Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1305,2,Mod(476,1305)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1305, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1305.476");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1305 = 3^{2} \cdot 5 \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1305.r (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.4204774638\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
476.1 | −1.88896 | + | 1.88896i | 0 | − | 5.13635i | 1.00000 | 0 | −4.81798 | 5.92445 | + | 5.92445i | 0 | −1.88896 | + | 1.88896i | |||||||||||
476.2 | −1.63087 | + | 1.63087i | 0 | − | 3.31944i | 1.00000 | 0 | 3.77106 | 2.15184 | + | 2.15184i | 0 | −1.63087 | + | 1.63087i | |||||||||||
476.3 | −1.61430 | + | 1.61430i | 0 | − | 3.21192i | 1.00000 | 0 | −0.631105 | 1.95641 | + | 1.95641i | 0 | −1.61430 | + | 1.61430i | |||||||||||
476.4 | −1.39641 | + | 1.39641i | 0 | − | 1.89994i | 1.00000 | 0 | 4.49373 | −0.139719 | − | 0.139719i | 0 | −1.39641 | + | 1.39641i | |||||||||||
476.5 | −1.26665 | + | 1.26665i | 0 | − | 1.20879i | 1.00000 | 0 | −1.31047 | −1.00219 | − | 1.00219i | 0 | −1.26665 | + | 1.26665i | |||||||||||
476.6 | −1.24864 | + | 1.24864i | 0 | − | 1.11818i | 1.00000 | 0 | −2.67792 | −1.10107 | − | 1.10107i | 0 | −1.24864 | + | 1.24864i | |||||||||||
476.7 | −0.251233 | + | 0.251233i | 0 | 1.87376i | 1.00000 | 0 | −1.71619 | −0.973218 | − | 0.973218i | 0 | −0.251233 | + | 0.251233i | ||||||||||||
476.8 | −0.234786 | + | 0.234786i | 0 | 1.88975i | 1.00000 | 0 | 3.02559 | −0.913258 | − | 0.913258i | 0 | −0.234786 | + | 0.234786i | ||||||||||||
476.9 | 0.113859 | − | 0.113859i | 0 | 1.97407i | 1.00000 | 0 | −2.37207 | 0.452485 | + | 0.452485i | 0 | 0.113859 | − | 0.113859i | ||||||||||||
476.10 | 0.605142 | − | 0.605142i | 0 | 1.26761i | 1.00000 | 0 | 2.21854 | 1.97737 | + | 1.97737i | 0 | 0.605142 | − | 0.605142i | ||||||||||||
476.11 | 1.09394 | − | 1.09394i | 0 | − | 0.393419i | 1.00000 | 0 | 3.19461 | 1.75751 | + | 1.75751i | 0 | 1.09394 | − | 1.09394i | |||||||||||
476.12 | 1.19445 | − | 1.19445i | 0 | − | 0.853421i | 1.00000 | 0 | −4.00364 | 1.36953 | + | 1.36953i | 0 | 1.19445 | − | 1.19445i | |||||||||||
476.13 | 1.28683 | − | 1.28683i | 0 | − | 1.31184i | 1.00000 | 0 | −1.81123 | 0.885539 | + | 0.885539i | 0 | 1.28683 | − | 1.28683i | |||||||||||
476.14 | 1.47426 | − | 1.47426i | 0 | − | 2.34690i | 1.00000 | 0 | 1.04276 | −0.511418 | − | 0.511418i | 0 | 1.47426 | − | 1.47426i | |||||||||||
476.15 | 1.77908 | − | 1.77908i | 0 | − | 4.33025i | 1.00000 | 0 | 2.49153 | −4.14571 | − | 4.14571i | 0 | 1.77908 | − | 1.77908i | |||||||||||
476.16 | 1.98428 | − | 1.98428i | 0 | − | 5.87473i | 1.00000 | 0 | 3.10278 | −7.68854 | − | 7.68854i | 0 | 1.98428 | − | 1.98428i | |||||||||||
1061.1 | −1.88896 | − | 1.88896i | 0 | 5.13635i | 1.00000 | 0 | −4.81798 | 5.92445 | − | 5.92445i | 0 | −1.88896 | − | 1.88896i | ||||||||||||
1061.2 | −1.63087 | − | 1.63087i | 0 | 3.31944i | 1.00000 | 0 | 3.77106 | 2.15184 | − | 2.15184i | 0 | −1.63087 | − | 1.63087i | ||||||||||||
1061.3 | −1.61430 | − | 1.61430i | 0 | 3.21192i | 1.00000 | 0 | −0.631105 | 1.95641 | − | 1.95641i | 0 | −1.61430 | − | 1.61430i | ||||||||||||
1061.4 | −1.39641 | − | 1.39641i | 0 | 1.89994i | 1.00000 | 0 | 4.49373 | −0.139719 | + | 0.139719i | 0 | −1.39641 | − | 1.39641i | ||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
87.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1305.2.r.d | yes | 32 |
3.b | odd | 2 | 1 | 1305.2.r.c | ✓ | 32 | |
29.c | odd | 4 | 1 | 1305.2.r.c | ✓ | 32 | |
87.f | even | 4 | 1 | inner | 1305.2.r.d | yes | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1305.2.r.c | ✓ | 32 | 3.b | odd | 2 | 1 | |
1305.2.r.c | ✓ | 32 | 29.c | odd | 4 | 1 | |
1305.2.r.d | yes | 32 | 1.a | even | 1 | 1 | trivial |
1305.2.r.d | yes | 32 | 87.f | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1305, [\chi])\):
\( T_{2}^{32} + 144 T_{2}^{28} + 8 T_{2}^{27} - 88 T_{2}^{25} + 7720 T_{2}^{24} + 416 T_{2}^{23} + \cdots + 10000 \)
|
\( T_{11}^{32} + 8 T_{11}^{31} + 32 T_{11}^{30} - 48 T_{11}^{29} + 594 T_{11}^{28} + 5720 T_{11}^{27} + \cdots + 770506564 \)
|