Properties

Label 1305.4.a.h.1.2
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 49x^{4} + 27x^{3} + 692x^{2} - 82x - 2588 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.39070\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.39070 q^{2} +11.2783 q^{4} +5.00000 q^{5} +31.5336 q^{7} -14.3939 q^{8} +O(q^{10})\) \(q-4.39070 q^{2} +11.2783 q^{4} +5.00000 q^{5} +31.5336 q^{7} -14.3939 q^{8} -21.9535 q^{10} +5.28853 q^{11} -5.98731 q^{13} -138.455 q^{14} -27.0267 q^{16} -84.6758 q^{17} +57.3480 q^{19} +56.3914 q^{20} -23.2204 q^{22} -31.0898 q^{23} +25.0000 q^{25} +26.2885 q^{26} +355.645 q^{28} -29.0000 q^{29} -14.6873 q^{31} +233.818 q^{32} +371.786 q^{34} +157.668 q^{35} -7.76174 q^{37} -251.798 q^{38} -71.9697 q^{40} +399.867 q^{41} -17.9967 q^{43} +59.6455 q^{44} +136.506 q^{46} +262.798 q^{47} +651.368 q^{49} -109.768 q^{50} -67.5265 q^{52} +64.9925 q^{53} +26.4427 q^{55} -453.893 q^{56} +127.330 q^{58} -122.788 q^{59} +264.384 q^{61} +64.4877 q^{62} -810.411 q^{64} -29.9366 q^{65} +622.712 q^{67} -954.997 q^{68} -692.274 q^{70} -327.717 q^{71} -833.518 q^{73} +34.0795 q^{74} +646.787 q^{76} +166.767 q^{77} -666.457 q^{79} -135.133 q^{80} -1755.70 q^{82} +1320.72 q^{83} -423.379 q^{85} +79.0180 q^{86} -76.1229 q^{88} +189.059 q^{89} -188.801 q^{91} -350.640 q^{92} -1153.87 q^{94} +286.740 q^{95} -137.630 q^{97} -2859.97 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} + 51 q^{4} + 30 q^{5} + 47 q^{7} - 51 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} + 51 q^{4} + 30 q^{5} + 47 q^{7} - 51 q^{8} - 5 q^{10} - 81 q^{11} + 169 q^{13} + 30 q^{14} + 131 q^{16} + q^{17} + 116 q^{19} + 255 q^{20} + 90 q^{22} + 52 q^{23} + 150 q^{25} - 294 q^{26} + 344 q^{28} - 174 q^{29} + 340 q^{31} - 499 q^{32} + 920 q^{34} + 235 q^{35} + 332 q^{37} + 378 q^{38} - 255 q^{40} + 616 q^{41} + 334 q^{43} + 52 q^{44} - 158 q^{46} + 85 q^{47} + 879 q^{49} - 25 q^{50} + 2220 q^{52} + 850 q^{53} - 405 q^{55} + 624 q^{56} + 29 q^{58} + 758 q^{59} - 36 q^{61} + 152 q^{62} + 1795 q^{64} + 845 q^{65} + 939 q^{67} + 186 q^{68} + 150 q^{70} + 1388 q^{71} + 1708 q^{73} + 814 q^{74} + 566 q^{76} - 2585 q^{77} + 1250 q^{79} + 655 q^{80} + 1372 q^{82} + 748 q^{83} + 5 q^{85} + 800 q^{86} + 536 q^{88} - 1099 q^{89} + 539 q^{91} - 1698 q^{92} - 4542 q^{94} + 580 q^{95} - 22 q^{97} + 1433 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.39070 −1.55235 −0.776174 0.630519i \(-0.782842\pi\)
−0.776174 + 0.630519i \(0.782842\pi\)
\(3\) 0 0
\(4\) 11.2783 1.40978
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 31.5336 1.70265 0.851327 0.524635i \(-0.175798\pi\)
0.851327 + 0.524635i \(0.175798\pi\)
\(8\) −14.3939 −0.636128
\(9\) 0 0
\(10\) −21.9535 −0.694231
\(11\) 5.28853 0.144959 0.0724797 0.997370i \(-0.476909\pi\)
0.0724797 + 0.997370i \(0.476909\pi\)
\(12\) 0 0
\(13\) −5.98731 −0.127737 −0.0638685 0.997958i \(-0.520344\pi\)
−0.0638685 + 0.997958i \(0.520344\pi\)
\(14\) −138.455 −2.64311
\(15\) 0 0
\(16\) −27.0267 −0.422292
\(17\) −84.6758 −1.20805 −0.604026 0.796965i \(-0.706438\pi\)
−0.604026 + 0.796965i \(0.706438\pi\)
\(18\) 0 0
\(19\) 57.3480 0.692449 0.346225 0.938152i \(-0.387464\pi\)
0.346225 + 0.938152i \(0.387464\pi\)
\(20\) 56.3914 0.630475
\(21\) 0 0
\(22\) −23.2204 −0.225027
\(23\) −31.0898 −0.281855 −0.140928 0.990020i \(-0.545009\pi\)
−0.140928 + 0.990020i \(0.545009\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 26.2885 0.198292
\(27\) 0 0
\(28\) 355.645 2.40038
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −14.6873 −0.0850942 −0.0425471 0.999094i \(-0.513547\pi\)
−0.0425471 + 0.999094i \(0.513547\pi\)
\(32\) 233.818 1.29167
\(33\) 0 0
\(34\) 371.786 1.87532
\(35\) 157.668 0.761450
\(36\) 0 0
\(37\) −7.76174 −0.0344871 −0.0172435 0.999851i \(-0.505489\pi\)
−0.0172435 + 0.999851i \(0.505489\pi\)
\(38\) −251.798 −1.07492
\(39\) 0 0
\(40\) −71.9697 −0.284485
\(41\) 399.867 1.52314 0.761569 0.648084i \(-0.224429\pi\)
0.761569 + 0.648084i \(0.224429\pi\)
\(42\) 0 0
\(43\) −17.9967 −0.0638247 −0.0319124 0.999491i \(-0.510160\pi\)
−0.0319124 + 0.999491i \(0.510160\pi\)
\(44\) 59.6455 0.204361
\(45\) 0 0
\(46\) 136.506 0.437538
\(47\) 262.798 0.815595 0.407798 0.913072i \(-0.366297\pi\)
0.407798 + 0.913072i \(0.366297\pi\)
\(48\) 0 0
\(49\) 651.368 1.89903
\(50\) −109.768 −0.310470
\(51\) 0 0
\(52\) −67.5265 −0.180082
\(53\) 64.9925 0.168442 0.0842209 0.996447i \(-0.473160\pi\)
0.0842209 + 0.996447i \(0.473160\pi\)
\(54\) 0 0
\(55\) 26.4427 0.0648278
\(56\) −453.893 −1.08311
\(57\) 0 0
\(58\) 127.330 0.288264
\(59\) −122.788 −0.270942 −0.135471 0.990781i \(-0.543255\pi\)
−0.135471 + 0.990781i \(0.543255\pi\)
\(60\) 0 0
\(61\) 264.384 0.554932 0.277466 0.960735i \(-0.410505\pi\)
0.277466 + 0.960735i \(0.410505\pi\)
\(62\) 64.4877 0.132096
\(63\) 0 0
\(64\) −810.411 −1.58283
\(65\) −29.9366 −0.0571257
\(66\) 0 0
\(67\) 622.712 1.13547 0.567734 0.823212i \(-0.307820\pi\)
0.567734 + 0.823212i \(0.307820\pi\)
\(68\) −954.997 −1.70309
\(69\) 0 0
\(70\) −692.274 −1.18204
\(71\) −327.717 −0.547786 −0.273893 0.961760i \(-0.588311\pi\)
−0.273893 + 0.961760i \(0.588311\pi\)
\(72\) 0 0
\(73\) −833.518 −1.33638 −0.668191 0.743989i \(-0.732931\pi\)
−0.668191 + 0.743989i \(0.732931\pi\)
\(74\) 34.0795 0.0535360
\(75\) 0 0
\(76\) 646.787 0.976204
\(77\) 166.767 0.246816
\(78\) 0 0
\(79\) −666.457 −0.949143 −0.474571 0.880217i \(-0.657397\pi\)
−0.474571 + 0.880217i \(0.657397\pi\)
\(80\) −135.133 −0.188855
\(81\) 0 0
\(82\) −1755.70 −2.36444
\(83\) 1320.72 1.74660 0.873301 0.487182i \(-0.161975\pi\)
0.873301 + 0.487182i \(0.161975\pi\)
\(84\) 0 0
\(85\) −423.379 −0.540257
\(86\) 79.0180 0.0990782
\(87\) 0 0
\(88\) −76.1229 −0.0922128
\(89\) 189.059 0.225172 0.112586 0.993642i \(-0.464087\pi\)
0.112586 + 0.993642i \(0.464087\pi\)
\(90\) 0 0
\(91\) −188.801 −0.217492
\(92\) −350.640 −0.397355
\(93\) 0 0
\(94\) −1153.87 −1.26609
\(95\) 286.740 0.309673
\(96\) 0 0
\(97\) −137.630 −0.144064 −0.0720321 0.997402i \(-0.522948\pi\)
−0.0720321 + 0.997402i \(0.522948\pi\)
\(98\) −2859.97 −2.94796
\(99\) 0 0
\(100\) 281.957 0.281957
\(101\) 1721.15 1.69565 0.847826 0.530275i \(-0.177911\pi\)
0.847826 + 0.530275i \(0.177911\pi\)
\(102\) 0 0
\(103\) 797.585 0.762994 0.381497 0.924370i \(-0.375409\pi\)
0.381497 + 0.924370i \(0.375409\pi\)
\(104\) 86.1810 0.0812571
\(105\) 0 0
\(106\) −285.363 −0.261480
\(107\) 778.452 0.703325 0.351662 0.936127i \(-0.385616\pi\)
0.351662 + 0.936127i \(0.385616\pi\)
\(108\) 0 0
\(109\) 721.205 0.633752 0.316876 0.948467i \(-0.397366\pi\)
0.316876 + 0.948467i \(0.397366\pi\)
\(110\) −116.102 −0.100635
\(111\) 0 0
\(112\) −852.249 −0.719017
\(113\) 559.024 0.465386 0.232693 0.972550i \(-0.425246\pi\)
0.232693 + 0.972550i \(0.425246\pi\)
\(114\) 0 0
\(115\) −155.449 −0.126050
\(116\) −327.070 −0.261790
\(117\) 0 0
\(118\) 539.124 0.420597
\(119\) −2670.13 −2.05690
\(120\) 0 0
\(121\) −1303.03 −0.978987
\(122\) −1160.83 −0.861448
\(123\) 0 0
\(124\) −165.648 −0.119965
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −626.324 −0.437616 −0.218808 0.975768i \(-0.570217\pi\)
−0.218808 + 0.975768i \(0.570217\pi\)
\(128\) 1687.73 1.16544
\(129\) 0 0
\(130\) 131.443 0.0886790
\(131\) −1764.12 −1.17658 −0.588289 0.808651i \(-0.700198\pi\)
−0.588289 + 0.808651i \(0.700198\pi\)
\(132\) 0 0
\(133\) 1808.39 1.17900
\(134\) −2734.14 −1.76264
\(135\) 0 0
\(136\) 1218.82 0.768476
\(137\) 433.723 0.270478 0.135239 0.990813i \(-0.456820\pi\)
0.135239 + 0.990813i \(0.456820\pi\)
\(138\) 0 0
\(139\) −504.659 −0.307947 −0.153974 0.988075i \(-0.549207\pi\)
−0.153974 + 0.988075i \(0.549207\pi\)
\(140\) 1778.22 1.07348
\(141\) 0 0
\(142\) 1438.91 0.850355
\(143\) −31.6641 −0.0185167
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) 3659.73 2.07453
\(147\) 0 0
\(148\) −87.5391 −0.0486194
\(149\) 354.655 0.194997 0.0974983 0.995236i \(-0.468916\pi\)
0.0974983 + 0.995236i \(0.468916\pi\)
\(150\) 0 0
\(151\) −325.611 −0.175483 −0.0877413 0.996143i \(-0.527965\pi\)
−0.0877413 + 0.996143i \(0.527965\pi\)
\(152\) −825.464 −0.440487
\(153\) 0 0
\(154\) −732.222 −0.383144
\(155\) −73.4366 −0.0380553
\(156\) 0 0
\(157\) −2690.09 −1.36747 −0.683733 0.729732i \(-0.739645\pi\)
−0.683733 + 0.729732i \(0.739645\pi\)
\(158\) 2926.22 1.47340
\(159\) 0 0
\(160\) 1169.09 0.577653
\(161\) −980.374 −0.479902
\(162\) 0 0
\(163\) 1411.51 0.678270 0.339135 0.940738i \(-0.389866\pi\)
0.339135 + 0.940738i \(0.389866\pi\)
\(164\) 4509.81 2.14730
\(165\) 0 0
\(166\) −5798.89 −2.71133
\(167\) 2538.25 1.17614 0.588072 0.808809i \(-0.299887\pi\)
0.588072 + 0.808809i \(0.299887\pi\)
\(168\) 0 0
\(169\) −2161.15 −0.983683
\(170\) 1858.93 0.838667
\(171\) 0 0
\(172\) −202.971 −0.0899791
\(173\) 305.030 0.134052 0.0670260 0.997751i \(-0.478649\pi\)
0.0670260 + 0.997751i \(0.478649\pi\)
\(174\) 0 0
\(175\) 788.340 0.340531
\(176\) −142.932 −0.0612152
\(177\) 0 0
\(178\) −830.104 −0.349545
\(179\) −3093.43 −1.29170 −0.645849 0.763465i \(-0.723496\pi\)
−0.645849 + 0.763465i \(0.723496\pi\)
\(180\) 0 0
\(181\) 2800.38 1.15000 0.575001 0.818153i \(-0.305002\pi\)
0.575001 + 0.818153i \(0.305002\pi\)
\(182\) 828.971 0.337623
\(183\) 0 0
\(184\) 447.505 0.179296
\(185\) −38.8087 −0.0154231
\(186\) 0 0
\(187\) −447.811 −0.175118
\(188\) 2963.91 1.14981
\(189\) 0 0
\(190\) −1258.99 −0.480720
\(191\) −4208.78 −1.59443 −0.797217 0.603693i \(-0.793695\pi\)
−0.797217 + 0.603693i \(0.793695\pi\)
\(192\) 0 0
\(193\) −247.563 −0.0923315 −0.0461658 0.998934i \(-0.514700\pi\)
−0.0461658 + 0.998934i \(0.514700\pi\)
\(194\) 604.293 0.223638
\(195\) 0 0
\(196\) 7346.31 2.67723
\(197\) 4574.07 1.65426 0.827129 0.562013i \(-0.189973\pi\)
0.827129 + 0.562013i \(0.189973\pi\)
\(198\) 0 0
\(199\) 2601.05 0.926551 0.463276 0.886214i \(-0.346674\pi\)
0.463276 + 0.886214i \(0.346674\pi\)
\(200\) −359.849 −0.127226
\(201\) 0 0
\(202\) −7557.06 −2.63224
\(203\) −914.475 −0.316175
\(204\) 0 0
\(205\) 1999.33 0.681168
\(206\) −3501.96 −1.18443
\(207\) 0 0
\(208\) 161.817 0.0539423
\(209\) 303.287 0.100377
\(210\) 0 0
\(211\) 244.148 0.0796582 0.0398291 0.999207i \(-0.487319\pi\)
0.0398291 + 0.999207i \(0.487319\pi\)
\(212\) 733.004 0.237467
\(213\) 0 0
\(214\) −3417.95 −1.09181
\(215\) −89.9833 −0.0285433
\(216\) 0 0
\(217\) −463.144 −0.144886
\(218\) −3166.60 −0.983803
\(219\) 0 0
\(220\) 298.228 0.0913932
\(221\) 506.980 0.154313
\(222\) 0 0
\(223\) 4179.26 1.25500 0.627498 0.778618i \(-0.284079\pi\)
0.627498 + 0.778618i \(0.284079\pi\)
\(224\) 7373.12 2.19927
\(225\) 0 0
\(226\) −2454.51 −0.722441
\(227\) −4034.64 −1.17968 −0.589842 0.807518i \(-0.700810\pi\)
−0.589842 + 0.807518i \(0.700810\pi\)
\(228\) 0 0
\(229\) 4501.53 1.29899 0.649497 0.760364i \(-0.274980\pi\)
0.649497 + 0.760364i \(0.274980\pi\)
\(230\) 682.531 0.195673
\(231\) 0 0
\(232\) 417.424 0.118126
\(233\) 4710.72 1.32450 0.662252 0.749282i \(-0.269601\pi\)
0.662252 + 0.749282i \(0.269601\pi\)
\(234\) 0 0
\(235\) 1313.99 0.364745
\(236\) −1384.83 −0.381970
\(237\) 0 0
\(238\) 11723.8 3.19302
\(239\) 496.634 0.134412 0.0672062 0.997739i \(-0.478591\pi\)
0.0672062 + 0.997739i \(0.478591\pi\)
\(240\) 0 0
\(241\) 6414.62 1.71453 0.857266 0.514874i \(-0.172161\pi\)
0.857266 + 0.514874i \(0.172161\pi\)
\(242\) 5721.22 1.51973
\(243\) 0 0
\(244\) 2981.79 0.782335
\(245\) 3256.84 0.849274
\(246\) 0 0
\(247\) −343.360 −0.0884514
\(248\) 211.409 0.0541309
\(249\) 0 0
\(250\) −548.838 −0.138846
\(251\) −4741.55 −1.19237 −0.596183 0.802848i \(-0.703317\pi\)
−0.596183 + 0.802848i \(0.703317\pi\)
\(252\) 0 0
\(253\) −164.420 −0.0408576
\(254\) 2750.00 0.679333
\(255\) 0 0
\(256\) −927.044 −0.226329
\(257\) 6110.47 1.48312 0.741558 0.670889i \(-0.234087\pi\)
0.741558 + 0.670889i \(0.234087\pi\)
\(258\) 0 0
\(259\) −244.756 −0.0587196
\(260\) −337.633 −0.0805350
\(261\) 0 0
\(262\) 7745.72 1.82646
\(263\) 3905.40 0.915654 0.457827 0.889041i \(-0.348628\pi\)
0.457827 + 0.889041i \(0.348628\pi\)
\(264\) 0 0
\(265\) 324.963 0.0753294
\(266\) −7940.10 −1.83022
\(267\) 0 0
\(268\) 7023.11 1.60076
\(269\) 6684.63 1.51513 0.757563 0.652762i \(-0.226390\pi\)
0.757563 + 0.652762i \(0.226390\pi\)
\(270\) 0 0
\(271\) −6784.76 −1.52083 −0.760415 0.649438i \(-0.775004\pi\)
−0.760415 + 0.649438i \(0.775004\pi\)
\(272\) 2288.50 0.510151
\(273\) 0 0
\(274\) −1904.35 −0.419875
\(275\) 132.213 0.0289919
\(276\) 0 0
\(277\) 3811.10 0.826666 0.413333 0.910580i \(-0.364364\pi\)
0.413333 + 0.910580i \(0.364364\pi\)
\(278\) 2215.81 0.478041
\(279\) 0 0
\(280\) −2269.46 −0.484380
\(281\) −1848.27 −0.392380 −0.196190 0.980566i \(-0.562857\pi\)
−0.196190 + 0.980566i \(0.562857\pi\)
\(282\) 0 0
\(283\) 1381.94 0.290275 0.145138 0.989411i \(-0.453638\pi\)
0.145138 + 0.989411i \(0.453638\pi\)
\(284\) −3696.08 −0.772261
\(285\) 0 0
\(286\) 139.028 0.0287443
\(287\) 12609.2 2.59338
\(288\) 0 0
\(289\) 2256.98 0.459390
\(290\) 636.652 0.128915
\(291\) 0 0
\(292\) −9400.65 −1.88401
\(293\) −6221.44 −1.24048 −0.620239 0.784413i \(-0.712964\pi\)
−0.620239 + 0.784413i \(0.712964\pi\)
\(294\) 0 0
\(295\) −613.938 −0.121169
\(296\) 111.722 0.0219382
\(297\) 0 0
\(298\) −1557.19 −0.302702
\(299\) 186.144 0.0360034
\(300\) 0 0
\(301\) −567.499 −0.108671
\(302\) 1429.66 0.272410
\(303\) 0 0
\(304\) −1549.93 −0.292416
\(305\) 1321.92 0.248173
\(306\) 0 0
\(307\) 8135.50 1.51244 0.756218 0.654320i \(-0.227045\pi\)
0.756218 + 0.654320i \(0.227045\pi\)
\(308\) 1880.84 0.347957
\(309\) 0 0
\(310\) 322.438 0.0590751
\(311\) −3117.65 −0.568444 −0.284222 0.958759i \(-0.591735\pi\)
−0.284222 + 0.958759i \(0.591735\pi\)
\(312\) 0 0
\(313\) 7536.36 1.36096 0.680480 0.732767i \(-0.261771\pi\)
0.680480 + 0.732767i \(0.261771\pi\)
\(314\) 11811.4 2.12278
\(315\) 0 0
\(316\) −7516.49 −1.33809
\(317\) −3579.28 −0.634172 −0.317086 0.948397i \(-0.602704\pi\)
−0.317086 + 0.948397i \(0.602704\pi\)
\(318\) 0 0
\(319\) −153.367 −0.0269183
\(320\) −4052.05 −0.707865
\(321\) 0 0
\(322\) 4304.53 0.744976
\(323\) −4855.98 −0.836515
\(324\) 0 0
\(325\) −149.683 −0.0255474
\(326\) −6197.52 −1.05291
\(327\) 0 0
\(328\) −5755.66 −0.968911
\(329\) 8286.96 1.38868
\(330\) 0 0
\(331\) −6257.20 −1.03905 −0.519527 0.854454i \(-0.673892\pi\)
−0.519527 + 0.854454i \(0.673892\pi\)
\(332\) 14895.5 2.46233
\(333\) 0 0
\(334\) −11144.7 −1.82578
\(335\) 3113.56 0.507797
\(336\) 0 0
\(337\) −4034.64 −0.652168 −0.326084 0.945341i \(-0.605729\pi\)
−0.326084 + 0.945341i \(0.605729\pi\)
\(338\) 9488.98 1.52702
\(339\) 0 0
\(340\) −4774.98 −0.761647
\(341\) −77.6744 −0.0123352
\(342\) 0 0
\(343\) 9723.97 1.53074
\(344\) 259.043 0.0406007
\(345\) 0 0
\(346\) −1339.30 −0.208095
\(347\) 10221.1 1.58126 0.790630 0.612294i \(-0.209753\pi\)
0.790630 + 0.612294i \(0.209753\pi\)
\(348\) 0 0
\(349\) −2543.26 −0.390079 −0.195040 0.980795i \(-0.562484\pi\)
−0.195040 + 0.980795i \(0.562484\pi\)
\(350\) −3461.37 −0.528623
\(351\) 0 0
\(352\) 1236.55 0.187240
\(353\) −11741.3 −1.77034 −0.885168 0.465272i \(-0.845956\pi\)
−0.885168 + 0.465272i \(0.845956\pi\)
\(354\) 0 0
\(355\) −1638.58 −0.244978
\(356\) 2132.27 0.317443
\(357\) 0 0
\(358\) 13582.3 2.00517
\(359\) −5475.18 −0.804927 −0.402463 0.915436i \(-0.631846\pi\)
−0.402463 + 0.915436i \(0.631846\pi\)
\(360\) 0 0
\(361\) −3570.21 −0.520514
\(362\) −12295.6 −1.78520
\(363\) 0 0
\(364\) −2129.36 −0.306617
\(365\) −4167.59 −0.597649
\(366\) 0 0
\(367\) 11158.0 1.58704 0.793522 0.608542i \(-0.208245\pi\)
0.793522 + 0.608542i \(0.208245\pi\)
\(368\) 840.254 0.119025
\(369\) 0 0
\(370\) 170.398 0.0239420
\(371\) 2049.45 0.286798
\(372\) 0 0
\(373\) 5823.05 0.808327 0.404163 0.914687i \(-0.367563\pi\)
0.404163 + 0.914687i \(0.367563\pi\)
\(374\) 1966.20 0.271845
\(375\) 0 0
\(376\) −3782.70 −0.518823
\(377\) 173.632 0.0237202
\(378\) 0 0
\(379\) 2272.79 0.308036 0.154018 0.988068i \(-0.450779\pi\)
0.154018 + 0.988068i \(0.450779\pi\)
\(380\) 3233.93 0.436572
\(381\) 0 0
\(382\) 18479.5 2.47512
\(383\) −8686.06 −1.15884 −0.579422 0.815028i \(-0.696722\pi\)
−0.579422 + 0.815028i \(0.696722\pi\)
\(384\) 0 0
\(385\) 833.833 0.110379
\(386\) 1086.98 0.143331
\(387\) 0 0
\(388\) −1552.23 −0.203099
\(389\) −5410.18 −0.705159 −0.352580 0.935782i \(-0.614695\pi\)
−0.352580 + 0.935782i \(0.614695\pi\)
\(390\) 0 0
\(391\) 2632.55 0.340496
\(392\) −9375.76 −1.20803
\(393\) 0 0
\(394\) −20083.4 −2.56798
\(395\) −3332.28 −0.424470
\(396\) 0 0
\(397\) 13470.8 1.70297 0.851486 0.524377i \(-0.175702\pi\)
0.851486 + 0.524377i \(0.175702\pi\)
\(398\) −11420.4 −1.43833
\(399\) 0 0
\(400\) −675.667 −0.0844584
\(401\) −1749.26 −0.217840 −0.108920 0.994050i \(-0.534739\pi\)
−0.108920 + 0.994050i \(0.534739\pi\)
\(402\) 0 0
\(403\) 87.9376 0.0108697
\(404\) 19411.6 2.39050
\(405\) 0 0
\(406\) 4015.19 0.490814
\(407\) −41.0482 −0.00499923
\(408\) 0 0
\(409\) −4261.47 −0.515198 −0.257599 0.966252i \(-0.582931\pi\)
−0.257599 + 0.966252i \(0.582931\pi\)
\(410\) −8778.48 −1.05741
\(411\) 0 0
\(412\) 8995.38 1.07566
\(413\) −3871.94 −0.461321
\(414\) 0 0
\(415\) 6603.60 0.781104
\(416\) −1399.94 −0.164994
\(417\) 0 0
\(418\) −1331.64 −0.155820
\(419\) 3355.37 0.391218 0.195609 0.980682i \(-0.437332\pi\)
0.195609 + 0.980682i \(0.437332\pi\)
\(420\) 0 0
\(421\) −7859.86 −0.909896 −0.454948 0.890518i \(-0.650342\pi\)
−0.454948 + 0.890518i \(0.650342\pi\)
\(422\) −1071.98 −0.123657
\(423\) 0 0
\(424\) −935.499 −0.107151
\(425\) −2116.89 −0.241610
\(426\) 0 0
\(427\) 8336.98 0.944858
\(428\) 8779.59 0.991537
\(429\) 0 0
\(430\) 395.090 0.0443091
\(431\) 9083.57 1.01517 0.507587 0.861600i \(-0.330537\pi\)
0.507587 + 0.861600i \(0.330537\pi\)
\(432\) 0 0
\(433\) 10303.2 1.14351 0.571756 0.820424i \(-0.306262\pi\)
0.571756 + 0.820424i \(0.306262\pi\)
\(434\) 2033.53 0.224914
\(435\) 0 0
\(436\) 8133.95 0.893453
\(437\) −1782.94 −0.195171
\(438\) 0 0
\(439\) 10285.7 1.11824 0.559122 0.829086i \(-0.311139\pi\)
0.559122 + 0.829086i \(0.311139\pi\)
\(440\) −380.614 −0.0412388
\(441\) 0 0
\(442\) −2226.00 −0.239547
\(443\) −11628.0 −1.24710 −0.623549 0.781784i \(-0.714310\pi\)
−0.623549 + 0.781784i \(0.714310\pi\)
\(444\) 0 0
\(445\) 945.297 0.100700
\(446\) −18349.9 −1.94819
\(447\) 0 0
\(448\) −25555.2 −2.69502
\(449\) 13543.0 1.42346 0.711730 0.702453i \(-0.247912\pi\)
0.711730 + 0.702453i \(0.247912\pi\)
\(450\) 0 0
\(451\) 2114.71 0.220793
\(452\) 6304.83 0.656094
\(453\) 0 0
\(454\) 17714.9 1.83128
\(455\) −944.007 −0.0972654
\(456\) 0 0
\(457\) 16383.2 1.67696 0.838481 0.544930i \(-0.183444\pi\)
0.838481 + 0.544930i \(0.183444\pi\)
\(458\) −19764.9 −2.01649
\(459\) 0 0
\(460\) −1753.20 −0.177703
\(461\) −13577.7 −1.37175 −0.685877 0.727717i \(-0.740581\pi\)
−0.685877 + 0.727717i \(0.740581\pi\)
\(462\) 0 0
\(463\) −17986.2 −1.80538 −0.902688 0.430297i \(-0.858409\pi\)
−0.902688 + 0.430297i \(0.858409\pi\)
\(464\) 783.774 0.0784176
\(465\) 0 0
\(466\) −20683.4 −2.05609
\(467\) −792.472 −0.0785251 −0.0392625 0.999229i \(-0.512501\pi\)
−0.0392625 + 0.999229i \(0.512501\pi\)
\(468\) 0 0
\(469\) 19636.3 1.93331
\(470\) −5769.33 −0.566212
\(471\) 0 0
\(472\) 1767.40 0.172354
\(473\) −95.1759 −0.00925199
\(474\) 0 0
\(475\) 1433.70 0.138490
\(476\) −30114.5 −2.89978
\(477\) 0 0
\(478\) −2180.57 −0.208655
\(479\) 6655.02 0.634813 0.317407 0.948290i \(-0.397188\pi\)
0.317407 + 0.948290i \(0.397188\pi\)
\(480\) 0 0
\(481\) 46.4719 0.00440528
\(482\) −28164.7 −2.66155
\(483\) 0 0
\(484\) −14695.9 −1.38016
\(485\) −688.151 −0.0644274
\(486\) 0 0
\(487\) −13972.7 −1.30013 −0.650064 0.759880i \(-0.725258\pi\)
−0.650064 + 0.759880i \(0.725258\pi\)
\(488\) −3805.53 −0.353008
\(489\) 0 0
\(490\) −14299.8 −1.31837
\(491\) −3638.63 −0.334438 −0.167219 0.985920i \(-0.553479\pi\)
−0.167219 + 0.985920i \(0.553479\pi\)
\(492\) 0 0
\(493\) 2455.60 0.224330
\(494\) 1507.59 0.137307
\(495\) 0 0
\(496\) 396.950 0.0359346
\(497\) −10334.1 −0.932691
\(498\) 0 0
\(499\) 11313.5 1.01496 0.507478 0.861665i \(-0.330578\pi\)
0.507478 + 0.861665i \(0.330578\pi\)
\(500\) 1409.78 0.126095
\(501\) 0 0
\(502\) 20818.7 1.85097
\(503\) 4598.92 0.407665 0.203833 0.979006i \(-0.434660\pi\)
0.203833 + 0.979006i \(0.434660\pi\)
\(504\) 0 0
\(505\) 8605.75 0.758318
\(506\) 721.917 0.0634252
\(507\) 0 0
\(508\) −7063.86 −0.616945
\(509\) −6967.41 −0.606729 −0.303364 0.952875i \(-0.598110\pi\)
−0.303364 + 0.952875i \(0.598110\pi\)
\(510\) 0 0
\(511\) −26283.8 −2.27540
\(512\) −9431.48 −0.814095
\(513\) 0 0
\(514\) −26829.3 −2.30231
\(515\) 3987.92 0.341221
\(516\) 0 0
\(517\) 1389.81 0.118228
\(518\) 1074.65 0.0911533
\(519\) 0 0
\(520\) 430.905 0.0363393
\(521\) 11038.5 0.928228 0.464114 0.885776i \(-0.346373\pi\)
0.464114 + 0.885776i \(0.346373\pi\)
\(522\) 0 0
\(523\) −15368.6 −1.28493 −0.642467 0.766314i \(-0.722089\pi\)
−0.642467 + 0.766314i \(0.722089\pi\)
\(524\) −19896.2 −1.65872
\(525\) 0 0
\(526\) −17147.4 −1.42141
\(527\) 1243.66 0.102798
\(528\) 0 0
\(529\) −11200.4 −0.920558
\(530\) −1426.81 −0.116937
\(531\) 0 0
\(532\) 20395.5 1.66214
\(533\) −2394.12 −0.194561
\(534\) 0 0
\(535\) 3892.26 0.314536
\(536\) −8963.28 −0.722303
\(537\) 0 0
\(538\) −29350.2 −2.35200
\(539\) 3444.78 0.275283
\(540\) 0 0
\(541\) −10945.5 −0.869839 −0.434920 0.900469i \(-0.643223\pi\)
−0.434920 + 0.900469i \(0.643223\pi\)
\(542\) 29789.9 2.36086
\(543\) 0 0
\(544\) −19798.7 −1.56041
\(545\) 3606.03 0.283422
\(546\) 0 0
\(547\) 10140.1 0.792616 0.396308 0.918118i \(-0.370291\pi\)
0.396308 + 0.918118i \(0.370291\pi\)
\(548\) 4891.64 0.381315
\(549\) 0 0
\(550\) −580.510 −0.0450055
\(551\) −1663.09 −0.128585
\(552\) 0 0
\(553\) −21015.8 −1.61606
\(554\) −16733.4 −1.28327
\(555\) 0 0
\(556\) −5691.69 −0.434139
\(557\) −18329.0 −1.39430 −0.697151 0.716925i \(-0.745549\pi\)
−0.697151 + 0.716925i \(0.745549\pi\)
\(558\) 0 0
\(559\) 107.752 0.00815278
\(560\) −4261.24 −0.321554
\(561\) 0 0
\(562\) 8115.21 0.609110
\(563\) −2868.99 −0.214766 −0.107383 0.994218i \(-0.534247\pi\)
−0.107383 + 0.994218i \(0.534247\pi\)
\(564\) 0 0
\(565\) 2795.12 0.208127
\(566\) −6067.69 −0.450608
\(567\) 0 0
\(568\) 4717.14 0.348462
\(569\) −18562.0 −1.36759 −0.683795 0.729674i \(-0.739672\pi\)
−0.683795 + 0.729674i \(0.739672\pi\)
\(570\) 0 0
\(571\) −10162.6 −0.744815 −0.372408 0.928069i \(-0.621468\pi\)
−0.372408 + 0.928069i \(0.621468\pi\)
\(572\) −357.116 −0.0261045
\(573\) 0 0
\(574\) −55363.4 −4.02583
\(575\) −777.245 −0.0563711
\(576\) 0 0
\(577\) 2525.24 0.182196 0.0910981 0.995842i \(-0.470962\pi\)
0.0910981 + 0.995842i \(0.470962\pi\)
\(578\) −9909.74 −0.713133
\(579\) 0 0
\(580\) −1635.35 −0.117076
\(581\) 41647.1 2.97386
\(582\) 0 0
\(583\) 343.715 0.0244172
\(584\) 11997.6 0.850111
\(585\) 0 0
\(586\) 27316.5 1.92565
\(587\) −3327.35 −0.233960 −0.116980 0.993134i \(-0.537321\pi\)
−0.116980 + 0.993134i \(0.537321\pi\)
\(588\) 0 0
\(589\) −842.289 −0.0589234
\(590\) 2695.62 0.188097
\(591\) 0 0
\(592\) 209.774 0.0145636
\(593\) 16731.4 1.15864 0.579321 0.815099i \(-0.303318\pi\)
0.579321 + 0.815099i \(0.303318\pi\)
\(594\) 0 0
\(595\) −13350.7 −0.919872
\(596\) 3999.90 0.274903
\(597\) 0 0
\(598\) −817.305 −0.0558898
\(599\) 12851.1 0.876600 0.438300 0.898829i \(-0.355581\pi\)
0.438300 + 0.898829i \(0.355581\pi\)
\(600\) 0 0
\(601\) −8773.05 −0.595441 −0.297720 0.954653i \(-0.596226\pi\)
−0.297720 + 0.954653i \(0.596226\pi\)
\(602\) 2491.72 0.168696
\(603\) 0 0
\(604\) −3672.33 −0.247393
\(605\) −6515.16 −0.437816
\(606\) 0 0
\(607\) −19083.1 −1.27605 −0.638023 0.770017i \(-0.720247\pi\)
−0.638023 + 0.770017i \(0.720247\pi\)
\(608\) 13409.0 0.894417
\(609\) 0 0
\(610\) −5804.15 −0.385251
\(611\) −1573.45 −0.104182
\(612\) 0 0
\(613\) 20976.8 1.38213 0.691063 0.722794i \(-0.257142\pi\)
0.691063 + 0.722794i \(0.257142\pi\)
\(614\) −35720.6 −2.34783
\(615\) 0 0
\(616\) −2400.43 −0.157007
\(617\) 15290.1 0.997658 0.498829 0.866700i \(-0.333764\pi\)
0.498829 + 0.866700i \(0.333764\pi\)
\(618\) 0 0
\(619\) 18786.8 1.21988 0.609938 0.792449i \(-0.291194\pi\)
0.609938 + 0.792449i \(0.291194\pi\)
\(620\) −828.239 −0.0536498
\(621\) 0 0
\(622\) 13688.7 0.882422
\(623\) 5961.73 0.383389
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −33089.9 −2.11268
\(627\) 0 0
\(628\) −30339.5 −1.92783
\(629\) 657.231 0.0416622
\(630\) 0 0
\(631\) 14273.7 0.900516 0.450258 0.892898i \(-0.351332\pi\)
0.450258 + 0.892898i \(0.351332\pi\)
\(632\) 9592.94 0.603777
\(633\) 0 0
\(634\) 15715.6 0.984456
\(635\) −3131.62 −0.195708
\(636\) 0 0
\(637\) −3899.95 −0.242577
\(638\) 673.391 0.0417865
\(639\) 0 0
\(640\) 8438.66 0.521199
\(641\) −10936.9 −0.673919 −0.336959 0.941519i \(-0.609398\pi\)
−0.336959 + 0.941519i \(0.609398\pi\)
\(642\) 0 0
\(643\) 5329.32 0.326855 0.163427 0.986555i \(-0.447745\pi\)
0.163427 + 0.986555i \(0.447745\pi\)
\(644\) −11056.9 −0.676559
\(645\) 0 0
\(646\) 21321.2 1.29856
\(647\) 15807.3 0.960509 0.480255 0.877129i \(-0.340544\pi\)
0.480255 + 0.877129i \(0.340544\pi\)
\(648\) 0 0
\(649\) −649.367 −0.0392756
\(650\) 657.213 0.0396585
\(651\) 0 0
\(652\) 15919.4 0.956215
\(653\) 11047.2 0.662037 0.331019 0.943624i \(-0.392608\pi\)
0.331019 + 0.943624i \(0.392608\pi\)
\(654\) 0 0
\(655\) −8820.59 −0.526182
\(656\) −10807.1 −0.643209
\(657\) 0 0
\(658\) −36385.6 −2.15571
\(659\) 20355.2 1.20322 0.601612 0.798789i \(-0.294525\pi\)
0.601612 + 0.798789i \(0.294525\pi\)
\(660\) 0 0
\(661\) −27873.5 −1.64017 −0.820086 0.572241i \(-0.806074\pi\)
−0.820086 + 0.572241i \(0.806074\pi\)
\(662\) 27473.5 1.61297
\(663\) 0 0
\(664\) −19010.4 −1.11106
\(665\) 9041.95 0.527266
\(666\) 0 0
\(667\) 901.605 0.0523392
\(668\) 28627.1 1.65811
\(669\) 0 0
\(670\) −13670.7 −0.788277
\(671\) 1398.20 0.0804427
\(672\) 0 0
\(673\) −9555.18 −0.547288 −0.273644 0.961831i \(-0.588229\pi\)
−0.273644 + 0.961831i \(0.588229\pi\)
\(674\) 17714.9 1.01239
\(675\) 0 0
\(676\) −24374.1 −1.38678
\(677\) −17556.1 −0.996658 −0.498329 0.866988i \(-0.666053\pi\)
−0.498329 + 0.866988i \(0.666053\pi\)
\(678\) 0 0
\(679\) −4339.97 −0.245292
\(680\) 6094.09 0.343673
\(681\) 0 0
\(682\) 341.045 0.0191485
\(683\) −11046.7 −0.618875 −0.309437 0.950920i \(-0.600141\pi\)
−0.309437 + 0.950920i \(0.600141\pi\)
\(684\) 0 0
\(685\) 2168.61 0.120961
\(686\) −42695.1 −2.37625
\(687\) 0 0
\(688\) 486.390 0.0269527
\(689\) −389.130 −0.0215162
\(690\) 0 0
\(691\) −7999.45 −0.440396 −0.220198 0.975455i \(-0.570670\pi\)
−0.220198 + 0.975455i \(0.570670\pi\)
\(692\) 3440.21 0.188984
\(693\) 0 0
\(694\) −44877.8 −2.45467
\(695\) −2523.30 −0.137718
\(696\) 0 0
\(697\) −33859.0 −1.84003
\(698\) 11166.7 0.605538
\(699\) 0 0
\(700\) 8891.12 0.480075
\(701\) 25401.3 1.36861 0.684303 0.729198i \(-0.260107\pi\)
0.684303 + 0.729198i \(0.260107\pi\)
\(702\) 0 0
\(703\) −445.120 −0.0238806
\(704\) −4285.88 −0.229447
\(705\) 0 0
\(706\) 51552.7 2.74818
\(707\) 54274.1 2.88711
\(708\) 0 0
\(709\) −9479.34 −0.502122 −0.251061 0.967971i \(-0.580779\pi\)
−0.251061 + 0.967971i \(0.580779\pi\)
\(710\) 7194.54 0.380290
\(711\) 0 0
\(712\) −2721.31 −0.143238
\(713\) 456.626 0.0239843
\(714\) 0 0
\(715\) −158.320 −0.00828091
\(716\) −34888.6 −1.82102
\(717\) 0 0
\(718\) 24039.9 1.24953
\(719\) 32420.3 1.68161 0.840803 0.541341i \(-0.182083\pi\)
0.840803 + 0.541341i \(0.182083\pi\)
\(720\) 0 0
\(721\) 25150.7 1.29912
\(722\) 15675.7 0.808019
\(723\) 0 0
\(724\) 31583.4 1.62126
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) −6808.51 −0.347337 −0.173668 0.984804i \(-0.555562\pi\)
−0.173668 + 0.984804i \(0.555562\pi\)
\(728\) 2717.60 0.138353
\(729\) 0 0
\(730\) 18298.7 0.927759
\(731\) 1523.88 0.0771036
\(732\) 0 0
\(733\) 20190.4 1.01740 0.508698 0.860945i \(-0.330127\pi\)
0.508698 + 0.860945i \(0.330127\pi\)
\(734\) −48991.6 −2.46364
\(735\) 0 0
\(736\) −7269.35 −0.364065
\(737\) 3293.23 0.164597
\(738\) 0 0
\(739\) 15130.0 0.753134 0.376567 0.926389i \(-0.377105\pi\)
0.376567 + 0.926389i \(0.377105\pi\)
\(740\) −437.695 −0.0217432
\(741\) 0 0
\(742\) −8998.52 −0.445210
\(743\) 13315.6 0.657470 0.328735 0.944422i \(-0.393378\pi\)
0.328735 + 0.944422i \(0.393378\pi\)
\(744\) 0 0
\(745\) 1773.28 0.0872051
\(746\) −25567.3 −1.25480
\(747\) 0 0
\(748\) −5050.53 −0.246879
\(749\) 24547.4 1.19752
\(750\) 0 0
\(751\) −18846.4 −0.915734 −0.457867 0.889021i \(-0.651386\pi\)
−0.457867 + 0.889021i \(0.651386\pi\)
\(752\) −7102.55 −0.344419
\(753\) 0 0
\(754\) −762.367 −0.0368220
\(755\) −1628.06 −0.0784782
\(756\) 0 0
\(757\) 699.522 0.0335859 0.0167930 0.999859i \(-0.494654\pi\)
0.0167930 + 0.999859i \(0.494654\pi\)
\(758\) −9979.16 −0.478178
\(759\) 0 0
\(760\) −4127.32 −0.196992
\(761\) 37430.3 1.78298 0.891489 0.453041i \(-0.149661\pi\)
0.891489 + 0.453041i \(0.149661\pi\)
\(762\) 0 0
\(763\) 22742.2 1.07906
\(764\) −47467.8 −2.24781
\(765\) 0 0
\(766\) 38137.9 1.79893
\(767\) 735.168 0.0346093
\(768\) 0 0
\(769\) 30299.7 1.42085 0.710426 0.703772i \(-0.248502\pi\)
0.710426 + 0.703772i \(0.248502\pi\)
\(770\) −3661.11 −0.171347
\(771\) 0 0
\(772\) −2792.09 −0.130168
\(773\) −16926.9 −0.787603 −0.393802 0.919195i \(-0.628840\pi\)
−0.393802 + 0.919195i \(0.628840\pi\)
\(774\) 0 0
\(775\) −367.183 −0.0170188
\(776\) 1981.04 0.0916433
\(777\) 0 0
\(778\) 23754.5 1.09465
\(779\) 22931.5 1.05470
\(780\) 0 0
\(781\) −1733.14 −0.0794068
\(782\) −11558.8 −0.528568
\(783\) 0 0
\(784\) −17604.3 −0.801946
\(785\) −13450.4 −0.611550
\(786\) 0 0
\(787\) −20726.9 −0.938799 −0.469400 0.882986i \(-0.655530\pi\)
−0.469400 + 0.882986i \(0.655530\pi\)
\(788\) 51587.6 2.33215
\(789\) 0 0
\(790\) 14631.1 0.658924
\(791\) 17628.1 0.792391
\(792\) 0 0
\(793\) −1582.95 −0.0708854
\(794\) −59146.3 −2.64361
\(795\) 0 0
\(796\) 29335.4 1.30624
\(797\) 25560.6 1.13601 0.568006 0.823025i \(-0.307715\pi\)
0.568006 + 0.823025i \(0.307715\pi\)
\(798\) 0 0
\(799\) −22252.6 −0.985282
\(800\) 5845.44 0.258334
\(801\) 0 0
\(802\) 7680.49 0.338164
\(803\) −4408.09 −0.193721
\(804\) 0 0
\(805\) −4901.87 −0.214619
\(806\) −386.108 −0.0168735
\(807\) 0 0
\(808\) −24774.1 −1.07865
\(809\) 45525.7 1.97849 0.989244 0.146273i \(-0.0467279\pi\)
0.989244 + 0.146273i \(0.0467279\pi\)
\(810\) 0 0
\(811\) 8515.77 0.368717 0.184358 0.982859i \(-0.440979\pi\)
0.184358 + 0.982859i \(0.440979\pi\)
\(812\) −10313.7 −0.445739
\(813\) 0 0
\(814\) 180.231 0.00776054
\(815\) 7057.55 0.303332
\(816\) 0 0
\(817\) −1032.07 −0.0441954
\(818\) 18710.8 0.799767
\(819\) 0 0
\(820\) 22549.0 0.960300
\(821\) −18922.1 −0.804369 −0.402185 0.915559i \(-0.631749\pi\)
−0.402185 + 0.915559i \(0.631749\pi\)
\(822\) 0 0
\(823\) −13297.5 −0.563210 −0.281605 0.959530i \(-0.590867\pi\)
−0.281605 + 0.959530i \(0.590867\pi\)
\(824\) −11480.4 −0.485362
\(825\) 0 0
\(826\) 17000.5 0.716131
\(827\) 26020.8 1.09411 0.547056 0.837096i \(-0.315748\pi\)
0.547056 + 0.837096i \(0.315748\pi\)
\(828\) 0 0
\(829\) 8756.88 0.366874 0.183437 0.983031i \(-0.441278\pi\)
0.183437 + 0.983031i \(0.441278\pi\)
\(830\) −28994.5 −1.21255
\(831\) 0 0
\(832\) 4852.18 0.202186
\(833\) −55155.1 −2.29413
\(834\) 0 0
\(835\) 12691.3 0.525987
\(836\) 3420.55 0.141510
\(837\) 0 0
\(838\) −14732.4 −0.607307
\(839\) 1131.02 0.0465400 0.0232700 0.999729i \(-0.492592\pi\)
0.0232700 + 0.999729i \(0.492592\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 34510.3 1.41248
\(843\) 0 0
\(844\) 2753.57 0.112301
\(845\) −10805.8 −0.439917
\(846\) 0 0
\(847\) −41089.3 −1.66688
\(848\) −1756.53 −0.0711316
\(849\) 0 0
\(850\) 9294.65 0.375063
\(851\) 241.311 0.00972037
\(852\) 0 0
\(853\) −12199.3 −0.489679 −0.244839 0.969564i \(-0.578735\pi\)
−0.244839 + 0.969564i \(0.578735\pi\)
\(854\) −36605.2 −1.46675
\(855\) 0 0
\(856\) −11205.0 −0.447405
\(857\) −37800.4 −1.50670 −0.753348 0.657622i \(-0.771562\pi\)
−0.753348 + 0.657622i \(0.771562\pi\)
\(858\) 0 0
\(859\) 30888.1 1.22688 0.613438 0.789743i \(-0.289786\pi\)
0.613438 + 0.789743i \(0.289786\pi\)
\(860\) −1014.86 −0.0402399
\(861\) 0 0
\(862\) −39883.3 −1.57590
\(863\) −38008.4 −1.49921 −0.749607 0.661883i \(-0.769758\pi\)
−0.749607 + 0.661883i \(0.769758\pi\)
\(864\) 0 0
\(865\) 1525.15 0.0599499
\(866\) −45238.3 −1.77513
\(867\) 0 0
\(868\) −5223.47 −0.204258
\(869\) −3524.58 −0.137587
\(870\) 0 0
\(871\) −3728.37 −0.145041
\(872\) −10381.0 −0.403147
\(873\) 0 0
\(874\) 7828.35 0.302973
\(875\) 3941.70 0.152290
\(876\) 0 0
\(877\) 45609.0 1.75611 0.878055 0.478561i \(-0.158841\pi\)
0.878055 + 0.478561i \(0.158841\pi\)
\(878\) −45161.4 −1.73590
\(879\) 0 0
\(880\) −714.658 −0.0273762
\(881\) −15306.9 −0.585360 −0.292680 0.956210i \(-0.594547\pi\)
−0.292680 + 0.956210i \(0.594547\pi\)
\(882\) 0 0
\(883\) −4293.37 −0.163628 −0.0818140 0.996648i \(-0.526071\pi\)
−0.0818140 + 0.996648i \(0.526071\pi\)
\(884\) 5717.86 0.217548
\(885\) 0 0
\(886\) 51055.3 1.93593
\(887\) −15161.7 −0.573935 −0.286968 0.957940i \(-0.592647\pi\)
−0.286968 + 0.957940i \(0.592647\pi\)
\(888\) 0 0
\(889\) −19750.3 −0.745110
\(890\) −4150.52 −0.156321
\(891\) 0 0
\(892\) 47134.9 1.76927
\(893\) 15070.9 0.564758
\(894\) 0 0
\(895\) −15467.2 −0.577665
\(896\) 53220.3 1.98434
\(897\) 0 0
\(898\) −59463.3 −2.20971
\(899\) 425.932 0.0158016
\(900\) 0 0
\(901\) −5503.29 −0.203486
\(902\) −9285.05 −0.342748
\(903\) 0 0
\(904\) −8046.57 −0.296045
\(905\) 14001.9 0.514297
\(906\) 0 0
\(907\) 45095.6 1.65091 0.825454 0.564469i \(-0.190919\pi\)
0.825454 + 0.564469i \(0.190919\pi\)
\(908\) −45503.8 −1.66310
\(909\) 0 0
\(910\) 4144.86 0.150990
\(911\) −10578.3 −0.384714 −0.192357 0.981325i \(-0.561613\pi\)
−0.192357 + 0.981325i \(0.561613\pi\)
\(912\) 0 0
\(913\) 6984.67 0.253186
\(914\) −71933.6 −2.60323
\(915\) 0 0
\(916\) 50769.5 1.83130
\(917\) −55629.0 −2.00331
\(918\) 0 0
\(919\) 50326.0 1.80642 0.903210 0.429198i \(-0.141204\pi\)
0.903210 + 0.429198i \(0.141204\pi\)
\(920\) 2237.53 0.0801837
\(921\) 0 0
\(922\) 59615.9 2.12944
\(923\) 1962.14 0.0699726
\(924\) 0 0
\(925\) −194.044 −0.00689742
\(926\) 78972.0 2.80257
\(927\) 0 0
\(928\) −6780.71 −0.239858
\(929\) −8373.10 −0.295708 −0.147854 0.989009i \(-0.547237\pi\)
−0.147854 + 0.989009i \(0.547237\pi\)
\(930\) 0 0
\(931\) 37354.7 1.31498
\(932\) 53128.8 1.86726
\(933\) 0 0
\(934\) 3479.51 0.121898
\(935\) −2239.05 −0.0783154
\(936\) 0 0
\(937\) 53048.3 1.84953 0.924766 0.380537i \(-0.124261\pi\)
0.924766 + 0.380537i \(0.124261\pi\)
\(938\) −86217.4 −3.00117
\(939\) 0 0
\(940\) 14819.5 0.514212
\(941\) 1015.79 0.0351899 0.0175949 0.999845i \(-0.494399\pi\)
0.0175949 + 0.999845i \(0.494399\pi\)
\(942\) 0 0
\(943\) −12431.8 −0.429305
\(944\) 3318.54 0.114417
\(945\) 0 0
\(946\) 417.889 0.0143623
\(947\) 26038.4 0.893490 0.446745 0.894661i \(-0.352583\pi\)
0.446745 + 0.894661i \(0.352583\pi\)
\(948\) 0 0
\(949\) 4990.53 0.170706
\(950\) −6294.95 −0.214984
\(951\) 0 0
\(952\) 38433.7 1.30845
\(953\) 22396.1 0.761260 0.380630 0.924727i \(-0.375707\pi\)
0.380630 + 0.924727i \(0.375707\pi\)
\(954\) 0 0
\(955\) −21043.9 −0.713053
\(956\) 5601.17 0.189492
\(957\) 0 0
\(958\) −29220.2 −0.985451
\(959\) 13676.8 0.460530
\(960\) 0 0
\(961\) −29575.3 −0.992759
\(962\) −204.045 −0.00683852
\(963\) 0 0
\(964\) 72345.9 2.41712
\(965\) −1237.82 −0.0412919
\(966\) 0 0
\(967\) −33614.9 −1.11787 −0.558936 0.829211i \(-0.688790\pi\)
−0.558936 + 0.829211i \(0.688790\pi\)
\(968\) 18755.8 0.622761
\(969\) 0 0
\(970\) 3021.47 0.100014
\(971\) 30440.6 1.00606 0.503030 0.864269i \(-0.332219\pi\)
0.503030 + 0.864269i \(0.332219\pi\)
\(972\) 0 0
\(973\) −15913.7 −0.524328
\(974\) 61349.8 2.01825
\(975\) 0 0
\(976\) −7145.42 −0.234343
\(977\) −18698.6 −0.612305 −0.306153 0.951982i \(-0.599042\pi\)
−0.306153 + 0.951982i \(0.599042\pi\)
\(978\) 0 0
\(979\) 999.847 0.0326407
\(980\) 36731.6 1.19729
\(981\) 0 0
\(982\) 15976.1 0.519164
\(983\) 10438.4 0.338692 0.169346 0.985557i \(-0.445834\pi\)
0.169346 + 0.985557i \(0.445834\pi\)
\(984\) 0 0
\(985\) 22870.3 0.739806
\(986\) −10781.8 −0.348238
\(987\) 0 0
\(988\) −3872.51 −0.124697
\(989\) 559.513 0.0179893
\(990\) 0 0
\(991\) 20547.5 0.658641 0.329320 0.944218i \(-0.393180\pi\)
0.329320 + 0.944218i \(0.393180\pi\)
\(992\) −3434.16 −0.109914
\(993\) 0 0
\(994\) 45373.9 1.44786
\(995\) 13005.3 0.414366
\(996\) 0 0
\(997\) 6486.05 0.206033 0.103017 0.994680i \(-0.467150\pi\)
0.103017 + 0.994680i \(0.467150\pi\)
\(998\) −49674.3 −1.57556
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.h.1.2 6
3.2 odd 2 435.4.a.h.1.5 6
15.14 odd 2 2175.4.a.k.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.h.1.5 6 3.2 odd 2
1305.4.a.h.1.2 6 1.1 even 1 trivial
2175.4.a.k.1.2 6 15.14 odd 2