Properties

Label 1305.2.d.f.811.7
Level $1305$
Weight $2$
Character 1305.811
Analytic conductor $10.420$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1305,2,Mod(811,1305)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1305.811"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1305, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-6,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 13x^{8} + 56x^{6} + 89x^{4} + 41x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.7
Root \(0.732188i\) of defining polynomial
Character \(\chi\) \(=\) 1305.811
Dual form 1305.2.d.f.811.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.732188i q^{2} +1.46390 q^{4} +1.00000 q^{5} -4.08783 q^{7} +2.53623i q^{8} +0.732188i q^{10} -2.45619i q^{11} -0.393095 q^{13} -2.99306i q^{14} +1.07081 q^{16} +2.58997i q^{17} +7.38707i q^{19} +1.46390 q^{20} +1.79839 q^{22} +8.05499 q^{23} +1.00000 q^{25} -0.287819i q^{26} -5.98418 q^{28} +(0.825542 + 5.32151i) q^{29} +6.86403i q^{31} +5.85649i q^{32} -1.89635 q^{34} -4.08783 q^{35} +8.71766i q^{37} -5.40873 q^{38} +2.53623i q^{40} -11.3595i q^{41} +7.75140i q^{43} -3.59561i q^{44} +5.89776i q^{46} +2.06693i q^{47} +9.71037 q^{49} +0.732188i q^{50} -0.575452 q^{52} -3.02923 q^{53} -2.45619i q^{55} -10.3677i q^{56} +(-3.89635 + 0.604452i) q^{58} +8.03405 q^{59} -11.5529i q^{61} -5.02576 q^{62} -2.14644 q^{64} -0.393095 q^{65} -12.8083 q^{67} +3.79146i q^{68} -2.99306i q^{70} +16.4929 q^{71} +3.80149i q^{73} -6.38297 q^{74} +10.8139i q^{76} +10.0405i q^{77} -7.38707i q^{79} +1.07081 q^{80} +8.31728 q^{82} -8.43795 q^{83} +2.58997i q^{85} -5.67548 q^{86} +6.22944 q^{88} -6.04177i q^{89} +1.60691 q^{91} +11.7917 q^{92} -1.51338 q^{94} +7.38707i q^{95} -10.4496i q^{97} +7.10982i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 6 q^{4} + 10 q^{5} - 4 q^{7} + 4 q^{13} - 2 q^{16} - 6 q^{20} + 10 q^{22} + 10 q^{23} + 10 q^{25} - 2 q^{28} + 2 q^{34} - 4 q^{35} + 32 q^{38} - 10 q^{49} - 34 q^{52} - 14 q^{53} - 18 q^{58} + 32 q^{59}+ \cdots - 26 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.732188i 0.517735i 0.965913 + 0.258868i \(0.0833493\pi\)
−0.965913 + 0.258868i \(0.916651\pi\)
\(3\) 0 0
\(4\) 1.46390 0.731950
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −4.08783 −1.54506 −0.772528 0.634981i \(-0.781008\pi\)
−0.772528 + 0.634981i \(0.781008\pi\)
\(8\) 2.53623i 0.896692i
\(9\) 0 0
\(10\) 0.732188i 0.231538i
\(11\) 2.45619i 0.740568i −0.928919 0.370284i \(-0.879260\pi\)
0.928919 0.370284i \(-0.120740\pi\)
\(12\) 0 0
\(13\) −0.393095 −0.109025 −0.0545124 0.998513i \(-0.517360\pi\)
−0.0545124 + 0.998513i \(0.517360\pi\)
\(14\) 2.99306i 0.799929i
\(15\) 0 0
\(16\) 1.07081 0.267701
\(17\) 2.58997i 0.628161i 0.949396 + 0.314080i \(0.101696\pi\)
−0.949396 + 0.314080i \(0.898304\pi\)
\(18\) 0 0
\(19\) 7.38707i 1.69471i 0.531026 + 0.847355i \(0.321807\pi\)
−0.531026 + 0.847355i \(0.678193\pi\)
\(20\) 1.46390 0.327338
\(21\) 0 0
\(22\) 1.79839 0.383418
\(23\) 8.05499 1.67958 0.839790 0.542911i \(-0.182678\pi\)
0.839790 + 0.542911i \(0.182678\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0.287819i 0.0564460i
\(27\) 0 0
\(28\) −5.98418 −1.13090
\(29\) 0.825542 + 5.32151i 0.153299 + 0.988180i
\(30\) 0 0
\(31\) 6.86403i 1.23282i 0.787427 + 0.616408i \(0.211413\pi\)
−0.787427 + 0.616408i \(0.788587\pi\)
\(32\) 5.85649i 1.03529i
\(33\) 0 0
\(34\) −1.89635 −0.325221
\(35\) −4.08783 −0.690970
\(36\) 0 0
\(37\) 8.71766i 1.43317i 0.697497 + 0.716587i \(0.254297\pi\)
−0.697497 + 0.716587i \(0.745703\pi\)
\(38\) −5.40873 −0.877412
\(39\) 0 0
\(40\) 2.53623i 0.401013i
\(41\) 11.3595i 1.77405i −0.461719 0.887026i \(-0.652767\pi\)
0.461719 0.887026i \(-0.347233\pi\)
\(42\) 0 0
\(43\) 7.75140i 1.18208i 0.806643 + 0.591039i \(0.201282\pi\)
−0.806643 + 0.591039i \(0.798718\pi\)
\(44\) 3.59561i 0.542059i
\(45\) 0 0
\(46\) 5.89776i 0.869578i
\(47\) 2.06693i 0.301492i 0.988573 + 0.150746i \(0.0481676\pi\)
−0.988573 + 0.150746i \(0.951832\pi\)
\(48\) 0 0
\(49\) 9.71037 1.38720
\(50\) 0.732188i 0.103547i
\(51\) 0 0
\(52\) −0.575452 −0.0798008
\(53\) −3.02923 −0.416096 −0.208048 0.978119i \(-0.566711\pi\)
−0.208048 + 0.978119i \(0.566711\pi\)
\(54\) 0 0
\(55\) 2.45619i 0.331192i
\(56\) 10.3677i 1.38544i
\(57\) 0 0
\(58\) −3.89635 + 0.604452i −0.511615 + 0.0793684i
\(59\) 8.03405 1.04594 0.522972 0.852350i \(-0.324823\pi\)
0.522972 + 0.852350i \(0.324823\pi\)
\(60\) 0 0
\(61\) 11.5529i 1.47920i −0.673049 0.739598i \(-0.735016\pi\)
0.673049 0.739598i \(-0.264984\pi\)
\(62\) −5.02576 −0.638272
\(63\) 0 0
\(64\) −2.14644 −0.268305
\(65\) −0.393095 −0.0487574
\(66\) 0 0
\(67\) −12.8083 −1.56479 −0.782393 0.622785i \(-0.786001\pi\)
−0.782393 + 0.622785i \(0.786001\pi\)
\(68\) 3.79146i 0.459782i
\(69\) 0 0
\(70\) 2.99306i 0.357739i
\(71\) 16.4929 1.95735 0.978676 0.205411i \(-0.0658530\pi\)
0.978676 + 0.205411i \(0.0658530\pi\)
\(72\) 0 0
\(73\) 3.80149i 0.444930i 0.974941 + 0.222465i \(0.0714104\pi\)
−0.974941 + 0.222465i \(0.928590\pi\)
\(74\) −6.38297 −0.742005
\(75\) 0 0
\(76\) 10.8139i 1.24044i
\(77\) 10.0405i 1.14422i
\(78\) 0 0
\(79\) 7.38707i 0.831111i −0.909568 0.415555i \(-0.863587\pi\)
0.909568 0.415555i \(-0.136413\pi\)
\(80\) 1.07081 0.119720
\(81\) 0 0
\(82\) 8.31728 0.918489
\(83\) −8.43795 −0.926186 −0.463093 0.886310i \(-0.653260\pi\)
−0.463093 + 0.886310i \(0.653260\pi\)
\(84\) 0 0
\(85\) 2.58997i 0.280922i
\(86\) −5.67548 −0.612003
\(87\) 0 0
\(88\) 6.22944 0.664061
\(89\) 6.04177i 0.640427i −0.947345 0.320213i \(-0.896245\pi\)
0.947345 0.320213i \(-0.103755\pi\)
\(90\) 0 0
\(91\) 1.60691 0.168449
\(92\) 11.7917 1.22937
\(93\) 0 0
\(94\) −1.51338 −0.156093
\(95\) 7.38707i 0.757898i
\(96\) 0 0
\(97\) 10.4496i 1.06100i −0.847686 0.530499i \(-0.822005\pi\)
0.847686 0.530499i \(-0.177995\pi\)
\(98\) 7.10982i 0.718200i
\(99\) 0 0
\(100\) 1.46390 0.146390
\(101\) 0.249057i 0.0247821i 0.999923 + 0.0123911i \(0.00394430\pi\)
−0.999923 + 0.0123911i \(0.996056\pi\)
\(102\) 0 0
\(103\) 7.40873 0.730004 0.365002 0.931007i \(-0.381068\pi\)
0.365002 + 0.931007i \(0.381068\pi\)
\(104\) 0.996977i 0.0977617i
\(105\) 0 0
\(106\) 2.21796i 0.215428i
\(107\) −7.05981 −0.682498 −0.341249 0.939973i \(-0.610850\pi\)
−0.341249 + 0.939973i \(0.610850\pi\)
\(108\) 0 0
\(109\) −10.8118 −1.03558 −0.517791 0.855507i \(-0.673246\pi\)
−0.517791 + 0.855507i \(0.673246\pi\)
\(110\) 1.79839 0.171470
\(111\) 0 0
\(112\) −4.37727 −0.413614
\(113\) 20.7872i 1.95549i −0.209788 0.977747i \(-0.567278\pi\)
0.209788 0.977747i \(-0.432722\pi\)
\(114\) 0 0
\(115\) 8.05499 0.751131
\(116\) 1.20851 + 7.79016i 0.112207 + 0.723298i
\(117\) 0 0
\(118\) 5.88244i 0.541522i
\(119\) 10.5874i 0.970543i
\(120\) 0 0
\(121\) 4.96715 0.451559
\(122\) 8.45889 0.765832
\(123\) 0 0
\(124\) 10.0483i 0.902360i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.27445i 0.734239i 0.930174 + 0.367119i \(0.119656\pi\)
−0.930174 + 0.367119i \(0.880344\pi\)
\(128\) 10.1414i 0.896379i
\(129\) 0 0
\(130\) 0.287819i 0.0252434i
\(131\) 6.75579i 0.590256i 0.955458 + 0.295128i \(0.0953623\pi\)
−0.955458 + 0.295128i \(0.904638\pi\)
\(132\) 0 0
\(133\) 30.1971i 2.61842i
\(134\) 9.37811i 0.810145i
\(135\) 0 0
\(136\) −6.56876 −0.563266
\(137\) 10.6430i 0.909295i 0.890672 + 0.454647i \(0.150235\pi\)
−0.890672 + 0.454647i \(0.849765\pi\)
\(138\) 0 0
\(139\) −13.8568 −1.17532 −0.587660 0.809108i \(-0.699951\pi\)
−0.587660 + 0.809108i \(0.699951\pi\)
\(140\) −5.98418 −0.505755
\(141\) 0 0
\(142\) 12.0759i 1.01339i
\(143\) 0.965514i 0.0807403i
\(144\) 0 0
\(145\) 0.825542 + 5.32151i 0.0685575 + 0.441927i
\(146\) −2.78340 −0.230356
\(147\) 0 0
\(148\) 12.7618i 1.04901i
\(149\) −14.7834 −1.21110 −0.605552 0.795806i \(-0.707048\pi\)
−0.605552 + 0.795806i \(0.707048\pi\)
\(150\) 0 0
\(151\) 7.00483 0.570045 0.285022 0.958521i \(-0.407999\pi\)
0.285022 + 0.958521i \(0.407999\pi\)
\(152\) −18.7353 −1.51963
\(153\) 0 0
\(154\) −7.35152 −0.592402
\(155\) 6.86403i 0.551332i
\(156\) 0 0
\(157\) 14.2511i 1.13736i −0.822558 0.568681i \(-0.807454\pi\)
0.822558 0.568681i \(-0.192546\pi\)
\(158\) 5.40873 0.430295
\(159\) 0 0
\(160\) 5.85649i 0.462996i
\(161\) −32.9274 −2.59504
\(162\) 0 0
\(163\) 9.68392i 0.758503i 0.925294 + 0.379252i \(0.123819\pi\)
−0.925294 + 0.379252i \(0.876181\pi\)
\(164\) 16.6291i 1.29852i
\(165\) 0 0
\(166\) 6.17817i 0.479519i
\(167\) −20.7693 −1.60718 −0.803590 0.595183i \(-0.797080\pi\)
−0.803590 + 0.595183i \(0.797080\pi\)
\(168\) 0 0
\(169\) −12.8455 −0.988114
\(170\) −1.89635 −0.145443
\(171\) 0 0
\(172\) 11.3473i 0.865222i
\(173\) 13.4637 1.02363 0.511814 0.859097i \(-0.328974\pi\)
0.511814 + 0.859097i \(0.328974\pi\)
\(174\) 0 0
\(175\) −4.08783 −0.309011
\(176\) 2.63010i 0.198251i
\(177\) 0 0
\(178\) 4.42371 0.331571
\(179\) 10.4345 0.779910 0.389955 0.920834i \(-0.372491\pi\)
0.389955 + 0.920834i \(0.372491\pi\)
\(180\) 0 0
\(181\) 5.61824 0.417600 0.208800 0.977958i \(-0.433044\pi\)
0.208800 + 0.977958i \(0.433044\pi\)
\(182\) 1.17656i 0.0872122i
\(183\) 0 0
\(184\) 20.4293i 1.50607i
\(185\) 8.71766i 0.640935i
\(186\) 0 0
\(187\) 6.36145 0.465196
\(188\) 3.02577i 0.220677i
\(189\) 0 0
\(190\) −5.40873 −0.392390
\(191\) 10.2787i 0.743740i 0.928285 + 0.371870i \(0.121283\pi\)
−0.928285 + 0.371870i \(0.878717\pi\)
\(192\) 0 0
\(193\) 3.87008i 0.278575i −0.990252 0.139287i \(-0.955519\pi\)
0.990252 0.139287i \(-0.0444811\pi\)
\(194\) 7.65108 0.549316
\(195\) 0 0
\(196\) 14.2150 1.01536
\(197\) 17.8126 1.26910 0.634549 0.772883i \(-0.281186\pi\)
0.634549 + 0.772883i \(0.281186\pi\)
\(198\) 0 0
\(199\) 19.3907 1.37457 0.687284 0.726388i \(-0.258803\pi\)
0.687284 + 0.726388i \(0.258803\pi\)
\(200\) 2.53623i 0.179338i
\(201\) 0 0
\(202\) −0.182357 −0.0128306
\(203\) −3.37468 21.7534i −0.236856 1.52679i
\(204\) 0 0
\(205\) 11.3595i 0.793380i
\(206\) 5.42458i 0.377949i
\(207\) 0 0
\(208\) −0.420928 −0.0291861
\(209\) 18.1440 1.25505
\(210\) 0 0
\(211\) 12.2234i 0.841495i 0.907178 + 0.420747i \(0.138232\pi\)
−0.907178 + 0.420747i \(0.861768\pi\)
\(212\) −4.43449 −0.304562
\(213\) 0 0
\(214\) 5.16911i 0.353353i
\(215\) 7.75140i 0.528641i
\(216\) 0 0
\(217\) 28.0590i 1.90477i
\(218\) 7.91627i 0.536157i
\(219\) 0 0
\(220\) 3.59561i 0.242416i
\(221\) 1.01810i 0.0684851i
\(222\) 0 0
\(223\) −15.8262 −1.05980 −0.529901 0.848059i \(-0.677771\pi\)
−0.529901 + 0.848059i \(0.677771\pi\)
\(224\) 23.9403i 1.59958i
\(225\) 0 0
\(226\) 15.2201 1.01243
\(227\) 15.1873 1.00802 0.504008 0.863699i \(-0.331858\pi\)
0.504008 + 0.863699i \(0.331858\pi\)
\(228\) 0 0
\(229\) 20.1335i 1.33046i −0.746638 0.665231i \(-0.768333\pi\)
0.746638 0.665231i \(-0.231667\pi\)
\(230\) 5.89776i 0.388887i
\(231\) 0 0
\(232\) −13.4966 + 2.09376i −0.886093 + 0.137462i
\(233\) 18.7144 1.22602 0.613009 0.790076i \(-0.289959\pi\)
0.613009 + 0.790076i \(0.289959\pi\)
\(234\) 0 0
\(235\) 2.06693i 0.134831i
\(236\) 11.7611 0.765579
\(237\) 0 0
\(238\) 7.75195 0.502484
\(239\) −20.4589 −1.32338 −0.661688 0.749780i \(-0.730160\pi\)
−0.661688 + 0.749780i \(0.730160\pi\)
\(240\) 0 0
\(241\) 16.7558 1.07933 0.539666 0.841879i \(-0.318550\pi\)
0.539666 + 0.841879i \(0.318550\pi\)
\(242\) 3.63689i 0.233788i
\(243\) 0 0
\(244\) 16.9123i 1.08270i
\(245\) 9.71037 0.620373
\(246\) 0 0
\(247\) 2.90382i 0.184766i
\(248\) −17.4087 −1.10546
\(249\) 0 0
\(250\) 0.732188i 0.0463076i
\(251\) 16.7970i 1.06022i 0.847930 + 0.530109i \(0.177849\pi\)
−0.847930 + 0.530109i \(0.822151\pi\)
\(252\) 0 0
\(253\) 19.7845i 1.24384i
\(254\) −6.05845 −0.380141
\(255\) 0 0
\(256\) −11.7183 −0.732392
\(257\) −9.49777 −0.592454 −0.296227 0.955118i \(-0.595729\pi\)
−0.296227 + 0.955118i \(0.595729\pi\)
\(258\) 0 0
\(259\) 35.6363i 2.21433i
\(260\) −0.575452 −0.0356880
\(261\) 0 0
\(262\) −4.94651 −0.305596
\(263\) 17.8221i 1.09896i −0.835507 0.549480i \(-0.814826\pi\)
0.835507 0.549480i \(-0.185174\pi\)
\(264\) 0 0
\(265\) −3.02923 −0.186084
\(266\) 22.1100 1.35565
\(267\) 0 0
\(268\) −18.7501 −1.14535
\(269\) 12.3387i 0.752303i −0.926558 0.376151i \(-0.877247\pi\)
0.926558 0.376151i \(-0.122753\pi\)
\(270\) 0 0
\(271\) 12.2234i 0.742520i −0.928529 0.371260i \(-0.878926\pi\)
0.928529 0.371260i \(-0.121074\pi\)
\(272\) 2.77336i 0.168160i
\(273\) 0 0
\(274\) −7.79269 −0.470774
\(275\) 2.45619i 0.148114i
\(276\) 0 0
\(277\) −5.81142 −0.349175 −0.174587 0.984642i \(-0.555859\pi\)
−0.174587 + 0.984642i \(0.555859\pi\)
\(278\) 10.1458i 0.608504i
\(279\) 0 0
\(280\) 10.3677i 0.619587i
\(281\) 16.4345 0.980399 0.490200 0.871610i \(-0.336924\pi\)
0.490200 + 0.871610i \(0.336924\pi\)
\(282\) 0 0
\(283\) 13.4672 0.800541 0.400270 0.916397i \(-0.368916\pi\)
0.400270 + 0.916397i \(0.368916\pi\)
\(284\) 24.1440 1.43268
\(285\) 0 0
\(286\) −0.706938 −0.0418021
\(287\) 46.4356i 2.74101i
\(288\) 0 0
\(289\) 10.2920 0.605414
\(290\) −3.89635 + 0.604452i −0.228801 + 0.0354946i
\(291\) 0 0
\(292\) 5.56500i 0.325667i
\(293\) 19.7986i 1.15664i −0.815808 0.578322i \(-0.803708\pi\)
0.815808 0.578322i \(-0.196292\pi\)
\(294\) 0 0
\(295\) 8.03405 0.467761
\(296\) −22.1100 −1.28512
\(297\) 0 0
\(298\) 10.8242i 0.627031i
\(299\) −3.16637 −0.183116
\(300\) 0 0
\(301\) 31.6864i 1.82638i
\(302\) 5.12885i 0.295132i
\(303\) 0 0
\(304\) 7.91012i 0.453677i
\(305\) 11.5529i 0.661516i
\(306\) 0 0
\(307\) 13.6338i 0.778124i −0.921212 0.389062i \(-0.872799\pi\)
0.921212 0.389062i \(-0.127201\pi\)
\(308\) 14.6983i 0.837511i
\(309\) 0 0
\(310\) −5.02576 −0.285444
\(311\) 12.3180i 0.698488i 0.937032 + 0.349244i \(0.113561\pi\)
−0.937032 + 0.349244i \(0.886439\pi\)
\(312\) 0 0
\(313\) 3.93662 0.222511 0.111255 0.993792i \(-0.464513\pi\)
0.111255 + 0.993792i \(0.464513\pi\)
\(314\) 10.4345 0.588852
\(315\) 0 0
\(316\) 10.8139i 0.608332i
\(317\) 10.9075i 0.612628i 0.951930 + 0.306314i \(0.0990958\pi\)
−0.951930 + 0.306314i \(0.900904\pi\)
\(318\) 0 0
\(319\) 13.0706 2.02768i 0.731814 0.113528i
\(320\) −2.14644 −0.119989
\(321\) 0 0
\(322\) 24.1091i 1.34355i
\(323\) −19.1323 −1.06455
\(324\) 0 0
\(325\) −0.393095 −0.0218050
\(326\) −7.09045 −0.392704
\(327\) 0 0
\(328\) 28.8102 1.59078
\(329\) 8.44924i 0.465822i
\(330\) 0 0
\(331\) 6.86403i 0.377281i −0.982046 0.188640i \(-0.939592\pi\)
0.982046 0.188640i \(-0.0604081\pi\)
\(332\) −12.3523 −0.677922
\(333\) 0 0
\(334\) 15.2071i 0.832094i
\(335\) −12.8083 −0.699794
\(336\) 0 0
\(337\) 5.35939i 0.291945i 0.989289 + 0.145972i \(0.0466310\pi\)
−0.989289 + 0.145972i \(0.953369\pi\)
\(338\) 9.40531i 0.511581i
\(339\) 0 0
\(340\) 3.79146i 0.205621i
\(341\) 16.8593 0.912983
\(342\) 0 0
\(343\) −11.0795 −0.598239
\(344\) −19.6593 −1.05996
\(345\) 0 0
\(346\) 9.85797i 0.529968i
\(347\) 20.8628 1.11997 0.559987 0.828502i \(-0.310806\pi\)
0.559987 + 0.828502i \(0.310806\pi\)
\(348\) 0 0
\(349\) 18.7659 1.00451 0.502257 0.864718i \(-0.332503\pi\)
0.502257 + 0.864718i \(0.332503\pi\)
\(350\) 2.99306i 0.159986i
\(351\) 0 0
\(352\) 14.3846 0.766702
\(353\) 16.8175 0.895103 0.447551 0.894258i \(-0.352296\pi\)
0.447551 + 0.894258i \(0.352296\pi\)
\(354\) 0 0
\(355\) 16.4929 0.875354
\(356\) 8.84455i 0.468760i
\(357\) 0 0
\(358\) 7.64001i 0.403787i
\(359\) 34.0437i 1.79676i −0.439219 0.898380i \(-0.644745\pi\)
0.439219 0.898380i \(-0.355255\pi\)
\(360\) 0 0
\(361\) −35.5689 −1.87205
\(362\) 4.11361i 0.216206i
\(363\) 0 0
\(364\) 2.35235 0.123297
\(365\) 3.80149i 0.198979i
\(366\) 0 0
\(367\) 16.3321i 0.852526i −0.904599 0.426263i \(-0.859830\pi\)
0.904599 0.426263i \(-0.140170\pi\)
\(368\) 8.62532 0.449626
\(369\) 0 0
\(370\) −6.38297 −0.331835
\(371\) 12.3830 0.642892
\(372\) 0 0
\(373\) −14.8759 −0.770245 −0.385123 0.922865i \(-0.625841\pi\)
−0.385123 + 0.922865i \(0.625841\pi\)
\(374\) 4.65778i 0.240848i
\(375\) 0 0
\(376\) −5.24219 −0.270345
\(377\) −0.324516 2.09186i −0.0167134 0.107736i
\(378\) 0 0
\(379\) 27.7633i 1.42610i 0.701112 + 0.713051i \(0.252687\pi\)
−0.701112 + 0.713051i \(0.747313\pi\)
\(380\) 10.8139i 0.554743i
\(381\) 0 0
\(382\) −7.52594 −0.385061
\(383\) 4.08904 0.208940 0.104470 0.994528i \(-0.466685\pi\)
0.104470 + 0.994528i \(0.466685\pi\)
\(384\) 0 0
\(385\) 10.0405i 0.511710i
\(386\) 2.83363 0.144228
\(387\) 0 0
\(388\) 15.2972i 0.776597i
\(389\) 9.61272i 0.487384i 0.969853 + 0.243692i \(0.0783586\pi\)
−0.969853 + 0.243692i \(0.921641\pi\)
\(390\) 0 0
\(391\) 20.8622i 1.05505i
\(392\) 24.6277i 1.24389i
\(393\) 0 0
\(394\) 13.0422i 0.657056i
\(395\) 7.38707i 0.371684i
\(396\) 0 0
\(397\) −4.74935 −0.238363 −0.119182 0.992872i \(-0.538027\pi\)
−0.119182 + 0.992872i \(0.538027\pi\)
\(398\) 14.1976i 0.711663i
\(399\) 0 0
\(400\) 1.07081 0.0535403
\(401\) −25.8536 −1.29107 −0.645533 0.763733i \(-0.723365\pi\)
−0.645533 + 0.763733i \(0.723365\pi\)
\(402\) 0 0
\(403\) 2.69821i 0.134408i
\(404\) 0.364595i 0.0181393i
\(405\) 0 0
\(406\) 15.9276 2.47090i 0.790474 0.122629i
\(407\) 21.4122 1.06136
\(408\) 0 0
\(409\) 24.0835i 1.19085i 0.803411 + 0.595425i \(0.203016\pi\)
−0.803411 + 0.595425i \(0.796984\pi\)
\(410\) 8.31728 0.410761
\(411\) 0 0
\(412\) 10.8456 0.534326
\(413\) −32.8419 −1.61604
\(414\) 0 0
\(415\) −8.43795 −0.414203
\(416\) 2.30215i 0.112872i
\(417\) 0 0
\(418\) 13.2848i 0.649783i
\(419\) 6.46854 0.316009 0.158004 0.987438i \(-0.449494\pi\)
0.158004 + 0.987438i \(0.449494\pi\)
\(420\) 0 0
\(421\) 8.26321i 0.402724i −0.979517 0.201362i \(-0.935463\pi\)
0.979517 0.201362i \(-0.0645368\pi\)
\(422\) −8.94984 −0.435671
\(423\) 0 0
\(424\) 7.68281i 0.373110i
\(425\) 2.58997i 0.125632i
\(426\) 0 0
\(427\) 47.2263i 2.28544i
\(428\) −10.3349 −0.499554
\(429\) 0 0
\(430\) −5.67548 −0.273696
\(431\) −4.10997 −0.197970 −0.0989852 0.995089i \(-0.531560\pi\)
−0.0989852 + 0.995089i \(0.531560\pi\)
\(432\) 0 0
\(433\) 14.3197i 0.688161i −0.938940 0.344080i \(-0.888191\pi\)
0.938940 0.344080i \(-0.111809\pi\)
\(434\) 20.5445 0.986165
\(435\) 0 0
\(436\) −15.8274 −0.757995
\(437\) 59.5028i 2.84640i
\(438\) 0 0
\(439\) −33.0589 −1.57782 −0.788908 0.614511i \(-0.789353\pi\)
−0.788908 + 0.614511i \(0.789353\pi\)
\(440\) 6.22944 0.296977
\(441\) 0 0
\(442\) 0.745444 0.0354572
\(443\) 21.8045i 1.03596i −0.855391 0.517982i \(-0.826683\pi\)
0.855391 0.517982i \(-0.173317\pi\)
\(444\) 0 0
\(445\) 6.04177i 0.286408i
\(446\) 11.5878i 0.548697i
\(447\) 0 0
\(448\) 8.77428 0.414546
\(449\) 16.0693i 0.758357i 0.925324 + 0.379179i \(0.123793\pi\)
−0.925324 + 0.379179i \(0.876207\pi\)
\(450\) 0 0
\(451\) −27.9010 −1.31381
\(452\) 30.4304i 1.43132i
\(453\) 0 0
\(454\) 11.1200i 0.521886i
\(455\) 1.60691 0.0753329
\(456\) 0 0
\(457\) −1.20090 −0.0561757 −0.0280878 0.999605i \(-0.508942\pi\)
−0.0280878 + 0.999605i \(0.508942\pi\)
\(458\) 14.7415 0.688827
\(459\) 0 0
\(460\) 11.7917 0.549791
\(461\) 27.0201i 1.25845i −0.777223 0.629225i \(-0.783373\pi\)
0.777223 0.629225i \(-0.216627\pi\)
\(462\) 0 0
\(463\) −0.766462 −0.0356205 −0.0178103 0.999841i \(-0.505669\pi\)
−0.0178103 + 0.999841i \(0.505669\pi\)
\(464\) 0.883995 + 5.69830i 0.0410384 + 0.264537i
\(465\) 0 0
\(466\) 13.7024i 0.634753i
\(467\) 17.0485i 0.788911i 0.918915 + 0.394455i \(0.129067\pi\)
−0.918915 + 0.394455i \(0.870933\pi\)
\(468\) 0 0
\(469\) 52.3583 2.41768
\(470\) −1.51338 −0.0698069
\(471\) 0 0
\(472\) 20.3762i 0.937890i
\(473\) 19.0389 0.875409
\(474\) 0 0
\(475\) 7.38707i 0.338942i
\(476\) 15.4989i 0.710389i
\(477\) 0 0
\(478\) 14.9798i 0.685158i
\(479\) 6.44017i 0.294259i 0.989117 + 0.147130i \(0.0470034\pi\)
−0.989117 + 0.147130i \(0.952997\pi\)
\(480\) 0 0
\(481\) 3.42687i 0.156252i
\(482\) 12.2684i 0.558809i
\(483\) 0 0
\(484\) 7.27142 0.330519
\(485\) 10.4496i 0.474493i
\(486\) 0 0
\(487\) 14.1581 0.641564 0.320782 0.947153i \(-0.396054\pi\)
0.320782 + 0.947153i \(0.396054\pi\)
\(488\) 29.3007 1.32638
\(489\) 0 0
\(490\) 7.10982i 0.321189i
\(491\) 7.48627i 0.337851i 0.985629 + 0.168925i \(0.0540297\pi\)
−0.985629 + 0.168925i \(0.945970\pi\)
\(492\) 0 0
\(493\) −13.7826 + 2.13813i −0.620736 + 0.0962965i
\(494\) 2.12614 0.0956597
\(495\) 0 0
\(496\) 7.35004i 0.330026i
\(497\) −67.4204 −3.02422
\(498\) 0 0
\(499\) −12.4742 −0.558422 −0.279211 0.960230i \(-0.590073\pi\)
−0.279211 + 0.960230i \(0.590073\pi\)
\(500\) 1.46390 0.0654676
\(501\) 0 0
\(502\) −12.2986 −0.548912
\(503\) 40.6320i 1.81169i −0.423607 0.905846i \(-0.639236\pi\)
0.423607 0.905846i \(-0.360764\pi\)
\(504\) 0 0
\(505\) 0.249057i 0.0110829i
\(506\) 14.4860 0.643981
\(507\) 0 0
\(508\) 12.1130i 0.537426i
\(509\) −12.3664 −0.548130 −0.274065 0.961711i \(-0.588368\pi\)
−0.274065 + 0.961711i \(0.588368\pi\)
\(510\) 0 0
\(511\) 15.5398i 0.687442i
\(512\) 11.7028i 0.517194i
\(513\) 0 0
\(514\) 6.95415i 0.306734i
\(515\) 7.40873 0.326468
\(516\) 0 0
\(517\) 5.07675 0.223275
\(518\) 26.0925 1.14644
\(519\) 0 0
\(520\) 0.996977i 0.0437204i
\(521\) 7.19077 0.315033 0.157517 0.987516i \(-0.449651\pi\)
0.157517 + 0.987516i \(0.449651\pi\)
\(522\) 0 0
\(523\) −30.2075 −1.32088 −0.660440 0.750879i \(-0.729630\pi\)
−0.660440 + 0.750879i \(0.729630\pi\)
\(524\) 9.88980i 0.432038i
\(525\) 0 0
\(526\) 13.0492 0.568970
\(527\) −17.7776 −0.774406
\(528\) 0 0
\(529\) 41.8828 1.82099
\(530\) 2.21796i 0.0963422i
\(531\) 0 0
\(532\) 44.2056i 1.91655i
\(533\) 4.46535i 0.193416i
\(534\) 0 0
\(535\) −7.05981 −0.305222
\(536\) 32.4848i 1.40313i
\(537\) 0 0
\(538\) 9.03424 0.389494
\(539\) 23.8505i 1.02731i
\(540\) 0 0
\(541\) 5.95085i 0.255847i 0.991784 + 0.127924i \(0.0408312\pi\)
−0.991784 + 0.127924i \(0.959169\pi\)
\(542\) 8.94984 0.384429
\(543\) 0 0
\(544\) −15.1681 −0.650329
\(545\) −10.8118 −0.463126
\(546\) 0 0
\(547\) 28.2579 1.20822 0.604111 0.796900i \(-0.293528\pi\)
0.604111 + 0.796900i \(0.293528\pi\)
\(548\) 15.5803i 0.665559i
\(549\) 0 0
\(550\) 1.79839 0.0766836
\(551\) −39.3104 + 6.09834i −1.67468 + 0.259798i
\(552\) 0 0
\(553\) 30.1971i 1.28411i
\(554\) 4.25506i 0.180780i
\(555\) 0 0
\(556\) −20.2850 −0.860275
\(557\) 5.38780 0.228288 0.114144 0.993464i \(-0.463587\pi\)
0.114144 + 0.993464i \(0.463587\pi\)
\(558\) 0 0
\(559\) 3.04703i 0.128876i
\(560\) −4.37727 −0.184974
\(561\) 0 0
\(562\) 12.0331i 0.507587i
\(563\) 13.1414i 0.553844i −0.960892 0.276922i \(-0.910686\pi\)
0.960892 0.276922i \(-0.0893144\pi\)
\(564\) 0 0
\(565\) 20.7872i 0.874523i
\(566\) 9.86051i 0.414468i
\(567\) 0 0
\(568\) 41.8298i 1.75514i
\(569\) 16.7529i 0.702320i 0.936315 + 0.351160i \(0.114213\pi\)
−0.936315 + 0.351160i \(0.885787\pi\)
\(570\) 0 0
\(571\) 3.74452 0.156703 0.0783517 0.996926i \(-0.475034\pi\)
0.0783517 + 0.996926i \(0.475034\pi\)
\(572\) 1.41342i 0.0590979i
\(573\) 0 0
\(574\) −33.9996 −1.41912
\(575\) 8.05499 0.335916
\(576\) 0 0
\(577\) 1.52634i 0.0635425i 0.999495 + 0.0317713i \(0.0101148\pi\)
−0.999495 + 0.0317713i \(0.989885\pi\)
\(578\) 7.53571i 0.313444i
\(579\) 0 0
\(580\) 1.20851 + 7.79016i 0.0501807 + 0.323469i
\(581\) 34.4929 1.43101
\(582\) 0 0
\(583\) 7.44034i 0.308147i
\(584\) −9.64143 −0.398965
\(585\) 0 0
\(586\) 14.4963 0.598836
\(587\) −25.4262 −1.04945 −0.524726 0.851271i \(-0.675832\pi\)
−0.524726 + 0.851271i \(0.675832\pi\)
\(588\) 0 0
\(589\) −50.7051 −2.08927
\(590\) 5.88244i 0.242176i
\(591\) 0 0
\(592\) 9.33492i 0.383663i
\(593\) −4.67343 −0.191915 −0.0959574 0.995385i \(-0.530591\pi\)
−0.0959574 + 0.995385i \(0.530591\pi\)
\(594\) 0 0
\(595\) 10.5874i 0.434040i
\(596\) −21.6414 −0.886468
\(597\) 0 0
\(598\) 2.31838i 0.0948056i
\(599\) 27.8345i 1.13729i −0.822585 0.568643i \(-0.807469\pi\)
0.822585 0.568643i \(-0.192531\pi\)
\(600\) 0 0
\(601\) 46.9466i 1.91499i 0.288448 + 0.957496i \(0.406861\pi\)
−0.288448 + 0.957496i \(0.593139\pi\)
\(602\) 23.2004 0.945579
\(603\) 0 0
\(604\) 10.2544 0.417244
\(605\) 4.96715 0.201943
\(606\) 0 0
\(607\) 9.65740i 0.391982i 0.980606 + 0.195991i \(0.0627923\pi\)
−0.980606 + 0.195991i \(0.937208\pi\)
\(608\) −43.2623 −1.75452
\(609\) 0 0
\(610\) 8.45889 0.342490
\(611\) 0.812497i 0.0328701i
\(612\) 0 0
\(613\) 25.1614 1.01626 0.508131 0.861280i \(-0.330337\pi\)
0.508131 + 0.861280i \(0.330337\pi\)
\(614\) 9.98254 0.402862
\(615\) 0 0
\(616\) −25.4649 −1.02601
\(617\) 10.1628i 0.409138i 0.978852 + 0.204569i \(0.0655793\pi\)
−0.978852 + 0.204569i \(0.934421\pi\)
\(618\) 0 0
\(619\) 12.1864i 0.489812i −0.969547 0.244906i \(-0.921243\pi\)
0.969547 0.244906i \(-0.0787571\pi\)
\(620\) 10.0483i 0.403547i
\(621\) 0 0
\(622\) −9.01907 −0.361632
\(623\) 24.6978i 0.989495i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 2.88235i 0.115202i
\(627\) 0 0
\(628\) 20.8622i 0.832492i
\(629\) −22.5785 −0.900264
\(630\) 0 0
\(631\) 26.8317 1.06815 0.534077 0.845436i \(-0.320659\pi\)
0.534077 + 0.845436i \(0.320659\pi\)
\(632\) 18.7353 0.745250
\(633\) 0 0
\(634\) −7.98637 −0.317179
\(635\) 8.27445i 0.328361i
\(636\) 0 0
\(637\) −3.81710 −0.151239
\(638\) 1.48465 + 9.57015i 0.0587777 + 0.378886i
\(639\) 0 0
\(640\) 10.1414i 0.400873i
\(641\) 14.3162i 0.565457i −0.959200 0.282728i \(-0.908760\pi\)
0.959200 0.282728i \(-0.0912395\pi\)
\(642\) 0 0
\(643\) −17.5584 −0.692437 −0.346218 0.938154i \(-0.612534\pi\)
−0.346218 + 0.938154i \(0.612534\pi\)
\(644\) −48.2025 −1.89944
\(645\) 0 0
\(646\) 14.0085i 0.551155i
\(647\) 18.7284 0.736290 0.368145 0.929768i \(-0.379993\pi\)
0.368145 + 0.929768i \(0.379993\pi\)
\(648\) 0 0
\(649\) 19.7331i 0.774593i
\(650\) 0.287819i 0.0112892i
\(651\) 0 0
\(652\) 14.1763i 0.555187i
\(653\) 20.4186i 0.799043i −0.916724 0.399522i \(-0.869176\pi\)
0.916724 0.399522i \(-0.130824\pi\)
\(654\) 0 0
\(655\) 6.75579i 0.263970i
\(656\) 12.1638i 0.474916i
\(657\) 0 0
\(658\) 6.18644 0.241172
\(659\) 19.3511i 0.753813i −0.926251 0.376907i \(-0.876988\pi\)
0.926251 0.376907i \(-0.123012\pi\)
\(660\) 0 0
\(661\) 8.37452 0.325731 0.162866 0.986648i \(-0.447926\pi\)
0.162866 + 0.986648i \(0.447926\pi\)
\(662\) 5.02576 0.195332
\(663\) 0 0
\(664\) 21.4006i 0.830503i
\(665\) 30.1971i 1.17099i
\(666\) 0 0
\(667\) 6.64973 + 42.8647i 0.257478 + 1.65973i
\(668\) −30.4043 −1.17638
\(669\) 0 0
\(670\) 9.37811i 0.362308i
\(671\) −28.3760 −1.09544
\(672\) 0 0
\(673\) 18.4958 0.712962 0.356481 0.934303i \(-0.383977\pi\)
0.356481 + 0.934303i \(0.383977\pi\)
\(674\) −3.92408 −0.151150
\(675\) 0 0
\(676\) −18.8045 −0.723250
\(677\) 31.0373i 1.19286i −0.802665 0.596430i \(-0.796585\pi\)
0.802665 0.596430i \(-0.203415\pi\)
\(678\) 0 0
\(679\) 42.7163i 1.63930i
\(680\) −6.56876 −0.251900
\(681\) 0 0
\(682\) 12.3442i 0.472684i
\(683\) −19.9192 −0.762187 −0.381093 0.924537i \(-0.624452\pi\)
−0.381093 + 0.924537i \(0.624452\pi\)
\(684\) 0 0
\(685\) 10.6430i 0.406649i
\(686\) 8.11231i 0.309729i
\(687\) 0 0
\(688\) 8.30025i 0.316444i
\(689\) 1.19077 0.0453648
\(690\) 0 0
\(691\) 6.37284 0.242434 0.121217 0.992626i \(-0.461320\pi\)
0.121217 + 0.992626i \(0.461320\pi\)
\(692\) 19.7095 0.749244
\(693\) 0 0
\(694\) 15.2755i 0.579850i
\(695\) −13.8568 −0.525619
\(696\) 0 0
\(697\) 29.4207 1.11439
\(698\) 13.7402i 0.520073i
\(699\) 0 0
\(700\) −5.98418 −0.226181
\(701\) 7.13232 0.269384 0.134692 0.990888i \(-0.456995\pi\)
0.134692 + 0.990888i \(0.456995\pi\)
\(702\) 0 0
\(703\) −64.3980 −2.42882
\(704\) 5.27205i 0.198698i
\(705\) 0 0
\(706\) 12.3135i 0.463426i
\(707\) 1.01810i 0.0382898i
\(708\) 0 0
\(709\) 8.75623 0.328847 0.164424 0.986390i \(-0.447424\pi\)
0.164424 + 0.986390i \(0.447424\pi\)
\(710\) 12.0759i 0.453202i
\(711\) 0 0
\(712\) 15.3233 0.574265
\(713\) 55.2896i 2.07061i
\(714\) 0 0
\(715\) 0.965514i 0.0361082i
\(716\) 15.2750 0.570855
\(717\) 0 0
\(718\) 24.9264 0.930246
\(719\) 4.61498 0.172110 0.0860549 0.996290i \(-0.472574\pi\)
0.0860549 + 0.996290i \(0.472574\pi\)
\(720\) 0 0
\(721\) −30.2856 −1.12790
\(722\) 26.0431i 0.969224i
\(723\) 0 0
\(724\) 8.22454 0.305663
\(725\) 0.825542 + 5.32151i 0.0306598 + 0.197636i
\(726\) 0 0
\(727\) 49.9559i 1.85276i −0.376590 0.926380i \(-0.622903\pi\)
0.376590 0.926380i \(-0.377097\pi\)
\(728\) 4.07548i 0.151047i
\(729\) 0 0
\(730\) −2.78340 −0.103018
\(731\) −20.0759 −0.742535
\(732\) 0 0
\(733\) 12.4507i 0.459878i 0.973205 + 0.229939i \(0.0738527\pi\)
−0.973205 + 0.229939i \(0.926147\pi\)
\(734\) 11.9581 0.441383
\(735\) 0 0
\(736\) 47.1739i 1.73885i
\(737\) 31.4596i 1.15883i
\(738\) 0 0
\(739\) 40.9683i 1.50704i 0.657424 + 0.753521i \(0.271646\pi\)
−0.657424 + 0.753521i \(0.728354\pi\)
\(740\) 12.7618i 0.469133i
\(741\) 0 0
\(742\) 9.06666i 0.332848i
\(743\) 1.25137i 0.0459083i −0.999737 0.0229542i \(-0.992693\pi\)
0.999737 0.0229542i \(-0.00730718\pi\)
\(744\) 0 0
\(745\) −14.7834 −0.541622
\(746\) 10.8920i 0.398783i
\(747\) 0 0
\(748\) 9.31254 0.340500
\(749\) 28.8593 1.05450
\(750\) 0 0
\(751\) 2.55073i 0.0930775i 0.998916 + 0.0465387i \(0.0148191\pi\)
−0.998916 + 0.0465387i \(0.985181\pi\)
\(752\) 2.21328i 0.0807099i
\(753\) 0 0
\(754\) 1.53163 0.237607i 0.0557788 0.00865313i
\(755\) 7.00483 0.254932
\(756\) 0 0
\(757\) 43.4707i 1.57997i 0.613126 + 0.789985i \(0.289912\pi\)
−0.613126 + 0.789985i \(0.710088\pi\)
\(758\) −20.3279 −0.738343
\(759\) 0 0
\(760\) −18.7353 −0.679601
\(761\) 6.90996 0.250486 0.125243 0.992126i \(-0.460029\pi\)
0.125243 + 0.992126i \(0.460029\pi\)
\(762\) 0 0
\(763\) 44.1968 1.60003
\(764\) 15.0470i 0.544381i
\(765\) 0 0
\(766\) 2.99394i 0.108176i
\(767\) −3.15814 −0.114034
\(768\) 0 0
\(769\) 6.95919i 0.250955i 0.992096 + 0.125477i \(0.0400462\pi\)
−0.992096 + 0.125477i \(0.959954\pi\)
\(770\) −7.35152 −0.264930
\(771\) 0 0
\(772\) 5.66541i 0.203903i
\(773\) 12.4628i 0.448254i −0.974560 0.224127i \(-0.928047\pi\)
0.974560 0.224127i \(-0.0719531\pi\)
\(774\) 0 0
\(775\) 6.86403i 0.246563i
\(776\) 26.5026 0.951388
\(777\) 0 0
\(778\) −7.03832 −0.252336
\(779\) 83.9133 3.00651
\(780\) 0 0
\(781\) 40.5097i 1.44955i
\(782\) −15.2750 −0.546235
\(783\) 0 0
\(784\) 10.3979 0.371354
\(785\) 14.2511i 0.508644i
\(786\) 0 0
\(787\) 43.8418 1.56279 0.781396 0.624036i \(-0.214508\pi\)
0.781396 + 0.624036i \(0.214508\pi\)
\(788\) 26.0759 0.928916
\(789\) 0 0
\(790\) 5.40873 0.192434
\(791\) 84.9745i 3.02135i
\(792\) 0 0
\(793\) 4.54138i 0.161269i
\(794\) 3.47742i 0.123409i
\(795\) 0 0
\(796\) 28.3860 1.00612
\(797\) 36.3456i 1.28743i −0.765266 0.643714i \(-0.777393\pi\)
0.765266 0.643714i \(-0.222607\pi\)
\(798\) 0 0
\(799\) −5.35328 −0.189385
\(800\) 5.85649i 0.207058i
\(801\) 0 0
\(802\) 18.9297i 0.668430i
\(803\) 9.33715 0.329501
\(804\) 0 0
\(805\) −32.9274 −1.16054
\(806\) 1.97560 0.0695875
\(807\) 0 0
\(808\) −0.631666 −0.0222219
\(809\) 18.2835i 0.642812i −0.946941 0.321406i \(-0.895845\pi\)
0.946941 0.321406i \(-0.104155\pi\)
\(810\) 0 0
\(811\) −36.5484 −1.28339 −0.641695 0.766960i \(-0.721768\pi\)
−0.641695 + 0.766960i \(0.721768\pi\)
\(812\) −4.94019 31.8449i −0.173367 1.11754i
\(813\) 0 0
\(814\) 15.6778i 0.549505i
\(815\) 9.68392i 0.339213i
\(816\) 0 0
\(817\) −57.2602 −2.00328
\(818\) −17.6336 −0.616545
\(819\) 0 0
\(820\) 16.6291i 0.580715i
\(821\) 24.7659 0.864337 0.432169 0.901793i \(-0.357749\pi\)
0.432169 + 0.901793i \(0.357749\pi\)
\(822\) 0 0
\(823\) 26.3641i 0.918994i 0.888179 + 0.459497i \(0.151970\pi\)
−0.888179 + 0.459497i \(0.848030\pi\)
\(824\) 18.7902i 0.654588i
\(825\) 0 0
\(826\) 24.0464i 0.836682i
\(827\) 41.5422i 1.44456i −0.691598 0.722282i \(-0.743093\pi\)
0.691598 0.722282i \(-0.256907\pi\)
\(828\) 0 0
\(829\) 20.0965i 0.697980i −0.937126 0.348990i \(-0.886525\pi\)
0.937126 0.348990i \(-0.113475\pi\)
\(830\) 6.17817i 0.214447i
\(831\) 0 0
\(832\) 0.843753 0.0292519
\(833\) 25.1496i 0.871382i
\(834\) 0 0
\(835\) −20.7693 −0.718753
\(836\) 26.5610 0.918633
\(837\) 0 0
\(838\) 4.73619i 0.163609i
\(839\) 26.9404i 0.930087i 0.885288 + 0.465043i \(0.153961\pi\)
−0.885288 + 0.465043i \(0.846039\pi\)
\(840\) 0 0
\(841\) −27.6370 + 8.78626i −0.952999 + 0.302974i
\(842\) 6.05022 0.208505
\(843\) 0 0
\(844\) 17.8939i 0.615932i
\(845\) −12.8455 −0.441898
\(846\) 0 0
\(847\) −20.3049 −0.697684
\(848\) −3.24371 −0.111390
\(849\) 0 0
\(850\) −1.89635 −0.0650442
\(851\) 70.2206i 2.40713i
\(852\) 0 0
\(853\) 8.47502i 0.290179i 0.989419 + 0.145090i \(0.0463470\pi\)
−0.989419 + 0.145090i \(0.953653\pi\)
\(854\) −34.5785 −1.18325
\(855\) 0 0
\(856\) 17.9053i 0.611990i
\(857\) −13.7027 −0.468074 −0.234037 0.972228i \(-0.575194\pi\)
−0.234037 + 0.972228i \(0.575194\pi\)
\(858\) 0 0
\(859\) 28.9779i 0.988714i 0.869259 + 0.494357i \(0.164596\pi\)
−0.869259 + 0.494357i \(0.835404\pi\)
\(860\) 11.3473i 0.386939i
\(861\) 0 0
\(862\) 3.00927i 0.102496i
\(863\) 31.2038 1.06219 0.531095 0.847312i \(-0.321781\pi\)
0.531095 + 0.847312i \(0.321781\pi\)
\(864\) 0 0
\(865\) 13.4637 0.457780
\(866\) 10.4847 0.356285
\(867\) 0 0
\(868\) 41.0756i 1.39420i
\(869\) −18.1440 −0.615494
\(870\) 0 0
\(871\) 5.03489 0.170601
\(872\) 27.4212i 0.928598i
\(873\) 0 0
\(874\) −43.5672 −1.47368
\(875\) −4.08783 −0.138194
\(876\) 0 0
\(877\) 2.69090 0.0908652 0.0454326 0.998967i \(-0.485533\pi\)
0.0454326 + 0.998967i \(0.485533\pi\)
\(878\) 24.2053i 0.816891i
\(879\) 0 0
\(880\) 2.63010i 0.0886606i
\(881\) 32.4956i 1.09480i 0.836870 + 0.547402i \(0.184383\pi\)
−0.836870 + 0.547402i \(0.815617\pi\)
\(882\) 0 0
\(883\) 43.0340 1.44821 0.724104 0.689690i \(-0.242253\pi\)
0.724104 + 0.689690i \(0.242253\pi\)
\(884\) 1.49040i 0.0501277i
\(885\) 0 0
\(886\) 15.9650 0.536355
\(887\) 32.0176i 1.07505i −0.843249 0.537523i \(-0.819360\pi\)
0.843249 0.537523i \(-0.180640\pi\)
\(888\) 0 0
\(889\) 33.8246i 1.13444i
\(890\) 4.42371 0.148283
\(891\) 0 0
\(892\) −23.1680 −0.775723
\(893\) −15.2685 −0.510942
\(894\) 0 0
\(895\) 10.4345 0.348786
\(896\) 41.4562i 1.38496i
\(897\) 0 0
\(898\) −11.7658 −0.392628
\(899\) −36.5270 + 5.66654i −1.21824 + 0.188990i
\(900\) 0 0
\(901\) 7.84561i 0.261375i
\(902\) 20.4288i 0.680204i
\(903\) 0 0
\(904\) 52.7210 1.75347
\(905\) 5.61824 0.186756
\(906\) 0 0
\(907\) 7.61421i 0.252826i −0.991978 0.126413i \(-0.959654\pi\)
0.991978 0.126413i \(-0.0403464\pi\)
\(908\) 22.2327 0.737818
\(909\) 0 0
\(910\) 1.17656i 0.0390025i
\(911\) 44.9668i 1.48982i −0.667166 0.744909i \(-0.732493\pi\)
0.667166 0.744909i \(-0.267507\pi\)
\(912\) 0 0
\(913\) 20.7252i 0.685903i
\(914\) 0.879284i 0.0290841i
\(915\) 0 0
\(916\) 29.4735i 0.973832i
\(917\) 27.6165i 0.911978i
\(918\) 0 0
\(919\) 45.3421 1.49570 0.747850 0.663868i \(-0.231086\pi\)
0.747850 + 0.663868i \(0.231086\pi\)
\(920\) 20.4293i 0.673533i
\(921\) 0 0
\(922\) 19.7838 0.651544
\(923\) −6.48329 −0.213400
\(924\) 0 0
\(925\) 8.71766i 0.286635i
\(926\) 0.561195i 0.0184420i
\(927\) 0 0
\(928\) −31.1654 + 4.83477i −1.02305 + 0.158709i
\(929\) 9.34687 0.306661 0.153330 0.988175i \(-0.451000\pi\)
0.153330 + 0.988175i \(0.451000\pi\)
\(930\) 0 0
\(931\) 71.7312i 2.35090i
\(932\) 27.3960 0.897385
\(933\) 0 0
\(934\) −12.4827 −0.408447
\(935\) 6.36145 0.208042
\(936\) 0 0
\(937\) 24.7740 0.809332 0.404666 0.914465i \(-0.367388\pi\)
0.404666 + 0.914465i \(0.367388\pi\)
\(938\) 38.3361i 1.25172i
\(939\) 0 0
\(940\) 3.02577i 0.0986898i
\(941\) −57.0130 −1.85857 −0.929285 0.369363i \(-0.879576\pi\)
−0.929285 + 0.369363i \(0.879576\pi\)
\(942\) 0 0
\(943\) 91.5004i 2.97966i
\(944\) 8.60291 0.280001
\(945\) 0 0
\(946\) 13.9400i 0.453230i
\(947\) 5.48495i 0.178237i −0.996021 0.0891185i \(-0.971595\pi\)
0.996021 0.0891185i \(-0.0284050\pi\)
\(948\) 0 0
\(949\) 1.49434i 0.0485085i
\(950\) −5.40873 −0.175482
\(951\) 0 0
\(952\) 26.8520 0.870278
\(953\) 17.6170 0.570672 0.285336 0.958428i \(-0.407895\pi\)
0.285336 + 0.958428i \(0.407895\pi\)
\(954\) 0 0
\(955\) 10.2787i 0.332611i
\(956\) −29.9498 −0.968645
\(957\) 0 0
\(958\) −4.71542 −0.152348
\(959\) 43.5069i 1.40491i
\(960\) 0 0
\(961\) −16.1149 −0.519834
\(962\) 2.50911 0.0808970
\(963\) 0 0
\(964\) 24.5288 0.790018
\(965\) 3.87008i 0.124582i
\(966\) 0 0
\(967\) 25.6556i 0.825027i 0.910951 + 0.412514i \(0.135349\pi\)
−0.910951 + 0.412514i \(0.864651\pi\)
\(968\) 12.5978i 0.404910i
\(969\) 0 0
\(970\) 7.65108 0.245661
\(971\) 7.75471i 0.248860i 0.992228 + 0.124430i \(0.0397103\pi\)
−0.992228 + 0.124430i \(0.960290\pi\)
\(972\) 0 0
\(973\) 56.6443 1.81593
\(974\) 10.3664i 0.332160i
\(975\) 0 0
\(976\) 12.3709i 0.395983i
\(977\) 43.9323 1.40552 0.702759 0.711428i \(-0.251951\pi\)
0.702759 + 0.711428i \(0.251951\pi\)
\(978\) 0 0
\(979\) −14.8397 −0.474279
\(980\) 14.2150 0.454082
\(981\) 0 0
\(982\) −5.48136 −0.174917
\(983\) 44.7786i 1.42822i 0.700035 + 0.714108i \(0.253168\pi\)
−0.700035 + 0.714108i \(0.746832\pi\)
\(984\) 0 0
\(985\) 17.8126 0.567558
\(986\) −1.56551 10.0914i −0.0498561 0.321377i
\(987\) 0 0
\(988\) 4.25090i 0.135239i
\(989\) 62.4374i 1.98539i
\(990\) 0 0
\(991\) −27.4494 −0.871960 −0.435980 0.899956i \(-0.643598\pi\)
−0.435980 + 0.899956i \(0.643598\pi\)
\(992\) −40.1991 −1.27632
\(993\) 0 0
\(994\) 49.3644i 1.56574i
\(995\) 19.3907 0.614726
\(996\) 0 0
\(997\) 5.29583i 0.167721i −0.996478 0.0838603i \(-0.973275\pi\)
0.996478 0.0838603i \(-0.0267250\pi\)
\(998\) 9.13347i 0.289115i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.d.f.811.7 yes 10
3.2 odd 2 1305.2.d.e.811.4 10
29.28 even 2 inner 1305.2.d.f.811.4 yes 10
87.86 odd 2 1305.2.d.e.811.7 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.d.e.811.4 10 3.2 odd 2
1305.2.d.e.811.7 yes 10 87.86 odd 2
1305.2.d.f.811.4 yes 10 29.28 even 2 inner
1305.2.d.f.811.7 yes 10 1.1 even 1 trivial