Properties

Label 1305.2.f.m
Level $1305$
Weight $2$
Character orbit 1305.f
Analytic conductor $10.420$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(289,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 12x^{14} + 74x^{12} - 264x^{10} + 419x^{8} + 2136x^{6} + 3562x^{4} - 6204x^{2} + 16641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + 2) q^{4} - \beta_{14} q^{5} + \beta_{5} q^{7} + (\beta_{4} + \beta_1) q^{8} + (\beta_{12} - 3 \beta_{10} + \beta_{8}) q^{10} - \beta_{6} q^{11} + \beta_{5} q^{13} + ( - \beta_{6} + 3 \beta_{2}) q^{14}+ \cdots + 2 \beta_{4} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{4} + 8 q^{16} - 8 q^{25} - 56 q^{34} - 16 q^{49} - 128 q^{91} + 56 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 12x^{14} + 74x^{12} - 264x^{10} + 419x^{8} + 2136x^{6} + 3562x^{4} - 6204x^{2} + 16641 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 217421 \nu^{14} - 5681152 \nu^{12} + 39355680 \nu^{10} - 145356762 \nu^{8} + \cdots - 37966407840 ) / 15910700526 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 1329427 \nu^{14} + 15999621 \nu^{12} - 100385327 \nu^{10} + 406744371 \nu^{8} + \cdots + 4916543370 ) / 15910700526 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 11684 \nu^{14} + 165650 \nu^{12} - 1146800 \nu^{10} + 4458639 \nu^{8} - 8174928 \nu^{6} + \cdots + 216494241 ) / 126275401 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 857555 \nu^{14} - 12350764 \nu^{12} + 84799197 \nu^{10} - 354379902 \nu^{8} + \cdots - 10765161102 ) / 5303566842 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 369170 \nu^{14} - 4455767 \nu^{12} + 29360921 \nu^{10} - 117596589 \nu^{8} + 272778775 \nu^{6} + \cdots - 1448444346 ) / 2272957218 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 3203332 \nu^{14} - 34000728 \nu^{12} + 180940235 \nu^{10} - 507670767 \nu^{8} + \cdots - 9078599967 ) / 15910700526 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 747697 \nu^{14} + 7509521 \nu^{12} - 35561025 \nu^{10} + 61314684 \nu^{8} + \cdots + 1670028831 ) / 2272957218 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 4308863 \nu^{15} + 31884655 \nu^{13} - 602577292 \nu^{11} + 4119156633 \nu^{9} + \cdots + 260044800870 \nu ) / 195474320748 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 220643146 \nu^{15} + 3632473953 \nu^{13} - 28235448773 \nu^{11} + \cdots + 5572260393621 \nu ) / 4104960735708 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 387352 \nu^{15} + 5066442 \nu^{13} - 32544755 \nu^{11} + 125213769 \nu^{9} + \cdots + 6399256785 \nu ) / 5983907778 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 44504195 \nu^{15} + 468046458 \nu^{13} - 2640244189 \nu^{11} + 8765278785 \nu^{9} + \cdots - 604042269333 \nu ) / 586422962244 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 24011513 \nu^{15} - 277891815 \nu^{13} + 1515554980 \nu^{11} - 3948278562 \nu^{9} + \cdots - 298230999879 \nu ) / 293211481122 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 66347272 \nu^{15} + 805516367 \nu^{13} - 5153987664 \nu^{11} + 19207974048 \nu^{9} + \cdots - 333181947393 \nu ) / 684160122618 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 443163958 \nu^{15} - 4676203461 \nu^{13} + 25014179141 \nu^{11} - 70944795252 \nu^{9} + \cdots - 5028459547947 \nu ) / 4104960735708 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 659164469 \nu^{15} - 7852057659 \nu^{13} + 46278424444 \nu^{11} - 142951936887 \nu^{9} + \cdots - 4748550627036 \nu ) / 4104960735708 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{14} - \beta_{13} - \beta_{10} + \beta_{9} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{3} + \beta_{2} + \beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -4\beta_{15} + \beta_{14} - 8\beta_{13} + 3\beta_{12} + 6\beta_{11} - 2\beta_{10} + 3\beta_{9} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -2\beta_{7} - 4\beta_{6} + 4\beta_{5} + 4\beta_{4} + 7\beta_{3} + 6\beta_{2} - 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 22 \beta_{15} + 28 \beta_{14} - 39 \beta_{13} + 15 \beta_{12} + 20 \beta_{11} + 21 \beta_{10} + \cdots - 20 \beta_{8} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -23\beta_{7} - 55\beta_{6} + 12\beta_{5} + 13\beta_{4} + 22\beta_{3} - 19\beta_{2} - 7\beta _1 - 29 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 2 \beta_{15} + 219 \beta_{14} - 125 \beta_{13} - 98 \beta_{12} + 56 \beta_{11} + 139 \beta_{10} + \cdots - 182 \beta_{8} ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -148\beta_{7} - 340\beta_{6} + 68\beta_{5} - 80\beta_{4} - 151\beta_{3} - 92\beta_{2} + 83 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 918 \beta_{15} + 1053 \beta_{14} - 588 \beta_{13} - 1311 \beta_{12} + 792 \beta_{11} + \cdots - 816 \beta_{8} ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -473\beta_{7} - 1265\beta_{6} + 923\beta_{5} - 891\beta_{4} - 1871\beta_{3} + 882\beta_{2} - 452\beta _1 + 262 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 5570 \beta_{15} + 6116 \beta_{14} - 4735 \beta_{13} - 7117 \beta_{12} + 7018 \beta_{11} + \cdots - 1694 \beta_{8} ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 372 \beta_{7} - 2078 \beta_{6} + 5190 \beta_{5} - 3620 \beta_{4} - 9344 \beta_{3} + 8320 \beta_{2} + \cdots - 14383 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 17036 \beta_{15} + 43107 \beta_{14} - 9373 \beta_{13} - 26000 \beta_{12} + 19240 \beta_{11} + \cdots + 2340 \beta_{8} ) / 2 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 4952 \beta_{7} + 11808 \beta_{6} - 3647 \beta_{5} - 11864 \beta_{4} - 43121 \beta_{3} + 1201 \beta_{2} + \cdots - 146585 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 97456 \beta_{15} + 186517 \beta_{14} + 235364 \beta_{13} - 131433 \beta_{12} - 169758 \beta_{11} + \cdots + 57248 \beta_{8} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−1.06811 + 0.590434i
−1.06811 0.590434i
1.06811 + 0.590434i
1.06811 0.590434i
−0.454191 1.46676i
−0.454191 + 1.46676i
0.454191 1.46676i
0.454191 + 1.46676i
−1.86840 1.46676i
−1.86840 + 1.46676i
1.86840 1.46676i
1.86840 + 1.46676i
−2.48232 + 0.590434i
−2.48232 0.590434i
2.48232 + 0.590434i
2.48232 0.590434i
−2.51053 0 4.30278 −1.77521 1.35964i 0 2.09629i −5.78119 0 4.45674 + 3.41341i
289.2 −2.51053 0 4.30278 −1.77521 + 1.35964i 0 2.09629i −5.78119 0 4.45674 3.41341i
289.3 −2.51053 0 4.30278 1.77521 1.35964i 0 2.09629i −5.78119 0 −4.45674 + 3.41341i
289.4 −2.51053 0 4.30278 1.77521 + 1.35964i 0 2.09629i −5.78119 0 −4.45674 3.41341i
289.5 −1.64232 0 0.697224 −1.16130 1.91086i 0 3.40669i 2.13958 0 1.90723 + 3.13825i
289.6 −1.64232 0 0.697224 −1.16130 + 1.91086i 0 3.40669i 2.13958 0 1.90723 3.13825i
289.7 −1.64232 0 0.697224 1.16130 1.91086i 0 3.40669i 2.13958 0 −1.90723 + 3.13825i
289.8 −1.64232 0 0.697224 1.16130 + 1.91086i 0 3.40669i 2.13958 0 −1.90723 3.13825i
289.9 1.64232 0 0.697224 −1.16130 1.91086i 0 3.40669i −2.13958 0 −1.90723 3.13825i
289.10 1.64232 0 0.697224 −1.16130 + 1.91086i 0 3.40669i −2.13958 0 −1.90723 + 3.13825i
289.11 1.64232 0 0.697224 1.16130 1.91086i 0 3.40669i −2.13958 0 1.90723 3.13825i
289.12 1.64232 0 0.697224 1.16130 + 1.91086i 0 3.40669i −2.13958 0 1.90723 + 3.13825i
289.13 2.51053 0 4.30278 −1.77521 1.35964i 0 2.09629i 5.78119 0 −4.45674 3.41341i
289.14 2.51053 0 4.30278 −1.77521 + 1.35964i 0 2.09629i 5.78119 0 −4.45674 + 3.41341i
289.15 2.51053 0 4.30278 1.77521 1.35964i 0 2.09629i 5.78119 0 4.45674 3.41341i
289.16 2.51053 0 4.30278 1.77521 + 1.35964i 0 2.09629i 5.78119 0 4.45674 + 3.41341i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
29.b even 2 1 inner
87.d odd 2 1 inner
145.d even 2 1 inner
435.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1305.2.f.m 16
3.b odd 2 1 inner 1305.2.f.m 16
5.b even 2 1 inner 1305.2.f.m 16
15.d odd 2 1 inner 1305.2.f.m 16
29.b even 2 1 inner 1305.2.f.m 16
87.d odd 2 1 inner 1305.2.f.m 16
145.d even 2 1 inner 1305.2.f.m 16
435.b odd 2 1 inner 1305.2.f.m 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1305.2.f.m 16 1.a even 1 1 trivial
1305.2.f.m 16 3.b odd 2 1 inner
1305.2.f.m 16 5.b even 2 1 inner
1305.2.f.m 16 15.d odd 2 1 inner
1305.2.f.m 16 29.b even 2 1 inner
1305.2.f.m 16 87.d odd 2 1 inner
1305.2.f.m 16 145.d even 2 1 inner
1305.2.f.m 16 435.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1305, [\chi])\):

\( T_{2}^{4} - 9T_{2}^{2} + 17 \) Copy content Toggle raw display
\( T_{7}^{4} + 16T_{7}^{2} + 51 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - 9 T^{2} + 17)^{4} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{8} + 2 T^{6} + \cdots + 625)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 16 T^{2} + 51)^{4} \) Copy content Toggle raw display
$11$ \( (T^{4} + 8 T^{2} + 3)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 16 T^{2} + 51)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 30 T^{2} + 17)^{4} \) Copy content Toggle raw display
$19$ \( (T^{4} + 32 T^{2} + 204)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 30 T^{2} + 108)^{4} \) Copy content Toggle raw display
$29$ \( (T^{8} - 84 T^{6} + \cdots + 707281)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 98 T^{2} + 204)^{4} \) Copy content Toggle raw display
$37$ \( (T^{4} - 94 T^{2} + 1156)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 132 T^{2} + 3888)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} - 62 T^{2} + 324)^{4} \) Copy content Toggle raw display
$47$ \( (T^{4} - 30 T^{2} + 17)^{4} \) Copy content Toggle raw display
$53$ \( (T^{4} + 160 T^{2} + 108)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} - 138 T^{2} + 68)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} + 32 T^{2} + 204)^{4} \) Copy content Toggle raw display
$67$ \( (T^{4} + 208 T^{2} + 8619)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} - 188 T^{2} + 5508)^{4} \) Copy content Toggle raw display
$73$ \( (T^{4} - 350 T^{2} + 22500)^{4} \) Copy content Toggle raw display
$79$ \( (T^{4} + 288 T^{2} + 16524)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} + 90 T^{2} + 972)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} + 80 T^{2} + 1587)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 26)^{8} \) Copy content Toggle raw display
show more
show less