Properties

Label 1305.2.n
Level $1305$
Weight $2$
Character orbit 1305.n
Rep. character $\chi_{1305}(233,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $112$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.n (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 376 112 264
Cusp forms 344 112 232
Eisenstein series 32 0 32

Trace form

\( 112 q + 32 q^{10} - 128 q^{16} - 32 q^{25} + 64 q^{31} - 32 q^{37} + 48 q^{40} + 48 q^{43} - 48 q^{52} - 64 q^{61} + 64 q^{67} - 64 q^{70} + 80 q^{73} - 96 q^{76} + 32 q^{85} + 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)