Properties

Label 1305.2.i
Level $1305$
Weight $2$
Character orbit 1305.i
Rep. character $\chi_{1305}(436,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $224$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 368 224 144
Cusp forms 352 224 128
Eisenstein series 16 0 16

Trace form

\( 224 q + 4 q^{2} + 4 q^{3} - 112 q^{4} + 4 q^{6} + 4 q^{7} - 24 q^{8} + 12 q^{9} - 4 q^{11} - 4 q^{12} + 4 q^{13} - 20 q^{14} - 112 q^{16} - 8 q^{17} + 28 q^{18} + 16 q^{19} - 32 q^{21} - 12 q^{22} - 12 q^{24}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)