150 + 0.954519i \(0.596370\pi\)
\(920\) −4880.63 −0.174902
\(921\) 0 0
\(922\) 6523.30 0.233008
\(923\) 821.235 0.0292863
\(924\) 0 0
\(925\) 5582.07 0.198419
\(926\) −49415.8 −1.75367
\(927\) 0 0
\(928\) 5391.41 0.190713
\(929\) −53475.3 −1.88856 −0.944278 0.329149i \(-0.893238\pi\)
−0.944278 + 0.329149i \(0.893238\pi\)
\(930\) 0 0
\(931\) 4455.96 0.156862
\(932\) 22092.4 0.776460
\(933\) 0 0
\(934\) 30847.7 1.08069
\(935\) 1573.18 0.0550252
\(936\) 0 0
\(937\) 21279.8 0.741923 0.370961 0.928648i \(-0.379028\pi\)
0.370961 + 0.928648i \(0.379028\pi\)
\(938\) −30144.1 −1.04930
\(939\) 0 0
\(940\) −390.915 −0.0135641
\(941\) −13268.0 −0.459645 −0.229822 0.973233i \(-0.573814\pi\)
−0.229822 + 0.973233i \(0.573814\pi\)
\(942\) 0 0
\(943\) 22153.7 0.765031
\(944\) −31825.6 −1.09728
\(945\) 0 0
\(946\) 7814.80 0.268585
\(947\) −21016.6 −0.721170 −0.360585 0.932726i \(-0.617423\pi\)
−0.360585 + 0.932726i \(0.617423\pi\)
\(948\) 0 0
\(949\) −8715.33 −0.298115
\(950\) 3617.69 0.123551
\(951\) 0 0
\(952\) 1976.09 0.0672746
\(953\) −42402.9 −1.44131 −0.720654 0.693295i \(-0.756158\pi\)
−0.720654 + 0.693295i \(0.756158\pi\)
\(954\) 0 0
\(955\) −15401.7 −0.521871
\(956\) 7948.28 0.268897
\(957\) 0 0
\(958\) −35186.9 −1.18668
\(959\) −5474.19 −0.184328
\(960\) 0 0
\(961\) −23049.0 −0.773689
\(962\) −7050.72 −0.236304
\(963\) 0 0
\(964\) −7676.56 −0.256479
\(965\) 22808.8 0.760871
\(966\) 0 0
\(967\) 31613.7 1.05132 0.525661 0.850694i \(-0.323818\pi\)
0.525661 + 0.850694i \(0.323818\pi\)
\(968\) −4175.65 −0.138647
\(969\) 0 0
\(970\) 22420.8 0.742152
\(971\) 42637.4 1.40916 0.704582 0.709622i \(-0.251134\pi\)
0.704582 + 0.709622i \(0.251134\pi\)
\(972\) 0 0
\(973\) 48794.8 1.60770
\(974\) 59026.9 1.94183
\(975\) 0 0
\(976\) −30928.3 −1.01433
\(977\) 7766.81 0.254332 0.127166 0.991881i \(-0.459412\pi\)
0.127166 + 0.991881i \(0.459412\pi\)
\(978\) 0 0
\(979\) −56171.4 −1.83375
\(980\) 2509.22 0.0817899
\(981\) 0 0
\(982\) 1034.19 0.0336072
\(983\) 13603.8 0.441397 0.220698 0.975342i \(-0.429166\pi\)
0.220698 + 0.975342i \(0.429166\pi\)
\(984\) 0 0
\(985\) −12605.7 −0.407767
\(986\) −790.832 −0.0255428
\(987\) 0 0
\(988\) −1666.54 −0.0536635
\(989\) 4342.16 0.139608
\(990\) 0 0
\(991\) −13619.6 −0.436569 −0.218284 0.975885i \(-0.570046\pi\)
−0.218284 + 0.975885i \(0.570046\pi\)
\(992\) −15265.1 −0.488576
\(993\) 0 0
\(994\) 6964.74 0.222241
\(995\) −15002.4 −0.478000
\(996\) 0 0
\(997\) 27262.0 0.865993 0.432996 0.901396i \(-0.357456\pi\)
0.432996 + 0.901396i \(0.357456\pi\)
\(998\) 42035.8 1.33329
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.h.1.5 6
3.2 odd 2 435.4.a.h.1.2 6
15.14 odd 2 2175.4.a.k.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.2 6 3.2 odd 2
1305.4.a.h.1.5 6 1.1 even 1 trivial
2175.4.a.k.1.5 6 15.14 odd 2