Properties

Label 1305.2.t
Level $1305$
Weight $2$
Character orbit 1305.t
Rep. character $\chi_{1305}(307,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $146$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.t (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q(i)\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 376 154 222
Cusp forms 344 146 198
Eisenstein series 32 8 24

Trace form

\( 146 q + 2 q^{2} + 142 q^{4} - 4 q^{7} + 6 q^{8} - 2 q^{10} + 8 q^{11} - 2 q^{13} + 4 q^{14} + 126 q^{16} + 4 q^{17} + 20 q^{20} - 8 q^{22} + 4 q^{23} + 10 q^{25} + 14 q^{26} - 8 q^{28} - 8 q^{31} + 14 q^{32}+ \cdots - 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)