Properties

Label 1305.4.a.h.1.3
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.35472\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.35472 q^{2} -2.45528 q^{4} +5.00000 q^{5} -3.94392 q^{7} +24.6193 q^{8} +O(q^{10})\) \(q-2.35472 q^{2} -2.45528 q^{4} +5.00000 q^{5} -3.94392 q^{7} +24.6193 q^{8} -11.7736 q^{10} -42.8507 q^{11} +36.4288 q^{13} +9.28685 q^{14} -38.3294 q^{16} -17.8279 q^{17} +84.6809 q^{19} -12.2764 q^{20} +100.902 q^{22} -93.9097 q^{23} +25.0000 q^{25} -85.7797 q^{26} +9.68343 q^{28} -29.0000 q^{29} +122.782 q^{31} -106.699 q^{32} +41.9798 q^{34} -19.7196 q^{35} -61.2323 q^{37} -199.400 q^{38} +123.096 q^{40} -13.8437 q^{41} +397.388 q^{43} +105.210 q^{44} +221.131 q^{46} -235.310 q^{47} -327.445 q^{49} -58.8681 q^{50} -89.4428 q^{52} +50.4554 q^{53} -214.253 q^{55} -97.0966 q^{56} +68.2870 q^{58} +476.712 q^{59} -75.4071 q^{61} -289.119 q^{62} +557.882 q^{64} +182.144 q^{65} -698.609 q^{67} +43.7725 q^{68} +46.4342 q^{70} -44.6799 q^{71} +669.611 q^{73} +144.185 q^{74} -207.915 q^{76} +169.000 q^{77} +269.236 q^{79} -191.647 q^{80} +32.5981 q^{82} -869.721 q^{83} -89.1395 q^{85} -935.739 q^{86} -1054.95 q^{88} +9.85326 q^{89} -143.672 q^{91} +230.574 q^{92} +554.089 q^{94} +423.405 q^{95} -1524.47 q^{97} +771.043 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + 51 q^{4} + 30 q^{5} + 47 q^{7} - 51 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} + 51 q^{4} + 30 q^{5} + 47 q^{7} - 51 q^{8} - 5 q^{10} - 81 q^{11} + 169 q^{13} + 30 q^{14} + 131 q^{16} + q^{17} + 116 q^{19} + 255 q^{20} + 90 q^{22} + 52 q^{23} + 150 q^{25} - 294 q^{26} + 344 q^{28} - 174 q^{29} + 340 q^{31} - 499 q^{32} + 920 q^{34} + 235 q^{35} + 332 q^{37} + 378 q^{38} - 255 q^{40} + 616 q^{41} + 334 q^{43} + 52 q^{44} - 158 q^{46} + 85 q^{47} + 879 q^{49} - 25 q^{50} + 2220 q^{52} + 850 q^{53} - 405 q^{55} + 624 q^{56} + 29 q^{58} + 758 q^{59} - 36 q^{61} + 152 q^{62} + 1795 q^{64} + 845 q^{65} + 939 q^{67} + 186 q^{68} + 150 q^{70} + 1388 q^{71} + 1708 q^{73} + 814 q^{74} + 566 q^{76} - 2585 q^{77} + 1250 q^{79} + 655 q^{80} + 1372 q^{82} + 748 q^{83} + 5 q^{85} + 800 q^{86} + 536 q^{88} - 1099 q^{89} + 539 q^{91} - 1698 q^{92} - 4542 q^{94} + 580 q^{95} - 22 q^{97} + 1433 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.35472 −0.832520 −0.416260 0.909246i \(-0.636659\pi\)
−0.416260 + 0.909246i \(0.636659\pi\)
\(3\) 0 0
\(4\) −2.45528 −0.306910
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −3.94392 −0.212952 −0.106476 0.994315i \(-0.533957\pi\)
−0.106476 + 0.994315i \(0.533957\pi\)
\(8\) 24.6193 1.08803
\(9\) 0 0
\(10\) −11.7736 −0.372314
\(11\) −42.8507 −1.17454 −0.587271 0.809390i \(-0.699798\pi\)
−0.587271 + 0.809390i \(0.699798\pi\)
\(12\) 0 0
\(13\) 36.4288 0.777194 0.388597 0.921408i \(-0.372960\pi\)
0.388597 + 0.921408i \(0.372960\pi\)
\(14\) 9.28685 0.177287
\(15\) 0 0
\(16\) −38.3294 −0.598897
\(17\) −17.8279 −0.254347 −0.127174 0.991880i \(-0.540591\pi\)
−0.127174 + 0.991880i \(0.540591\pi\)
\(18\) 0 0
\(19\) 84.6809 1.02248 0.511241 0.859438i \(-0.329186\pi\)
0.511241 + 0.859438i \(0.329186\pi\)
\(20\) −12.2764 −0.137254
\(21\) 0 0
\(22\) 100.902 0.977831
\(23\) −93.9097 −0.851371 −0.425685 0.904871i \(-0.639967\pi\)
−0.425685 + 0.904871i \(0.639967\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −85.7797 −0.647030
\(27\) 0 0
\(28\) 9.68343 0.0653570
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) 122.782 0.711367 0.355683 0.934607i \(-0.384248\pi\)
0.355683 + 0.934607i \(0.384248\pi\)
\(32\) −106.699 −0.589435
\(33\) 0 0
\(34\) 41.9798 0.211749
\(35\) −19.7196 −0.0952350
\(36\) 0 0
\(37\) −61.2323 −0.272069 −0.136034 0.990704i \(-0.543436\pi\)
−0.136034 + 0.990704i \(0.543436\pi\)
\(38\) −199.400 −0.851236
\(39\) 0 0
\(40\) 123.096 0.486581
\(41\) −13.8437 −0.0527323 −0.0263662 0.999652i \(-0.508394\pi\)
−0.0263662 + 0.999652i \(0.508394\pi\)
\(42\) 0 0
\(43\) 397.388 1.40933 0.704664 0.709541i \(-0.251098\pi\)
0.704664 + 0.709541i \(0.251098\pi\)
\(44\) 105.210 0.360479
\(45\) 0 0
\(46\) 221.131 0.708783
\(47\) −235.310 −0.730286 −0.365143 0.930952i \(-0.618980\pi\)
−0.365143 + 0.930952i \(0.618980\pi\)
\(48\) 0 0
\(49\) −327.445 −0.954652
\(50\) −58.8681 −0.166504
\(51\) 0 0
\(52\) −89.4428 −0.238529
\(53\) 50.4554 0.130766 0.0653829 0.997860i \(-0.479173\pi\)
0.0653829 + 0.997860i \(0.479173\pi\)
\(54\) 0 0
\(55\) −214.253 −0.525271
\(56\) −97.0966 −0.231698
\(57\) 0 0
\(58\) 68.2870 0.154595
\(59\) 476.712 1.05191 0.525955 0.850513i \(-0.323708\pi\)
0.525955 + 0.850513i \(0.323708\pi\)
\(60\) 0 0
\(61\) −75.4071 −0.158277 −0.0791384 0.996864i \(-0.525217\pi\)
−0.0791384 + 0.996864i \(0.525217\pi\)
\(62\) −289.119 −0.592227
\(63\) 0 0
\(64\) 557.882 1.08961
\(65\) 182.144 0.347572
\(66\) 0 0
\(67\) −698.609 −1.27386 −0.636931 0.770921i \(-0.719796\pi\)
−0.636931 + 0.770921i \(0.719796\pi\)
\(68\) 43.7725 0.0780616
\(69\) 0 0
\(70\) 46.4342 0.0792850
\(71\) −44.6799 −0.0746835 −0.0373417 0.999303i \(-0.511889\pi\)
−0.0373417 + 0.999303i \(0.511889\pi\)
\(72\) 0 0
\(73\) 669.611 1.07359 0.536795 0.843713i \(-0.319635\pi\)
0.536795 + 0.843713i \(0.319635\pi\)
\(74\) 144.185 0.226503
\(75\) 0 0
\(76\) −207.915 −0.313809
\(77\) 169.000 0.250121
\(78\) 0 0
\(79\) 269.236 0.383435 0.191718 0.981450i \(-0.438594\pi\)
0.191718 + 0.981450i \(0.438594\pi\)
\(80\) −191.647 −0.267835
\(81\) 0 0
\(82\) 32.5981 0.0439007
\(83\) −869.721 −1.15017 −0.575086 0.818093i \(-0.695031\pi\)
−0.575086 + 0.818093i \(0.695031\pi\)
\(84\) 0 0
\(85\) −89.1395 −0.113747
\(86\) −935.739 −1.17329
\(87\) 0 0
\(88\) −1054.95 −1.27794
\(89\) 9.85326 0.0117353 0.00586766 0.999983i \(-0.498132\pi\)
0.00586766 + 0.999983i \(0.498132\pi\)
\(90\) 0 0
\(91\) −143.672 −0.165505
\(92\) 230.574 0.261294
\(93\) 0 0
\(94\) 554.089 0.607978
\(95\) 423.405 0.457267
\(96\) 0 0
\(97\) −1524.47 −1.59574 −0.797868 0.602832i \(-0.794039\pi\)
−0.797868 + 0.602832i \(0.794039\pi\)
\(98\) 771.043 0.794767
\(99\) 0 0
\(100\) −61.3820 −0.0613820
\(101\) −517.330 −0.509666 −0.254833 0.966985i \(-0.582020\pi\)
−0.254833 + 0.966985i \(0.582020\pi\)
\(102\) 0 0
\(103\) −1447.99 −1.38519 −0.692595 0.721327i \(-0.743533\pi\)
−0.692595 + 0.721327i \(0.743533\pi\)
\(104\) 896.851 0.845610
\(105\) 0 0
\(106\) −118.809 −0.108865
\(107\) 332.747 0.300634 0.150317 0.988638i \(-0.451971\pi\)
0.150317 + 0.988638i \(0.451971\pi\)
\(108\) 0 0
\(109\) 890.530 0.782544 0.391272 0.920275i \(-0.372035\pi\)
0.391272 + 0.920275i \(0.372035\pi\)
\(110\) 504.508 0.437299
\(111\) 0 0
\(112\) 151.168 0.127536
\(113\) 936.802 0.779884 0.389942 0.920839i \(-0.372495\pi\)
0.389942 + 0.920839i \(0.372495\pi\)
\(114\) 0 0
\(115\) −469.548 −0.380745
\(116\) 71.2031 0.0569917
\(117\) 0 0
\(118\) −1122.53 −0.875736
\(119\) 70.3119 0.0541637
\(120\) 0 0
\(121\) 505.182 0.379551
\(122\) 177.563 0.131769
\(123\) 0 0
\(124\) −301.465 −0.218325
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 2450.72 1.71234 0.856168 0.516698i \(-0.172839\pi\)
0.856168 + 0.516698i \(0.172839\pi\)
\(128\) −460.065 −0.317690
\(129\) 0 0
\(130\) −428.898 −0.289361
\(131\) −546.681 −0.364609 −0.182304 0.983242i \(-0.558356\pi\)
−0.182304 + 0.983242i \(0.558356\pi\)
\(132\) 0 0
\(133\) −333.975 −0.217739
\(134\) 1645.03 1.06052
\(135\) 0 0
\(136\) −438.910 −0.276737
\(137\) 618.064 0.385436 0.192718 0.981254i \(-0.438270\pi\)
0.192718 + 0.981254i \(0.438270\pi\)
\(138\) 0 0
\(139\) 1285.51 0.784428 0.392214 0.919874i \(-0.371709\pi\)
0.392214 + 0.919874i \(0.371709\pi\)
\(140\) 48.4171 0.0292285
\(141\) 0 0
\(142\) 105.209 0.0621755
\(143\) −1561.00 −0.912848
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) −1576.75 −0.893786
\(147\) 0 0
\(148\) 150.342 0.0835005
\(149\) 125.043 0.0687512 0.0343756 0.999409i \(-0.489056\pi\)
0.0343756 + 0.999409i \(0.489056\pi\)
\(150\) 0 0
\(151\) 1968.65 1.06097 0.530485 0.847694i \(-0.322010\pi\)
0.530485 + 0.847694i \(0.322010\pi\)
\(152\) 2084.78 1.11249
\(153\) 0 0
\(154\) −397.948 −0.208231
\(155\) 613.912 0.318133
\(156\) 0 0
\(157\) 1125.84 0.572304 0.286152 0.958184i \(-0.407624\pi\)
0.286152 + 0.958184i \(0.407624\pi\)
\(158\) −633.976 −0.319218
\(159\) 0 0
\(160\) −533.496 −0.263604
\(161\) 370.373 0.181301
\(162\) 0 0
\(163\) 1773.87 0.852394 0.426197 0.904630i \(-0.359853\pi\)
0.426197 + 0.904630i \(0.359853\pi\)
\(164\) 33.9902 0.0161841
\(165\) 0 0
\(166\) 2047.95 0.957542
\(167\) 1420.91 0.658403 0.329201 0.944260i \(-0.393221\pi\)
0.329201 + 0.944260i \(0.393221\pi\)
\(168\) 0 0
\(169\) −869.944 −0.395969
\(170\) 209.899 0.0946971
\(171\) 0 0
\(172\) −975.698 −0.432536
\(173\) 339.659 0.149270 0.0746352 0.997211i \(-0.476221\pi\)
0.0746352 + 0.997211i \(0.476221\pi\)
\(174\) 0 0
\(175\) −98.5981 −0.0425904
\(176\) 1642.44 0.703430
\(177\) 0 0
\(178\) −23.2017 −0.00976990
\(179\) 2593.10 1.08278 0.541389 0.840772i \(-0.317899\pi\)
0.541389 + 0.840772i \(0.317899\pi\)
\(180\) 0 0
\(181\) −335.225 −0.137663 −0.0688317 0.997628i \(-0.521927\pi\)
−0.0688317 + 0.997628i \(0.521927\pi\)
\(182\) 338.309 0.137786
\(183\) 0 0
\(184\) −2311.99 −0.926316
\(185\) −306.162 −0.121673
\(186\) 0 0
\(187\) 763.938 0.298742
\(188\) 577.750 0.224132
\(189\) 0 0
\(190\) −997.001 −0.380685
\(191\) −927.961 −0.351544 −0.175772 0.984431i \(-0.556242\pi\)
−0.175772 + 0.984431i \(0.556242\pi\)
\(192\) 0 0
\(193\) 2184.47 0.814725 0.407362 0.913267i \(-0.366449\pi\)
0.407362 + 0.913267i \(0.366449\pi\)
\(194\) 3589.70 1.32848
\(195\) 0 0
\(196\) 803.970 0.292992
\(197\) 3765.55 1.36185 0.680924 0.732354i \(-0.261578\pi\)
0.680924 + 0.732354i \(0.261578\pi\)
\(198\) 0 0
\(199\) −60.0727 −0.0213992 −0.0106996 0.999943i \(-0.503406\pi\)
−0.0106996 + 0.999943i \(0.503406\pi\)
\(200\) 615.482 0.217606
\(201\) 0 0
\(202\) 1218.17 0.424307
\(203\) 114.374 0.0395442
\(204\) 0 0
\(205\) −69.2186 −0.0235826
\(206\) 3409.61 1.15320
\(207\) 0 0
\(208\) −1396.29 −0.465459
\(209\) −3628.64 −1.20095
\(210\) 0 0
\(211\) −2276.29 −0.742682 −0.371341 0.928497i \(-0.621102\pi\)
−0.371341 + 0.928497i \(0.621102\pi\)
\(212\) −123.882 −0.0401333
\(213\) 0 0
\(214\) −783.527 −0.250284
\(215\) 1986.94 0.630271
\(216\) 0 0
\(217\) −484.244 −0.151487
\(218\) −2096.95 −0.651484
\(219\) 0 0
\(220\) 526.052 0.161211
\(221\) −649.449 −0.197677
\(222\) 0 0
\(223\) 3889.04 1.16784 0.583922 0.811809i \(-0.301517\pi\)
0.583922 + 0.811809i \(0.301517\pi\)
\(224\) 420.813 0.125521
\(225\) 0 0
\(226\) −2205.91 −0.649269
\(227\) 5689.80 1.66363 0.831817 0.555050i \(-0.187301\pi\)
0.831817 + 0.555050i \(0.187301\pi\)
\(228\) 0 0
\(229\) −3253.91 −0.938972 −0.469486 0.882940i \(-0.655561\pi\)
−0.469486 + 0.882940i \(0.655561\pi\)
\(230\) 1105.66 0.316978
\(231\) 0 0
\(232\) −713.959 −0.202042
\(233\) −1363.72 −0.383436 −0.191718 0.981450i \(-0.561406\pi\)
−0.191718 + 0.981450i \(0.561406\pi\)
\(234\) 0 0
\(235\) −1176.55 −0.326594
\(236\) −1170.46 −0.322841
\(237\) 0 0
\(238\) −165.565 −0.0450924
\(239\) 4788.65 1.29603 0.648017 0.761626i \(-0.275598\pi\)
0.648017 + 0.761626i \(0.275598\pi\)
\(240\) 0 0
\(241\) −632.898 −0.169164 −0.0845820 0.996417i \(-0.526956\pi\)
−0.0845820 + 0.996417i \(0.526956\pi\)
\(242\) −1189.56 −0.315984
\(243\) 0 0
\(244\) 185.145 0.0485767
\(245\) −1637.23 −0.426933
\(246\) 0 0
\(247\) 3084.82 0.794667
\(248\) 3022.81 0.773988
\(249\) 0 0
\(250\) −294.340 −0.0744629
\(251\) 7413.17 1.86420 0.932101 0.362198i \(-0.117973\pi\)
0.932101 + 0.362198i \(0.117973\pi\)
\(252\) 0 0
\(253\) 4024.10 0.999971
\(254\) −5770.78 −1.42555
\(255\) 0 0
\(256\) −3379.73 −0.825130
\(257\) 3920.20 0.951500 0.475750 0.879581i \(-0.342177\pi\)
0.475750 + 0.879581i \(0.342177\pi\)
\(258\) 0 0
\(259\) 241.496 0.0579375
\(260\) −447.214 −0.106673
\(261\) 0 0
\(262\) 1287.28 0.303544
\(263\) −2505.55 −0.587448 −0.293724 0.955890i \(-0.594895\pi\)
−0.293724 + 0.955890i \(0.594895\pi\)
\(264\) 0 0
\(265\) 252.277 0.0584802
\(266\) 786.419 0.181272
\(267\) 0 0
\(268\) 1715.28 0.390960
\(269\) 3707.17 0.840261 0.420131 0.907464i \(-0.361984\pi\)
0.420131 + 0.907464i \(0.361984\pi\)
\(270\) 0 0
\(271\) 4768.39 1.06885 0.534426 0.845215i \(-0.320528\pi\)
0.534426 + 0.845215i \(0.320528\pi\)
\(272\) 683.332 0.152328
\(273\) 0 0
\(274\) −1455.37 −0.320883
\(275\) −1071.27 −0.234909
\(276\) 0 0
\(277\) 2908.10 0.630798 0.315399 0.948959i \(-0.397862\pi\)
0.315399 + 0.948959i \(0.397862\pi\)
\(278\) −3027.02 −0.653053
\(279\) 0 0
\(280\) −485.483 −0.103618
\(281\) −495.963 −0.105291 −0.0526454 0.998613i \(-0.516765\pi\)
−0.0526454 + 0.998613i \(0.516765\pi\)
\(282\) 0 0
\(283\) 7296.12 1.53254 0.766271 0.642517i \(-0.222110\pi\)
0.766271 + 0.642517i \(0.222110\pi\)
\(284\) 109.702 0.0229211
\(285\) 0 0
\(286\) 3675.72 0.759964
\(287\) 54.5986 0.0112294
\(288\) 0 0
\(289\) −4595.17 −0.935308
\(290\) 341.435 0.0691371
\(291\) 0 0
\(292\) −1644.08 −0.329495
\(293\) −853.949 −0.170267 −0.0851335 0.996370i \(-0.527132\pi\)
−0.0851335 + 0.996370i \(0.527132\pi\)
\(294\) 0 0
\(295\) 2383.56 0.470428
\(296\) −1507.50 −0.296018
\(297\) 0 0
\(298\) −294.442 −0.0572368
\(299\) −3421.02 −0.661680
\(300\) 0 0
\(301\) −1567.27 −0.300119
\(302\) −4635.63 −0.883280
\(303\) 0 0
\(304\) −3245.77 −0.612361
\(305\) −377.035 −0.0707836
\(306\) 0 0
\(307\) −694.287 −0.129072 −0.0645359 0.997915i \(-0.520557\pi\)
−0.0645359 + 0.997915i \(0.520557\pi\)
\(308\) −414.942 −0.0767646
\(309\) 0 0
\(310\) −1445.59 −0.264852
\(311\) −2587.58 −0.471794 −0.235897 0.971778i \(-0.575803\pi\)
−0.235897 + 0.971778i \(0.575803\pi\)
\(312\) 0 0
\(313\) −3467.68 −0.626214 −0.313107 0.949718i \(-0.601370\pi\)
−0.313107 + 0.949718i \(0.601370\pi\)
\(314\) −2651.04 −0.476455
\(315\) 0 0
\(316\) −661.048 −0.117680
\(317\) 5158.66 0.914003 0.457001 0.889466i \(-0.348923\pi\)
0.457001 + 0.889466i \(0.348923\pi\)
\(318\) 0 0
\(319\) 1242.67 0.218107
\(320\) 2789.41 0.487290
\(321\) 0 0
\(322\) −872.125 −0.150937
\(323\) −1509.68 −0.260065
\(324\) 0 0
\(325\) 910.720 0.155439
\(326\) −4176.97 −0.709635
\(327\) 0 0
\(328\) −340.822 −0.0573743
\(329\) 928.043 0.155516
\(330\) 0 0
\(331\) 11056.9 1.83609 0.918043 0.396480i \(-0.129768\pi\)
0.918043 + 0.396480i \(0.129768\pi\)
\(332\) 2135.41 0.352999
\(333\) 0 0
\(334\) −3345.85 −0.548134
\(335\) −3493.05 −0.569688
\(336\) 0 0
\(337\) 6128.18 0.990574 0.495287 0.868729i \(-0.335063\pi\)
0.495287 + 0.868729i \(0.335063\pi\)
\(338\) 2048.48 0.329652
\(339\) 0 0
\(340\) 218.862 0.0349102
\(341\) −5261.31 −0.835531
\(342\) 0 0
\(343\) 2644.19 0.416247
\(344\) 9783.41 1.53339
\(345\) 0 0
\(346\) −799.803 −0.124271
\(347\) 9277.85 1.43533 0.717667 0.696386i \(-0.245210\pi\)
0.717667 + 0.696386i \(0.245210\pi\)
\(348\) 0 0
\(349\) 4375.41 0.671090 0.335545 0.942024i \(-0.391079\pi\)
0.335545 + 0.942024i \(0.391079\pi\)
\(350\) 232.171 0.0354573
\(351\) 0 0
\(352\) 4572.13 0.692317
\(353\) 3256.89 0.491067 0.245534 0.969388i \(-0.421037\pi\)
0.245534 + 0.969388i \(0.421037\pi\)
\(354\) 0 0
\(355\) −223.399 −0.0333995
\(356\) −24.1925 −0.00360169
\(357\) 0 0
\(358\) −6106.03 −0.901435
\(359\) 6219.24 0.914315 0.457158 0.889386i \(-0.348868\pi\)
0.457158 + 0.889386i \(0.348868\pi\)
\(360\) 0 0
\(361\) 311.863 0.0454677
\(362\) 789.362 0.114608
\(363\) 0 0
\(364\) 352.755 0.0507951
\(365\) 3348.06 0.480124
\(366\) 0 0
\(367\) 10388.3 1.47756 0.738780 0.673947i \(-0.235402\pi\)
0.738780 + 0.673947i \(0.235402\pi\)
\(368\) 3599.50 0.509883
\(369\) 0 0
\(370\) 720.926 0.101295
\(371\) −198.992 −0.0278468
\(372\) 0 0
\(373\) 13200.4 1.83241 0.916204 0.400712i \(-0.131237\pi\)
0.916204 + 0.400712i \(0.131237\pi\)
\(374\) −1798.86 −0.248708
\(375\) 0 0
\(376\) −5793.15 −0.794572
\(377\) −1056.43 −0.144321
\(378\) 0 0
\(379\) −5927.59 −0.803376 −0.401688 0.915777i \(-0.631576\pi\)
−0.401688 + 0.915777i \(0.631576\pi\)
\(380\) −1039.58 −0.140340
\(381\) 0 0
\(382\) 2185.09 0.292667
\(383\) −7463.33 −0.995713 −0.497857 0.867259i \(-0.665879\pi\)
−0.497857 + 0.867259i \(0.665879\pi\)
\(384\) 0 0
\(385\) 844.999 0.111858
\(386\) −5143.83 −0.678275
\(387\) 0 0
\(388\) 3743.00 0.489747
\(389\) 409.685 0.0533981 0.0266991 0.999644i \(-0.491500\pi\)
0.0266991 + 0.999644i \(0.491500\pi\)
\(390\) 0 0
\(391\) 1674.21 0.216544
\(392\) −8061.47 −1.03869
\(393\) 0 0
\(394\) −8866.82 −1.13377
\(395\) 1346.18 0.171477
\(396\) 0 0
\(397\) 1112.31 0.140618 0.0703091 0.997525i \(-0.477601\pi\)
0.0703091 + 0.997525i \(0.477601\pi\)
\(398\) 141.455 0.0178153
\(399\) 0 0
\(400\) −958.235 −0.119779
\(401\) −14999.2 −1.86789 −0.933947 0.357411i \(-0.883660\pi\)
−0.933947 + 0.357411i \(0.883660\pi\)
\(402\) 0 0
\(403\) 4472.81 0.552870
\(404\) 1270.19 0.156421
\(405\) 0 0
\(406\) −269.319 −0.0329213
\(407\) 2623.85 0.319556
\(408\) 0 0
\(409\) 7595.21 0.918238 0.459119 0.888375i \(-0.348165\pi\)
0.459119 + 0.888375i \(0.348165\pi\)
\(410\) 162.991 0.0196330
\(411\) 0 0
\(412\) 3555.21 0.425128
\(413\) −1880.12 −0.224006
\(414\) 0 0
\(415\) −4348.61 −0.514373
\(416\) −3886.92 −0.458106
\(417\) 0 0
\(418\) 8544.44 0.999814
\(419\) 6501.56 0.758047 0.379024 0.925387i \(-0.376260\pi\)
0.379024 + 0.925387i \(0.376260\pi\)
\(420\) 0 0
\(421\) −4381.60 −0.507235 −0.253617 0.967305i \(-0.581620\pi\)
−0.253617 + 0.967305i \(0.581620\pi\)
\(422\) 5360.02 0.618298
\(423\) 0 0
\(424\) 1242.18 0.142277
\(425\) −445.697 −0.0508694
\(426\) 0 0
\(427\) 297.400 0.0337053
\(428\) −816.986 −0.0922676
\(429\) 0 0
\(430\) −4678.69 −0.524713
\(431\) 698.269 0.0780382 0.0390191 0.999238i \(-0.487577\pi\)
0.0390191 + 0.999238i \(0.487577\pi\)
\(432\) 0 0
\(433\) −6899.14 −0.765707 −0.382854 0.923809i \(-0.625059\pi\)
−0.382854 + 0.923809i \(0.625059\pi\)
\(434\) 1140.26 0.126116
\(435\) 0 0
\(436\) −2186.50 −0.240170
\(437\) −7952.36 −0.870510
\(438\) 0 0
\(439\) −12502.8 −1.35929 −0.679644 0.733542i \(-0.737866\pi\)
−0.679644 + 0.733542i \(0.737866\pi\)
\(440\) −5274.77 −0.571511
\(441\) 0 0
\(442\) 1529.27 0.164570
\(443\) −7684.41 −0.824148 −0.412074 0.911150i \(-0.635195\pi\)
−0.412074 + 0.911150i \(0.635195\pi\)
\(444\) 0 0
\(445\) 49.2663 0.00524820
\(446\) −9157.61 −0.972255
\(447\) 0 0
\(448\) −2200.24 −0.232035
\(449\) −6931.63 −0.728561 −0.364280 0.931289i \(-0.618685\pi\)
−0.364280 + 0.931289i \(0.618685\pi\)
\(450\) 0 0
\(451\) 593.213 0.0619364
\(452\) −2300.11 −0.239354
\(453\) 0 0
\(454\) −13397.9 −1.38501
\(455\) −718.362 −0.0740161
\(456\) 0 0
\(457\) −669.132 −0.0684916 −0.0342458 0.999413i \(-0.510903\pi\)
−0.0342458 + 0.999413i \(0.510903\pi\)
\(458\) 7662.06 0.781713
\(459\) 0 0
\(460\) 1152.87 0.116854
\(461\) −1369.33 −0.138343 −0.0691715 0.997605i \(-0.522036\pi\)
−0.0691715 + 0.997605i \(0.522036\pi\)
\(462\) 0 0
\(463\) −8213.65 −0.824451 −0.412225 0.911082i \(-0.635248\pi\)
−0.412225 + 0.911082i \(0.635248\pi\)
\(464\) 1111.55 0.111212
\(465\) 0 0
\(466\) 3211.19 0.319218
\(467\) −19762.1 −1.95821 −0.979103 0.203366i \(-0.934812\pi\)
−0.979103 + 0.203366i \(0.934812\pi\)
\(468\) 0 0
\(469\) 2755.26 0.271271
\(470\) 2770.44 0.271896
\(471\) 0 0
\(472\) 11736.3 1.14451
\(473\) −17028.3 −1.65532
\(474\) 0 0
\(475\) 2117.02 0.204496
\(476\) −172.635 −0.0166234
\(477\) 0 0
\(478\) −11276.0 −1.07898
\(479\) −1437.29 −0.137101 −0.0685506 0.997648i \(-0.521837\pi\)
−0.0685506 + 0.997648i \(0.521837\pi\)
\(480\) 0 0
\(481\) −2230.62 −0.211450
\(482\) 1490.30 0.140833
\(483\) 0 0
\(484\) −1240.36 −0.116488
\(485\) −7622.35 −0.713635
\(486\) 0 0
\(487\) 12731.4 1.18463 0.592313 0.805708i \(-0.298215\pi\)
0.592313 + 0.805708i \(0.298215\pi\)
\(488\) −1856.47 −0.172210
\(489\) 0 0
\(490\) 3855.22 0.355431
\(491\) 15590.5 1.43298 0.716488 0.697600i \(-0.245749\pi\)
0.716488 + 0.697600i \(0.245749\pi\)
\(492\) 0 0
\(493\) 517.009 0.0472311
\(494\) −7263.91 −0.661576
\(495\) 0 0
\(496\) −4706.17 −0.426035
\(497\) 176.214 0.0159040
\(498\) 0 0
\(499\) −7309.53 −0.655750 −0.327875 0.944721i \(-0.606333\pi\)
−0.327875 + 0.944721i \(0.606333\pi\)
\(500\) −306.910 −0.0274508
\(501\) 0 0
\(502\) −17456.0 −1.55199
\(503\) −11671.8 −1.03463 −0.517315 0.855795i \(-0.673068\pi\)
−0.517315 + 0.855795i \(0.673068\pi\)
\(504\) 0 0
\(505\) −2586.65 −0.227930
\(506\) −9475.63 −0.832496
\(507\) 0 0
\(508\) −6017.21 −0.525532
\(509\) 9056.40 0.788640 0.394320 0.918973i \(-0.370980\pi\)
0.394320 + 0.918973i \(0.370980\pi\)
\(510\) 0 0
\(511\) −2640.90 −0.228623
\(512\) 11638.9 1.00463
\(513\) 0 0
\(514\) −9230.99 −0.792143
\(515\) −7239.94 −0.619476
\(516\) 0 0
\(517\) 10083.2 0.857752
\(518\) −568.655 −0.0482341
\(519\) 0 0
\(520\) 4484.25 0.378168
\(521\) 13061.2 1.09831 0.549156 0.835720i \(-0.314949\pi\)
0.549156 + 0.835720i \(0.314949\pi\)
\(522\) 0 0
\(523\) −12711.3 −1.06277 −0.531383 0.847132i \(-0.678328\pi\)
−0.531383 + 0.847132i \(0.678328\pi\)
\(524\) 1342.25 0.111902
\(525\) 0 0
\(526\) 5899.88 0.489063
\(527\) −2188.95 −0.180934
\(528\) 0 0
\(529\) −3347.97 −0.275168
\(530\) −594.043 −0.0486860
\(531\) 0 0
\(532\) 820.002 0.0668263
\(533\) −504.310 −0.0409833
\(534\) 0 0
\(535\) 1663.73 0.134448
\(536\) −17199.3 −1.38600
\(537\) 0 0
\(538\) −8729.36 −0.699535
\(539\) 14031.3 1.12128
\(540\) 0 0
\(541\) −16338.9 −1.29845 −0.649227 0.760595i \(-0.724908\pi\)
−0.649227 + 0.760595i \(0.724908\pi\)
\(542\) −11228.2 −0.889841
\(543\) 0 0
\(544\) 1902.22 0.149921
\(545\) 4452.65 0.349964
\(546\) 0 0
\(547\) −9583.07 −0.749072 −0.374536 0.927212i \(-0.622198\pi\)
−0.374536 + 0.927212i \(0.622198\pi\)
\(548\) −1517.52 −0.118294
\(549\) 0 0
\(550\) 2522.54 0.195566
\(551\) −2455.75 −0.189870
\(552\) 0 0
\(553\) −1061.84 −0.0816532
\(554\) −6847.78 −0.525152
\(555\) 0 0
\(556\) −3156.28 −0.240749
\(557\) 1288.54 0.0980198 0.0490099 0.998798i \(-0.484393\pi\)
0.0490099 + 0.998798i \(0.484393\pi\)
\(558\) 0 0
\(559\) 14476.4 1.09532
\(560\) 755.841 0.0570359
\(561\) 0 0
\(562\) 1167.86 0.0876567
\(563\) 13901.3 1.04062 0.520312 0.853976i \(-0.325816\pi\)
0.520312 + 0.853976i \(0.325816\pi\)
\(564\) 0 0
\(565\) 4684.01 0.348775
\(566\) −17180.4 −1.27587
\(567\) 0 0
\(568\) −1099.99 −0.0812578
\(569\) −12631.6 −0.930654 −0.465327 0.885139i \(-0.654063\pi\)
−0.465327 + 0.885139i \(0.654063\pi\)
\(570\) 0 0
\(571\) 836.256 0.0612894 0.0306447 0.999530i \(-0.490244\pi\)
0.0306447 + 0.999530i \(0.490244\pi\)
\(572\) 3832.69 0.280162
\(573\) 0 0
\(574\) −128.564 −0.00934874
\(575\) −2347.74 −0.170274
\(576\) 0 0
\(577\) 55.7407 0.00402169 0.00201085 0.999998i \(-0.499360\pi\)
0.00201085 + 0.999998i \(0.499360\pi\)
\(578\) 10820.3 0.778663
\(579\) 0 0
\(580\) 356.015 0.0254875
\(581\) 3430.11 0.244931
\(582\) 0 0
\(583\) −2162.05 −0.153590
\(584\) 16485.4 1.16810
\(585\) 0 0
\(586\) 2010.81 0.141751
\(587\) 24044.3 1.69065 0.845327 0.534250i \(-0.179406\pi\)
0.845327 + 0.534250i \(0.179406\pi\)
\(588\) 0 0
\(589\) 10397.3 0.727359
\(590\) −5612.63 −0.391641
\(591\) 0 0
\(592\) 2347.00 0.162941
\(593\) 15066.0 1.04332 0.521659 0.853154i \(-0.325313\pi\)
0.521659 + 0.853154i \(0.325313\pi\)
\(594\) 0 0
\(595\) 351.559 0.0242227
\(596\) −307.016 −0.0211004
\(597\) 0 0
\(598\) 8055.55 0.550862
\(599\) −8354.77 −0.569894 −0.284947 0.958543i \(-0.591976\pi\)
−0.284947 + 0.958543i \(0.591976\pi\)
\(600\) 0 0
\(601\) 5059.15 0.343372 0.171686 0.985152i \(-0.445078\pi\)
0.171686 + 0.985152i \(0.445078\pi\)
\(602\) 3690.48 0.249855
\(603\) 0 0
\(604\) −4833.59 −0.325622
\(605\) 2525.91 0.169740
\(606\) 0 0
\(607\) 15350.8 1.02647 0.513236 0.858248i \(-0.328447\pi\)
0.513236 + 0.858248i \(0.328447\pi\)
\(608\) −9035.39 −0.602687
\(609\) 0 0
\(610\) 887.814 0.0589288
\(611\) −8572.04 −0.567574
\(612\) 0 0
\(613\) −17964.0 −1.18362 −0.591811 0.806077i \(-0.701587\pi\)
−0.591811 + 0.806077i \(0.701587\pi\)
\(614\) 1634.85 0.107455
\(615\) 0 0
\(616\) 4160.66 0.272139
\(617\) −14791.0 −0.965093 −0.482546 0.875870i \(-0.660288\pi\)
−0.482546 + 0.875870i \(0.660288\pi\)
\(618\) 0 0
\(619\) −12870.4 −0.835708 −0.417854 0.908514i \(-0.637218\pi\)
−0.417854 + 0.908514i \(0.637218\pi\)
\(620\) −1507.32 −0.0976381
\(621\) 0 0
\(622\) 6093.03 0.392779
\(623\) −38.8605 −0.00249906
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 8165.43 0.521336
\(627\) 0 0
\(628\) −2764.25 −0.175646
\(629\) 1091.64 0.0691998
\(630\) 0 0
\(631\) −16299.2 −1.02831 −0.514154 0.857698i \(-0.671894\pi\)
−0.514154 + 0.857698i \(0.671894\pi\)
\(632\) 6628.39 0.417189
\(633\) 0 0
\(634\) −12147.2 −0.760926
\(635\) 12253.6 0.765780
\(636\) 0 0
\(637\) −11928.4 −0.741950
\(638\) −2926.14 −0.181579
\(639\) 0 0
\(640\) −2300.32 −0.142075
\(641\) 9154.93 0.564115 0.282058 0.959397i \(-0.408983\pi\)
0.282058 + 0.959397i \(0.408983\pi\)
\(642\) 0 0
\(643\) 7509.43 0.460564 0.230282 0.973124i \(-0.426035\pi\)
0.230282 + 0.973124i \(0.426035\pi\)
\(644\) −909.368 −0.0556430
\(645\) 0 0
\(646\) 3554.89 0.216510
\(647\) 19945.4 1.21195 0.605977 0.795482i \(-0.292782\pi\)
0.605977 + 0.795482i \(0.292782\pi\)
\(648\) 0 0
\(649\) −20427.5 −1.23551
\(650\) −2144.49 −0.129406
\(651\) 0 0
\(652\) −4355.34 −0.261608
\(653\) 8028.91 0.481157 0.240579 0.970630i \(-0.422663\pi\)
0.240579 + 0.970630i \(0.422663\pi\)
\(654\) 0 0
\(655\) −2733.40 −0.163058
\(656\) 530.621 0.0315812
\(657\) 0 0
\(658\) −2185.28 −0.129470
\(659\) 2943.00 0.173965 0.0869827 0.996210i \(-0.472278\pi\)
0.0869827 + 0.996210i \(0.472278\pi\)
\(660\) 0 0
\(661\) −30286.3 −1.78215 −0.891073 0.453859i \(-0.850047\pi\)
−0.891073 + 0.453859i \(0.850047\pi\)
\(662\) −26036.0 −1.52858
\(663\) 0 0
\(664\) −21411.9 −1.25142
\(665\) −1669.88 −0.0973759
\(666\) 0 0
\(667\) 2723.38 0.158096
\(668\) −3488.73 −0.202070
\(669\) 0 0
\(670\) 8225.16 0.474277
\(671\) 3231.25 0.185903
\(672\) 0 0
\(673\) 2201.07 0.126070 0.0630348 0.998011i \(-0.479922\pi\)
0.0630348 + 0.998011i \(0.479922\pi\)
\(674\) −14430.2 −0.824673
\(675\) 0 0
\(676\) 2135.95 0.121527
\(677\) −22392.9 −1.27124 −0.635619 0.772003i \(-0.719255\pi\)
−0.635619 + 0.772003i \(0.719255\pi\)
\(678\) 0 0
\(679\) 6012.39 0.339815
\(680\) −2194.55 −0.123761
\(681\) 0 0
\(682\) 12388.9 0.695596
\(683\) 31770.8 1.77991 0.889953 0.456053i \(-0.150737\pi\)
0.889953 + 0.456053i \(0.150737\pi\)
\(684\) 0 0
\(685\) 3090.32 0.172372
\(686\) −6226.33 −0.346534
\(687\) 0 0
\(688\) −15231.6 −0.844042
\(689\) 1838.03 0.101630
\(690\) 0 0
\(691\) −19995.8 −1.10084 −0.550418 0.834889i \(-0.685532\pi\)
−0.550418 + 0.834889i \(0.685532\pi\)
\(692\) −833.957 −0.0458126
\(693\) 0 0
\(694\) −21846.8 −1.19495
\(695\) 6427.55 0.350807
\(696\) 0 0
\(697\) 246.804 0.0134123
\(698\) −10302.9 −0.558696
\(699\) 0 0
\(700\) 242.086 0.0130714
\(701\) −5940.97 −0.320096 −0.160048 0.987109i \(-0.551165\pi\)
−0.160048 + 0.987109i \(0.551165\pi\)
\(702\) 0 0
\(703\) −5185.21 −0.278185
\(704\) −23905.6 −1.27980
\(705\) 0 0
\(706\) −7669.08 −0.408824
\(707\) 2040.31 0.108534
\(708\) 0 0
\(709\) −17955.3 −0.951094 −0.475547 0.879690i \(-0.657750\pi\)
−0.475547 + 0.879690i \(0.657750\pi\)
\(710\) 526.044 0.0278057
\(711\) 0 0
\(712\) 242.580 0.0127684
\(713\) −11530.5 −0.605637
\(714\) 0 0
\(715\) −7804.99 −0.408238
\(716\) −6366.78 −0.332315
\(717\) 0 0
\(718\) −14644.6 −0.761186
\(719\) 22809.5 1.18310 0.591551 0.806268i \(-0.298516\pi\)
0.591551 + 0.806268i \(0.298516\pi\)
\(720\) 0 0
\(721\) 5710.75 0.294979
\(722\) −734.351 −0.0378528
\(723\) 0 0
\(724\) 823.070 0.0422502
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) −28267.1 −1.44205 −0.721023 0.692911i \(-0.756328\pi\)
−0.721023 + 0.692911i \(0.756328\pi\)
\(728\) −3537.11 −0.180074
\(729\) 0 0
\(730\) −7883.75 −0.399713
\(731\) −7084.59 −0.358458
\(732\) 0 0
\(733\) 18679.6 0.941264 0.470632 0.882330i \(-0.344026\pi\)
0.470632 + 0.882330i \(0.344026\pi\)
\(734\) −24461.6 −1.23010
\(735\) 0 0
\(736\) 10020.1 0.501828
\(737\) 29935.9 1.49620
\(738\) 0 0
\(739\) −8577.65 −0.426974 −0.213487 0.976946i \(-0.568482\pi\)
−0.213487 + 0.976946i \(0.568482\pi\)
\(740\) 751.712 0.0373426
\(741\) 0 0
\(742\) 468.572 0.0231830
\(743\) −12442.0 −0.614337 −0.307169 0.951655i \(-0.599382\pi\)
−0.307169 + 0.951655i \(0.599382\pi\)
\(744\) 0 0
\(745\) 625.216 0.0307465
\(746\) −31083.2 −1.52552
\(747\) 0 0
\(748\) −1875.68 −0.0916867
\(749\) −1312.33 −0.0640206
\(750\) 0 0
\(751\) −28327.2 −1.37640 −0.688198 0.725523i \(-0.741598\pi\)
−0.688198 + 0.725523i \(0.741598\pi\)
\(752\) 9019.27 0.437366
\(753\) 0 0
\(754\) 2487.61 0.120150
\(755\) 9843.26 0.474480
\(756\) 0 0
\(757\) 28073.3 1.34787 0.673937 0.738789i \(-0.264602\pi\)
0.673937 + 0.738789i \(0.264602\pi\)
\(758\) 13957.8 0.668827
\(759\) 0 0
\(760\) 10423.9 0.497520
\(761\) 12715.7 0.605708 0.302854 0.953037i \(-0.402061\pi\)
0.302854 + 0.953037i \(0.402061\pi\)
\(762\) 0 0
\(763\) −3512.18 −0.166644
\(764\) 2278.40 0.107892
\(765\) 0 0
\(766\) 17574.1 0.828952
\(767\) 17366.0 0.817538
\(768\) 0 0
\(769\) −2730.97 −0.128064 −0.0640320 0.997948i \(-0.520396\pi\)
−0.0640320 + 0.997948i \(0.520396\pi\)
\(770\) −1989.74 −0.0931237
\(771\) 0 0
\(772\) −5363.49 −0.250047
\(773\) −21816.6 −1.01512 −0.507561 0.861616i \(-0.669453\pi\)
−0.507561 + 0.861616i \(0.669453\pi\)
\(774\) 0 0
\(775\) 3069.56 0.142273
\(776\) −37531.3 −1.73621
\(777\) 0 0
\(778\) −964.696 −0.0444550
\(779\) −1172.30 −0.0539178
\(780\) 0 0
\(781\) 1914.56 0.0877189
\(782\) −3942.31 −0.180277
\(783\) 0 0
\(784\) 12550.8 0.571738
\(785\) 5629.20 0.255942
\(786\) 0 0
\(787\) 16740.5 0.758239 0.379119 0.925348i \(-0.376227\pi\)
0.379119 + 0.925348i \(0.376227\pi\)
\(788\) −9245.47 −0.417965
\(789\) 0 0
\(790\) −3169.88 −0.142758
\(791\) −3694.67 −0.166078
\(792\) 0 0
\(793\) −2746.99 −0.123012
\(794\) −2619.19 −0.117068
\(795\) 0 0
\(796\) 147.495 0.00656762
\(797\) −3731.13 −0.165826 −0.0829131 0.996557i \(-0.526422\pi\)
−0.0829131 + 0.996557i \(0.526422\pi\)
\(798\) 0 0
\(799\) 4195.07 0.185746
\(800\) −2667.48 −0.117887
\(801\) 0 0
\(802\) 35319.0 1.55506
\(803\) −28693.3 −1.26098
\(804\) 0 0
\(805\) 1851.86 0.0810802
\(806\) −10532.2 −0.460276
\(807\) 0 0
\(808\) −12736.3 −0.554531
\(809\) 1318.79 0.0573129 0.0286564 0.999589i \(-0.490877\pi\)
0.0286564 + 0.999589i \(0.490877\pi\)
\(810\) 0 0
\(811\) −6890.79 −0.298358 −0.149179 0.988810i \(-0.547663\pi\)
−0.149179 + 0.988810i \(0.547663\pi\)
\(812\) −280.819 −0.0121365
\(813\) 0 0
\(814\) −6178.44 −0.266037
\(815\) 8869.35 0.381202
\(816\) 0 0
\(817\) 33651.2 1.44101
\(818\) −17884.6 −0.764452
\(819\) 0 0
\(820\) 169.951 0.00723773
\(821\) −25055.7 −1.06510 −0.532552 0.846397i \(-0.678767\pi\)
−0.532552 + 0.846397i \(0.678767\pi\)
\(822\) 0 0
\(823\) −28476.2 −1.20610 −0.603049 0.797704i \(-0.706048\pi\)
−0.603049 + 0.797704i \(0.706048\pi\)
\(824\) −35648.4 −1.50713
\(825\) 0 0
\(826\) 4427.15 0.186490
\(827\) 6404.82 0.269308 0.134654 0.990893i \(-0.457008\pi\)
0.134654 + 0.990893i \(0.457008\pi\)
\(828\) 0 0
\(829\) 42500.5 1.78058 0.890292 0.455390i \(-0.150500\pi\)
0.890292 + 0.455390i \(0.150500\pi\)
\(830\) 10239.8 0.428226
\(831\) 0 0
\(832\) 20323.0 0.846841
\(833\) 5837.66 0.242813
\(834\) 0 0
\(835\) 7104.55 0.294447
\(836\) 8909.31 0.368583
\(837\) 0 0
\(838\) −15309.4 −0.631090
\(839\) −7738.21 −0.318418 −0.159209 0.987245i \(-0.550894\pi\)
−0.159209 + 0.987245i \(0.550894\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 10317.4 0.422283
\(843\) 0 0
\(844\) 5588.91 0.227936
\(845\) −4349.72 −0.177083
\(846\) 0 0
\(847\) −1992.40 −0.0808260
\(848\) −1933.93 −0.0783152
\(849\) 0 0
\(850\) 1049.49 0.0423498
\(851\) 5750.31 0.231631
\(852\) 0 0
\(853\) 31504.1 1.26457 0.632286 0.774735i \(-0.282117\pi\)
0.632286 + 0.774735i \(0.282117\pi\)
\(854\) −700.294 −0.0280604
\(855\) 0 0
\(856\) 8191.99 0.327099
\(857\) 33621.2 1.34011 0.670057 0.742310i \(-0.266270\pi\)
0.670057 + 0.742310i \(0.266270\pi\)
\(858\) 0 0
\(859\) 35655.1 1.41622 0.708111 0.706101i \(-0.249547\pi\)
0.708111 + 0.706101i \(0.249547\pi\)
\(860\) −4878.49 −0.193436
\(861\) 0 0
\(862\) −1644.23 −0.0649684
\(863\) 20500.2 0.808615 0.404307 0.914623i \(-0.367513\pi\)
0.404307 + 0.914623i \(0.367513\pi\)
\(864\) 0 0
\(865\) 1698.29 0.0667558
\(866\) 16245.6 0.637467
\(867\) 0 0
\(868\) 1188.95 0.0464928
\(869\) −11536.9 −0.450361
\(870\) 0 0
\(871\) −25449.5 −0.990038
\(872\) 21924.2 0.851431
\(873\) 0 0
\(874\) 18725.6 0.724718
\(875\) −492.990 −0.0190470
\(876\) 0 0
\(877\) −15240.7 −0.586822 −0.293411 0.955986i \(-0.594790\pi\)
−0.293411 + 0.955986i \(0.594790\pi\)
\(878\) 29440.7 1.13164
\(879\) 0 0
\(880\) 8212.20 0.314583
\(881\) 17749.3 0.678761 0.339381 0.940649i \(-0.389783\pi\)
0.339381 + 0.940649i \(0.389783\pi\)
\(882\) 0 0
\(883\) −2290.27 −0.0872861 −0.0436431 0.999047i \(-0.513896\pi\)
−0.0436431 + 0.999047i \(0.513896\pi\)
\(884\) 1594.58 0.0606690
\(885\) 0 0
\(886\) 18094.7 0.686120
\(887\) 45630.9 1.72732 0.863662 0.504072i \(-0.168165\pi\)
0.863662 + 0.504072i \(0.168165\pi\)
\(888\) 0 0
\(889\) −9665.47 −0.364645
\(890\) −116.009 −0.00436923
\(891\) 0 0
\(892\) −9548.68 −0.358423
\(893\) −19926.2 −0.746703
\(894\) 0 0
\(895\) 12965.5 0.484233
\(896\) 1814.46 0.0676527
\(897\) 0 0
\(898\) 16322.1 0.606542
\(899\) −3560.69 −0.132097
\(900\) 0 0
\(901\) −899.514 −0.0332599
\(902\) −1396.85 −0.0515633
\(903\) 0 0
\(904\) 23063.4 0.848537
\(905\) −1676.12 −0.0615649
\(906\) 0 0
\(907\) 38959.7 1.42628 0.713140 0.701022i \(-0.247272\pi\)
0.713140 + 0.701022i \(0.247272\pi\)
\(908\) −13970.0 −0.510586
\(909\) 0 0
\(910\) 1691.54 0.0616199
\(911\) −34221.7 −1.24458 −0.622291 0.782786i \(-0.713798\pi\)
−0.622291 + 0.782786i \(0.713798\pi\)
\(912\) 0 0
\(913\) 37268.1 1.35093
\(914\) 1575.62 0.0570207
\(915\) 0 0
\(916\) 7989.26 0.288180
\(917\) 2156.07 0.0776441
\(918\) 0 0
\(919\) 519.522 0.0186479 0.00932396 0.999957i \(-0.497032\pi\)
0.00932396 + 0.999957i \(0.497032\pi\)
\(920\) −11559.9 −0.414261
\(921\) 0 0
\(922\) 3224.40 0.115173
\(923\) −1627.63 −0.0580436
\(924\) 0 0
\(925\) −1530.81 −0.0544137
\(926\) 19340.9 0.686372
\(927\) 0 0
\(928\) 3094.28 0.109455
\(929\) −36926.5 −1.30411 −0.652056 0.758171i \(-0.726093\pi\)
−0.652056 + 0.758171i \(0.726093\pi\)
\(930\) 0 0
\(931\) −27728.4 −0.976113
\(932\) 3348.32 0.117680
\(933\) 0 0
\(934\) 46534.3 1.63025
\(935\) 3819.69 0.133601
\(936\) 0 0
\(937\) 24916.0 0.868697 0.434348 0.900745i \(-0.356979\pi\)
0.434348 + 0.900745i \(0.356979\pi\)
\(938\) −6487.88 −0.225839
\(939\) 0 0
\(940\) 2888.75 0.100235
\(941\) 41585.1 1.44063 0.720317 0.693645i \(-0.243996\pi\)
0.720317 + 0.693645i \(0.243996\pi\)
\(942\) 0 0
\(943\) 1300.06 0.0448948
\(944\) −18272.1 −0.629985
\(945\) 0 0
\(946\) 40097.1 1.37808
\(947\) −173.666 −0.00595923 −0.00297962 0.999996i \(-0.500948\pi\)
−0.00297962 + 0.999996i \(0.500948\pi\)
\(948\) 0 0
\(949\) 24393.1 0.834388
\(950\) −4985.01 −0.170247
\(951\) 0 0
\(952\) 1731.03 0.0589317
\(953\) 22394.5 0.761207 0.380603 0.924738i \(-0.375716\pi\)
0.380603 + 0.924738i \(0.375716\pi\)
\(954\) 0 0
\(955\) −4639.80 −0.157215
\(956\) −11757.5 −0.397766
\(957\) 0 0
\(958\) 3384.42 0.114140
\(959\) −2437.60 −0.0820793
\(960\) 0 0
\(961\) −14715.5 −0.493957
\(962\) 5252.49 0.176037
\(963\) 0 0
\(964\) 1553.94 0.0519181
\(965\) 10922.4 0.364356
\(966\) 0 0
\(967\) 35240.6 1.17194 0.585968 0.810334i \(-0.300715\pi\)
0.585968 + 0.810334i \(0.300715\pi\)
\(968\) 12437.2 0.412962
\(969\) 0 0
\(970\) 17948.5 0.594116
\(971\) 23385.4 0.772888 0.386444 0.922313i \(-0.373703\pi\)
0.386444 + 0.922313i \(0.373703\pi\)
\(972\) 0 0
\(973\) −5069.95 −0.167045
\(974\) −29978.8 −0.986226
\(975\) 0 0
\(976\) 2890.31 0.0947915
\(977\) −37442.2 −1.22608 −0.613041 0.790051i \(-0.710054\pi\)
−0.613041 + 0.790051i \(0.710054\pi\)
\(978\) 0 0
\(979\) −422.219 −0.0137836
\(980\) 4019.85 0.131030
\(981\) 0 0
\(982\) −36711.4 −1.19298
\(983\) 35213.6 1.14256 0.571282 0.820754i \(-0.306446\pi\)
0.571282 + 0.820754i \(0.306446\pi\)
\(984\) 0 0
\(985\) 18827.7 0.609037
\(986\) −1217.41 −0.0393208
\(987\) 0 0
\(988\) −7574.10 −0.243891
\(989\) −37318.6 −1.19986
\(990\) 0 0
\(991\) −43883.0 −1.40665 −0.703324 0.710869i \(-0.748302\pi\)
−0.703324 + 0.710869i \(0.748302\pi\)
\(992\) −13100.8 −0.419305
\(993\) 0 0
\(994\) −414.935 −0.0132404
\(995\) −300.363 −0.00957001
\(996\) 0 0
\(997\) −8968.04 −0.284875 −0.142438 0.989804i \(-0.545494\pi\)
−0.142438 + 0.989804i \(0.545494\pi\)
\(998\) 17211.9 0.545925
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.h.1.3 6
3.2 odd 2 435.4.a.h.1.4 6
15.14 odd 2 2175.4.a.k.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.4 6 3.2 odd 2
1305.4.a.h.1.3 6 1.1 even 1 trivial
2175.4.a.k.1.3 6 15.14 odd 2