Properties

Label 1305.2.d.a.811.1
Level $1305$
Weight $2$
Character 1305.811
Analytic conductor $10.420$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(811,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.811");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 811.1
Root \(-1.93185i\) of defining polynomial
Character \(\chi\) \(=\) 1305.811
Dual form 1305.2.d.a.811.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.93185i q^{2} -1.73205 q^{4} +1.00000 q^{5} -2.73205 q^{7} -0.517638i q^{8} -1.93185i q^{10} -0.378937i q^{11} +5.46410 q^{13} +5.27792i q^{14} -4.46410 q^{16} -3.48477i q^{17} -4.24264i q^{19} -1.73205 q^{20} -0.732051 q^{22} -2.19615 q^{23} +1.00000 q^{25} -10.5558i q^{26} +4.73205 q^{28} +(-5.19615 - 1.41421i) q^{29} -4.24264i q^{31} +7.58871i q^{32} -6.73205 q^{34} -2.73205 q^{35} +4.24264i q^{37} -8.19615 q^{38} -0.517638i q^{40} -5.93426i q^{41} -4.24264i q^{43} +0.656339i q^{44} +4.24264i q^{46} +11.2122i q^{47} +0.464102 q^{49} -1.93185i q^{50} -9.46410 q^{52} -0.378937i q^{55} +1.41421i q^{56} +(-2.73205 + 10.0382i) q^{58} -6.00000 q^{59} -11.5911i q^{61} -8.19615 q^{62} +5.73205 q^{64} +5.46410 q^{65} -13.1244 q^{67} +6.03579i q^{68} +5.27792i q^{70} -6.00000 q^{71} -15.8338i q^{73} +8.19615 q^{74} +7.34847i q^{76} +1.03528i q^{77} +1.13681i q^{79} -4.46410 q^{80} -11.4641 q^{82} +8.19615 q^{83} -3.48477i q^{85} -8.19615 q^{86} -0.196152 q^{88} -7.72741i q^{89} -14.9282 q^{91} +3.80385 q^{92} +21.6603 q^{94} -4.24264i q^{95} +7.34847i q^{97} -0.896575i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 4 q^{7} + 8 q^{13} - 4 q^{16} + 4 q^{22} + 12 q^{23} + 4 q^{25} + 12 q^{28} - 20 q^{34} - 4 q^{35} - 12 q^{38} - 12 q^{49} - 24 q^{52} - 4 q^{58} - 24 q^{59} - 12 q^{62} + 16 q^{64} + 8 q^{65}+ \cdots + 52 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.93185i 1.36603i −0.730406 0.683013i \(-0.760669\pi\)
0.730406 0.683013i \(-0.239331\pi\)
\(3\) 0 0
\(4\) −1.73205 −0.866025
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) 0.517638i 0.183013i
\(9\) 0 0
\(10\) 1.93185i 0.610905i
\(11\) 0.378937i 0.114254i −0.998367 0.0571270i \(-0.981806\pi\)
0.998367 0.0571270i \(-0.0181940\pi\)
\(12\) 0 0
\(13\) 5.46410 1.51547 0.757735 0.652563i \(-0.226306\pi\)
0.757735 + 0.652563i \(0.226306\pi\)
\(14\) 5.27792i 1.41058i
\(15\) 0 0
\(16\) −4.46410 −1.11603
\(17\) 3.48477i 0.845180i −0.906321 0.422590i \(-0.861121\pi\)
0.906321 0.422590i \(-0.138879\pi\)
\(18\) 0 0
\(19\) 4.24264i 0.973329i −0.873589 0.486664i \(-0.838214\pi\)
0.873589 0.486664i \(-0.161786\pi\)
\(20\) −1.73205 −0.387298
\(21\) 0 0
\(22\) −0.732051 −0.156074
\(23\) −2.19615 −0.457929 −0.228965 0.973435i \(-0.573534\pi\)
−0.228965 + 0.973435i \(0.573534\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 10.5558i 2.07017i
\(27\) 0 0
\(28\) 4.73205 0.894274
\(29\) −5.19615 1.41421i −0.964901 0.262613i
\(30\) 0 0
\(31\) 4.24264i 0.762001i −0.924575 0.381000i \(-0.875580\pi\)
0.924575 0.381000i \(-0.124420\pi\)
\(32\) 7.58871i 1.34151i
\(33\) 0 0
\(34\) −6.73205 −1.15454
\(35\) −2.73205 −0.461801
\(36\) 0 0
\(37\) 4.24264i 0.697486i 0.937218 + 0.348743i \(0.113391\pi\)
−0.937218 + 0.348743i \(0.886609\pi\)
\(38\) −8.19615 −1.32959
\(39\) 0 0
\(40\) 0.517638i 0.0818458i
\(41\) 5.93426i 0.926775i −0.886156 0.463388i \(-0.846634\pi\)
0.886156 0.463388i \(-0.153366\pi\)
\(42\) 0 0
\(43\) 4.24264i 0.646997i −0.946229 0.323498i \(-0.895141\pi\)
0.946229 0.323498i \(-0.104859\pi\)
\(44\) 0.656339i 0.0989468i
\(45\) 0 0
\(46\) 4.24264i 0.625543i
\(47\) 11.2122i 1.63546i 0.575600 + 0.817732i \(0.304769\pi\)
−0.575600 + 0.817732i \(0.695231\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 1.93185i 0.273205i
\(51\) 0 0
\(52\) −9.46410 −1.31243
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0.378937i 0.0510959i
\(56\) 1.41421i 0.188982i
\(57\) 0 0
\(58\) −2.73205 + 10.0382i −0.358736 + 1.31808i
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 11.5911i 1.48409i −0.670350 0.742045i \(-0.733856\pi\)
0.670350 0.742045i \(-0.266144\pi\)
\(62\) −8.19615 −1.04091
\(63\) 0 0
\(64\) 5.73205 0.716506
\(65\) 5.46410 0.677738
\(66\) 0 0
\(67\) −13.1244 −1.60340 −0.801698 0.597730i \(-0.796070\pi\)
−0.801698 + 0.597730i \(0.796070\pi\)
\(68\) 6.03579i 0.731947i
\(69\) 0 0
\(70\) 5.27792i 0.630832i
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 15.8338i 1.85320i −0.376048 0.926600i \(-0.622717\pi\)
0.376048 0.926600i \(-0.377283\pi\)
\(74\) 8.19615 0.952783
\(75\) 0 0
\(76\) 7.34847i 0.842927i
\(77\) 1.03528i 0.117981i
\(78\) 0 0
\(79\) 1.13681i 0.127901i 0.997953 + 0.0639507i \(0.0203700\pi\)
−0.997953 + 0.0639507i \(0.979630\pi\)
\(80\) −4.46410 −0.499102
\(81\) 0 0
\(82\) −11.4641 −1.26600
\(83\) 8.19615 0.899645 0.449822 0.893118i \(-0.351487\pi\)
0.449822 + 0.893118i \(0.351487\pi\)
\(84\) 0 0
\(85\) 3.48477i 0.377976i
\(86\) −8.19615 −0.883814
\(87\) 0 0
\(88\) −0.196152 −0.0209099
\(89\) 7.72741i 0.819103i −0.912287 0.409552i \(-0.865685\pi\)
0.912287 0.409552i \(-0.134315\pi\)
\(90\) 0 0
\(91\) −14.9282 −1.56490
\(92\) 3.80385 0.396579
\(93\) 0 0
\(94\) 21.6603 2.23408
\(95\) 4.24264i 0.435286i
\(96\) 0 0
\(97\) 7.34847i 0.746124i 0.927806 + 0.373062i \(0.121692\pi\)
−0.927806 + 0.373062i \(0.878308\pi\)
\(98\) 0.896575i 0.0905678i
\(99\) 0 0
\(100\) −1.73205 −0.173205
\(101\) 15.4548i 1.53781i 0.639362 + 0.768906i \(0.279198\pi\)
−0.639362 + 0.768906i \(0.720802\pi\)
\(102\) 0 0
\(103\) 10.1962 1.00466 0.502328 0.864677i \(-0.332477\pi\)
0.502328 + 0.864677i \(0.332477\pi\)
\(104\) 2.82843i 0.277350i
\(105\) 0 0
\(106\) 0 0
\(107\) 8.19615 0.792352 0.396176 0.918175i \(-0.370337\pi\)
0.396176 + 0.918175i \(0.370337\pi\)
\(108\) 0 0
\(109\) 5.46410 0.523366 0.261683 0.965154i \(-0.415723\pi\)
0.261683 + 0.965154i \(0.415723\pi\)
\(110\) −0.732051 −0.0697983
\(111\) 0 0
\(112\) 12.1962 1.15243
\(113\) 8.86422i 0.833876i −0.908935 0.416938i \(-0.863103\pi\)
0.908935 0.416938i \(-0.136897\pi\)
\(114\) 0 0
\(115\) −2.19615 −0.204792
\(116\) 9.00000 + 2.44949i 0.835629 + 0.227429i
\(117\) 0 0
\(118\) 11.5911i 1.06705i
\(119\) 9.52056i 0.872748i
\(120\) 0 0
\(121\) 10.8564 0.986946
\(122\) −22.3923 −2.02730
\(123\) 0 0
\(124\) 7.34847i 0.659912i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 12.7279i 1.12942i 0.825289 + 0.564710i \(0.191012\pi\)
−0.825289 + 0.564710i \(0.808988\pi\)
\(128\) 4.10394i 0.362740i
\(129\) 0 0
\(130\) 10.5558i 0.925808i
\(131\) 11.9700i 1.04583i −0.852385 0.522914i \(-0.824845\pi\)
0.852385 0.522914i \(-0.175155\pi\)
\(132\) 0 0
\(133\) 11.5911i 1.00508i
\(134\) 25.3543i 2.19028i
\(135\) 0 0
\(136\) −1.80385 −0.154679
\(137\) 9.89949i 0.845771i 0.906183 + 0.422885i \(0.138983\pi\)
−0.906183 + 0.422885i \(0.861017\pi\)
\(138\) 0 0
\(139\) −6.53590 −0.554368 −0.277184 0.960817i \(-0.589401\pi\)
−0.277184 + 0.960817i \(0.589401\pi\)
\(140\) 4.73205 0.399931
\(141\) 0 0
\(142\) 11.5911i 0.972704i
\(143\) 2.07055i 0.173148i
\(144\) 0 0
\(145\) −5.19615 1.41421i −0.431517 0.117444i
\(146\) −30.5885 −2.53152
\(147\) 0 0
\(148\) 7.34847i 0.604040i
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −2.39230 −0.194683 −0.0973415 0.995251i \(-0.531034\pi\)
−0.0973415 + 0.995251i \(0.531034\pi\)
\(152\) −2.19615 −0.178131
\(153\) 0 0
\(154\) 2.00000 0.161165
\(155\) 4.24264i 0.340777i
\(156\) 0 0
\(157\) 7.34847i 0.586472i −0.956040 0.293236i \(-0.905268\pi\)
0.956040 0.293236i \(-0.0947321\pi\)
\(158\) 2.19615 0.174717
\(159\) 0 0
\(160\) 7.58871i 0.599940i
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 4.24264i 0.332309i 0.986100 + 0.166155i \(0.0531351\pi\)
−0.986100 + 0.166155i \(0.946865\pi\)
\(164\) 10.2784i 0.802611i
\(165\) 0 0
\(166\) 15.8338i 1.22894i
\(167\) −14.1962 −1.09853 −0.549266 0.835648i \(-0.685092\pi\)
−0.549266 + 0.835648i \(0.685092\pi\)
\(168\) 0 0
\(169\) 16.8564 1.29665
\(170\) −6.73205 −0.516325
\(171\) 0 0
\(172\) 7.34847i 0.560316i
\(173\) 20.7846 1.58022 0.790112 0.612962i \(-0.210022\pi\)
0.790112 + 0.612962i \(0.210022\pi\)
\(174\) 0 0
\(175\) −2.73205 −0.206524
\(176\) 1.69161i 0.127510i
\(177\) 0 0
\(178\) −14.9282 −1.11892
\(179\) 4.39230 0.328296 0.164148 0.986436i \(-0.447512\pi\)
0.164148 + 0.986436i \(0.447512\pi\)
\(180\) 0 0
\(181\) 21.8564 1.62457 0.812287 0.583258i \(-0.198222\pi\)
0.812287 + 0.583258i \(0.198222\pi\)
\(182\) 28.8391i 2.13769i
\(183\) 0 0
\(184\) 1.13681i 0.0838069i
\(185\) 4.24264i 0.311925i
\(186\) 0 0
\(187\) −1.32051 −0.0965651
\(188\) 19.4201i 1.41635i
\(189\) 0 0
\(190\) −8.19615 −0.594611
\(191\) 24.8738i 1.79981i −0.436089 0.899904i \(-0.643637\pi\)
0.436089 0.899904i \(-0.356363\pi\)
\(192\) 0 0
\(193\) 12.7279i 0.916176i 0.888907 + 0.458088i \(0.151466\pi\)
−0.888907 + 0.458088i \(0.848534\pi\)
\(194\) 14.1962 1.01922
\(195\) 0 0
\(196\) −0.803848 −0.0574177
\(197\) 22.3923 1.59539 0.797693 0.603064i \(-0.206054\pi\)
0.797693 + 0.603064i \(0.206054\pi\)
\(198\) 0 0
\(199\) −12.5359 −0.888646 −0.444323 0.895867i \(-0.646556\pi\)
−0.444323 + 0.895867i \(0.646556\pi\)
\(200\) 0.517638i 0.0366025i
\(201\) 0 0
\(202\) 29.8564 2.10069
\(203\) 14.1962 + 3.86370i 0.996375 + 0.271179i
\(204\) 0 0
\(205\) 5.93426i 0.414466i
\(206\) 19.6975i 1.37239i
\(207\) 0 0
\(208\) −24.3923 −1.69130
\(209\) −1.60770 −0.111207
\(210\) 0 0
\(211\) 22.0454i 1.51767i 0.651284 + 0.758834i \(0.274231\pi\)
−0.651284 + 0.758834i \(0.725769\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 15.8338i 1.08237i
\(215\) 4.24264i 0.289346i
\(216\) 0 0
\(217\) 11.5911i 0.786856i
\(218\) 10.5558i 0.714931i
\(219\) 0 0
\(220\) 0.656339i 0.0442504i
\(221\) 19.0411i 1.28084i
\(222\) 0 0
\(223\) 7.66025 0.512969 0.256484 0.966548i \(-0.417436\pi\)
0.256484 + 0.966548i \(0.417436\pi\)
\(224\) 20.7327i 1.38526i
\(225\) 0 0
\(226\) −17.1244 −1.13910
\(227\) 26.1962 1.73870 0.869350 0.494197i \(-0.164538\pi\)
0.869350 + 0.494197i \(0.164538\pi\)
\(228\) 0 0
\(229\) 25.4558i 1.68217i −0.540903 0.841085i \(-0.681918\pi\)
0.540903 0.841085i \(-0.318082\pi\)
\(230\) 4.24264i 0.279751i
\(231\) 0 0
\(232\) −0.732051 + 2.68973i −0.0480615 + 0.176589i
\(233\) −1.60770 −0.105324 −0.0526618 0.998612i \(-0.516771\pi\)
−0.0526618 + 0.998612i \(0.516771\pi\)
\(234\) 0 0
\(235\) 11.2122i 0.731401i
\(236\) 10.3923 0.676481
\(237\) 0 0
\(238\) 18.3923 1.19220
\(239\) −6.00000 −0.388108 −0.194054 0.980991i \(-0.562164\pi\)
−0.194054 + 0.980991i \(0.562164\pi\)
\(240\) 0 0
\(241\) −4.92820 −0.317453 −0.158727 0.987323i \(-0.550739\pi\)
−0.158727 + 0.987323i \(0.550739\pi\)
\(242\) 20.9730i 1.34819i
\(243\) 0 0
\(244\) 20.0764i 1.28526i
\(245\) 0.464102 0.0296504
\(246\) 0 0
\(247\) 23.1822i 1.47505i
\(248\) −2.19615 −0.139456
\(249\) 0 0
\(250\) 1.93185i 0.122181i
\(251\) 8.86422i 0.559505i −0.960072 0.279752i \(-0.909748\pi\)
0.960072 0.279752i \(-0.0902523\pi\)
\(252\) 0 0
\(253\) 0.832204i 0.0523202i
\(254\) 24.5885 1.54282
\(255\) 0 0
\(256\) 19.3923 1.21202
\(257\) −12.0000 −0.748539 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(258\) 0 0
\(259\) 11.5911i 0.720237i
\(260\) −9.46410 −0.586939
\(261\) 0 0
\(262\) −23.1244 −1.42863
\(263\) 24.5964i 1.51668i 0.651859 + 0.758341i \(0.273990\pi\)
−0.651859 + 0.758341i \(0.726010\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 22.3923 1.37296
\(267\) 0 0
\(268\) 22.7321 1.38858
\(269\) 1.59008i 0.0969488i 0.998824 + 0.0484744i \(0.0154359\pi\)
−0.998824 + 0.0484744i \(0.984564\pi\)
\(270\) 0 0
\(271\) 24.3190i 1.47728i −0.674102 0.738638i \(-0.735469\pi\)
0.674102 0.738638i \(-0.264531\pi\)
\(272\) 15.5563i 0.943242i
\(273\) 0 0
\(274\) 19.1244 1.15534
\(275\) 0.378937i 0.0228508i
\(276\) 0 0
\(277\) −10.9282 −0.656612 −0.328306 0.944571i \(-0.606478\pi\)
−0.328306 + 0.944571i \(0.606478\pi\)
\(278\) 12.6264i 0.757280i
\(279\) 0 0
\(280\) 1.41421i 0.0845154i
\(281\) −16.3923 −0.977883 −0.488941 0.872317i \(-0.662617\pi\)
−0.488941 + 0.872317i \(0.662617\pi\)
\(282\) 0 0
\(283\) 30.9808 1.84162 0.920808 0.390017i \(-0.127531\pi\)
0.920808 + 0.390017i \(0.127531\pi\)
\(284\) 10.3923 0.616670
\(285\) 0 0
\(286\) −4.00000 −0.236525
\(287\) 16.2127i 0.957005i
\(288\) 0 0
\(289\) 4.85641 0.285671
\(290\) −2.73205 + 10.0382i −0.160432 + 0.589463i
\(291\) 0 0
\(292\) 27.4249i 1.60492i
\(293\) 16.5916i 0.969293i 0.874710 + 0.484647i \(0.161052\pi\)
−0.874710 + 0.484647i \(0.838948\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) 2.19615 0.127649
\(297\) 0 0
\(298\) 34.7733i 2.01436i
\(299\) −12.0000 −0.693978
\(300\) 0 0
\(301\) 11.5911i 0.668100i
\(302\) 4.62158i 0.265942i
\(303\) 0 0
\(304\) 18.9396i 1.08626i
\(305\) 11.5911i 0.663705i
\(306\) 0 0
\(307\) 33.6365i 1.91974i −0.280450 0.959869i \(-0.590484\pi\)
0.280450 0.959869i \(-0.409516\pi\)
\(308\) 1.79315i 0.102174i
\(309\) 0 0
\(310\) −8.19615 −0.465510
\(311\) 19.6975i 1.11694i 0.829525 + 0.558470i \(0.188611\pi\)
−0.829525 + 0.558470i \(0.811389\pi\)
\(312\) 0 0
\(313\) −18.5359 −1.04771 −0.523855 0.851807i \(-0.675507\pi\)
−0.523855 + 0.851807i \(0.675507\pi\)
\(314\) −14.1962 −0.801135
\(315\) 0 0
\(316\) 1.96902i 0.110766i
\(317\) 18.1817i 1.02119i −0.859822 0.510593i \(-0.829426\pi\)
0.859822 0.510593i \(-0.170574\pi\)
\(318\) 0 0
\(319\) −0.535898 + 1.96902i −0.0300045 + 0.110244i
\(320\) 5.73205 0.320431
\(321\) 0 0
\(322\) 11.5911i 0.645947i
\(323\) −14.7846 −0.822638
\(324\) 0 0
\(325\) 5.46410 0.303094
\(326\) 8.19615 0.453943
\(327\) 0 0
\(328\) −3.07180 −0.169612
\(329\) 30.6322i 1.68881i
\(330\) 0 0
\(331\) 10.4543i 0.574620i −0.957838 0.287310i \(-0.907239\pi\)
0.957838 0.287310i \(-0.0927610\pi\)
\(332\) −14.1962 −0.779115
\(333\) 0 0
\(334\) 27.4249i 1.50062i
\(335\) −13.1244 −0.717060
\(336\) 0 0
\(337\) 32.8043i 1.78696i −0.449098 0.893482i \(-0.648255\pi\)
0.449098 0.893482i \(-0.351745\pi\)
\(338\) 32.5641i 1.77125i
\(339\) 0 0
\(340\) 6.03579i 0.327337i
\(341\) −1.60770 −0.0870616
\(342\) 0 0
\(343\) 17.8564 0.964155
\(344\) −2.19615 −0.118409
\(345\) 0 0
\(346\) 40.1528i 2.15863i
\(347\) −15.8038 −0.848395 −0.424197 0.905570i \(-0.639444\pi\)
−0.424197 + 0.905570i \(0.639444\pi\)
\(348\) 0 0
\(349\) −2.39230 −0.128057 −0.0640286 0.997948i \(-0.520395\pi\)
−0.0640286 + 0.997948i \(0.520395\pi\)
\(350\) 5.27792i 0.282117i
\(351\) 0 0
\(352\) 2.87564 0.153272
\(353\) 8.78461 0.467558 0.233779 0.972290i \(-0.424891\pi\)
0.233779 + 0.972290i \(0.424891\pi\)
\(354\) 0 0
\(355\) −6.00000 −0.318447
\(356\) 13.3843i 0.709364i
\(357\) 0 0
\(358\) 8.48528i 0.448461i
\(359\) 7.07107i 0.373197i −0.982436 0.186598i \(-0.940254\pi\)
0.982436 0.186598i \(-0.0597463\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 42.2233i 2.21921i
\(363\) 0 0
\(364\) 25.8564 1.35524
\(365\) 15.8338i 0.828776i
\(366\) 0 0
\(367\) 27.4249i 1.43157i 0.698323 + 0.715783i \(0.253930\pi\)
−0.698323 + 0.715783i \(0.746070\pi\)
\(368\) 9.80385 0.511061
\(369\) 0 0
\(370\) 8.19615 0.426098
\(371\) 0 0
\(372\) 0 0
\(373\) −22.0000 −1.13912 −0.569558 0.821951i \(-0.692886\pi\)
−0.569558 + 0.821951i \(0.692886\pi\)
\(374\) 2.55103i 0.131910i
\(375\) 0 0
\(376\) 5.80385 0.299311
\(377\) −28.3923 7.72741i −1.46228 0.397982i
\(378\) 0 0
\(379\) 1.13681i 0.0583941i 0.999574 + 0.0291971i \(0.00929503\pi\)
−0.999574 + 0.0291971i \(0.990705\pi\)
\(380\) 7.34847i 0.376969i
\(381\) 0 0
\(382\) −48.0526 −2.45858
\(383\) −8.19615 −0.418804 −0.209402 0.977830i \(-0.567152\pi\)
−0.209402 + 0.977830i \(0.567152\pi\)
\(384\) 0 0
\(385\) 1.03528i 0.0527626i
\(386\) 24.5885 1.25152
\(387\) 0 0
\(388\) 12.7279i 0.646162i
\(389\) 1.59008i 0.0806202i 0.999187 + 0.0403101i \(0.0128346\pi\)
−0.999187 + 0.0403101i \(0.987165\pi\)
\(390\) 0 0
\(391\) 7.65308i 0.387033i
\(392\) 0.240237i 0.0121338i
\(393\) 0 0
\(394\) 43.2586i 2.17934i
\(395\) 1.13681i 0.0571992i
\(396\) 0 0
\(397\) 9.60770 0.482196 0.241098 0.970501i \(-0.422492\pi\)
0.241098 + 0.970501i \(0.422492\pi\)
\(398\) 24.2175i 1.21391i
\(399\) 0 0
\(400\) −4.46410 −0.223205
\(401\) 32.7846 1.63719 0.818593 0.574375i \(-0.194755\pi\)
0.818593 + 0.574375i \(0.194755\pi\)
\(402\) 0 0
\(403\) 23.1822i 1.15479i
\(404\) 26.7685i 1.33178i
\(405\) 0 0
\(406\) 7.46410 27.4249i 0.370437 1.36107i
\(407\) 1.60770 0.0796905
\(408\) 0 0
\(409\) 26.2880i 1.29986i 0.759994 + 0.649930i \(0.225202\pi\)
−0.759994 + 0.649930i \(0.774798\pi\)
\(410\) −11.4641 −0.566172
\(411\) 0 0
\(412\) −17.6603 −0.870058
\(413\) 16.3923 0.806613
\(414\) 0 0
\(415\) 8.19615 0.402333
\(416\) 41.4655i 2.03301i
\(417\) 0 0
\(418\) 3.10583i 0.151911i
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) 26.2880i 1.28120i 0.767874 + 0.640601i \(0.221315\pi\)
−0.767874 + 0.640601i \(0.778685\pi\)
\(422\) 42.5885 2.07317
\(423\) 0 0
\(424\) 0 0
\(425\) 3.48477i 0.169036i
\(426\) 0 0
\(427\) 31.6675i 1.53250i
\(428\) −14.1962 −0.686197
\(429\) 0 0
\(430\) −8.19615 −0.395254
\(431\) 16.3923 0.789590 0.394795 0.918769i \(-0.370816\pi\)
0.394795 + 0.918769i \(0.370816\pi\)
\(432\) 0 0
\(433\) 12.7279i 0.611665i 0.952085 + 0.305832i \(0.0989347\pi\)
−0.952085 + 0.305832i \(0.901065\pi\)
\(434\) 22.3923 1.07487
\(435\) 0 0
\(436\) −9.46410 −0.453248
\(437\) 9.31749i 0.445716i
\(438\) 0 0
\(439\) −4.92820 −0.235210 −0.117605 0.993060i \(-0.537522\pi\)
−0.117605 + 0.993060i \(0.537522\pi\)
\(440\) −0.196152 −0.00935120
\(441\) 0 0
\(442\) −36.7846 −1.74967
\(443\) 5.00052i 0.237582i 0.992919 + 0.118791i \(0.0379018\pi\)
−0.992919 + 0.118791i \(0.962098\pi\)
\(444\) 0 0
\(445\) 7.72741i 0.366314i
\(446\) 14.7985i 0.700728i
\(447\) 0 0
\(448\) −15.6603 −0.739877
\(449\) 6.13733i 0.289638i 0.989458 + 0.144819i \(0.0462601\pi\)
−0.989458 + 0.144819i \(0.953740\pi\)
\(450\) 0 0
\(451\) −2.24871 −0.105888
\(452\) 15.3533i 0.722157i
\(453\) 0 0
\(454\) 50.6071i 2.37511i
\(455\) −14.9282 −0.699845
\(456\) 0 0
\(457\) 13.0718 0.611473 0.305736 0.952116i \(-0.401097\pi\)
0.305736 + 0.952116i \(0.401097\pi\)
\(458\) −49.1769 −2.29789
\(459\) 0 0
\(460\) 3.80385 0.177355
\(461\) 22.6274i 1.05386i 0.849907 + 0.526932i \(0.176658\pi\)
−0.849907 + 0.526932i \(0.823342\pi\)
\(462\) 0 0
\(463\) −4.33975 −0.201685 −0.100843 0.994902i \(-0.532154\pi\)
−0.100843 + 0.994902i \(0.532154\pi\)
\(464\) 23.1962 + 6.31319i 1.07685 + 0.293083i
\(465\) 0 0
\(466\) 3.10583i 0.143875i
\(467\) 7.62587i 0.352883i 0.984311 + 0.176442i \(0.0564587\pi\)
−0.984311 + 0.176442i \(0.943541\pi\)
\(468\) 0 0
\(469\) 35.8564 1.65570
\(470\) 21.6603 0.999113
\(471\) 0 0
\(472\) 3.10583i 0.142957i
\(473\) −1.60770 −0.0739219
\(474\) 0 0
\(475\) 4.24264i 0.194666i
\(476\) 16.4901i 0.755822i
\(477\) 0 0
\(478\) 11.5911i 0.530165i
\(479\) 10.1769i 0.464994i −0.972597 0.232497i \(-0.925310\pi\)
0.972597 0.232497i \(-0.0746896\pi\)
\(480\) 0 0
\(481\) 23.1822i 1.05702i
\(482\) 9.52056i 0.433650i
\(483\) 0 0
\(484\) −18.8038 −0.854720
\(485\) 7.34847i 0.333677i
\(486\) 0 0
\(487\) 8.58846 0.389180 0.194590 0.980885i \(-0.437662\pi\)
0.194590 + 0.980885i \(0.437662\pi\)
\(488\) −6.00000 −0.271607
\(489\) 0 0
\(490\) 0.896575i 0.0405032i
\(491\) 1.41421i 0.0638226i 0.999491 + 0.0319113i \(0.0101594\pi\)
−0.999491 + 0.0319113i \(0.989841\pi\)
\(492\) 0 0
\(493\) −4.92820 + 18.1074i −0.221955 + 0.815515i
\(494\) −44.7846 −2.01495
\(495\) 0 0
\(496\) 18.9396i 0.850412i
\(497\) 16.3923 0.735295
\(498\) 0 0
\(499\) 21.8564 0.978427 0.489214 0.872164i \(-0.337284\pi\)
0.489214 + 0.872164i \(0.337284\pi\)
\(500\) −1.73205 −0.0774597
\(501\) 0 0
\(502\) −17.1244 −0.764297
\(503\) 5.00052i 0.222962i 0.993767 + 0.111481i \(0.0355594\pi\)
−0.993767 + 0.111481i \(0.964441\pi\)
\(504\) 0 0
\(505\) 15.4548i 0.687730i
\(506\) 1.60770 0.0714708
\(507\) 0 0
\(508\) 22.0454i 0.978107i
\(509\) 20.7846 0.921262 0.460631 0.887592i \(-0.347623\pi\)
0.460631 + 0.887592i \(0.347623\pi\)
\(510\) 0 0
\(511\) 43.2586i 1.91365i
\(512\) 29.2552i 1.29291i
\(513\) 0 0
\(514\) 23.1822i 1.02252i
\(515\) 10.1962 0.449296
\(516\) 0 0
\(517\) 4.24871 0.186858
\(518\) −22.3923 −0.983861
\(519\) 0 0
\(520\) 2.82843i 0.124035i
\(521\) −8.78461 −0.384861 −0.192430 0.981311i \(-0.561637\pi\)
−0.192430 + 0.981311i \(0.561637\pi\)
\(522\) 0 0
\(523\) −4.33975 −0.189764 −0.0948819 0.995489i \(-0.530247\pi\)
−0.0948819 + 0.995489i \(0.530247\pi\)
\(524\) 20.7327i 0.905714i
\(525\) 0 0
\(526\) 47.5167 2.07182
\(527\) −14.7846 −0.644028
\(528\) 0 0
\(529\) −18.1769 −0.790301
\(530\) 0 0
\(531\) 0 0
\(532\) 20.0764i 0.870422i
\(533\) 32.4254i 1.40450i
\(534\) 0 0
\(535\) 8.19615 0.354351
\(536\) 6.79367i 0.293442i
\(537\) 0 0
\(538\) 3.07180 0.132435
\(539\) 0.175865i 0.00757506i
\(540\) 0 0
\(541\) 25.4558i 1.09443i −0.836991 0.547216i \(-0.815688\pi\)
0.836991 0.547216i \(-0.184312\pi\)
\(542\) −46.9808 −2.01800
\(543\) 0 0
\(544\) 26.4449 1.13381
\(545\) 5.46410 0.234056
\(546\) 0 0
\(547\) −23.5167 −1.00550 −0.502750 0.864432i \(-0.667678\pi\)
−0.502750 + 0.864432i \(0.667678\pi\)
\(548\) 17.1464i 0.732459i
\(549\) 0 0
\(550\) −0.732051 −0.0312148
\(551\) −6.00000 + 22.0454i −0.255609 + 0.939166i
\(552\) 0 0
\(553\) 3.10583i 0.132073i
\(554\) 21.1117i 0.896949i
\(555\) 0 0
\(556\) 11.3205 0.480096
\(557\) 1.60770 0.0681202 0.0340601 0.999420i \(-0.489156\pi\)
0.0340601 + 0.999420i \(0.489156\pi\)
\(558\) 0 0
\(559\) 23.1822i 0.980503i
\(560\) 12.1962 0.515382
\(561\) 0 0
\(562\) 31.6675i 1.33581i
\(563\) 2.72689i 0.114925i 0.998348 + 0.0574624i \(0.0183009\pi\)
−0.998348 + 0.0574624i \(0.981699\pi\)
\(564\) 0 0
\(565\) 8.86422i 0.372920i
\(566\) 59.8502i 2.51569i
\(567\) 0 0
\(568\) 3.10583i 0.130318i
\(569\) 20.8343i 0.873418i 0.899603 + 0.436709i \(0.143856\pi\)
−0.899603 + 0.436709i \(0.856144\pi\)
\(570\) 0 0
\(571\) −32.3923 −1.35558 −0.677788 0.735257i \(-0.737061\pi\)
−0.677788 + 0.735257i \(0.737061\pi\)
\(572\) 3.58630i 0.149951i
\(573\) 0 0
\(574\) 31.3205 1.30729
\(575\) −2.19615 −0.0915859
\(576\) 0 0
\(577\) 15.0015i 0.624523i 0.949996 + 0.312261i \(0.101086\pi\)
−0.949996 + 0.312261i \(0.898914\pi\)
\(578\) 9.38186i 0.390234i
\(579\) 0 0
\(580\) 9.00000 + 2.44949i 0.373705 + 0.101710i
\(581\) −22.3923 −0.928989
\(582\) 0 0
\(583\) 0 0
\(584\) −8.19615 −0.339159
\(585\) 0 0
\(586\) 32.0526 1.32408
\(587\) 33.8038 1.39523 0.697617 0.716471i \(-0.254244\pi\)
0.697617 + 0.716471i \(0.254244\pi\)
\(588\) 0 0
\(589\) −18.0000 −0.741677
\(590\) 11.5911i 0.477198i
\(591\) 0 0
\(592\) 18.9396i 0.778412i
\(593\) 40.3923 1.65871 0.829357 0.558720i \(-0.188707\pi\)
0.829357 + 0.558720i \(0.188707\pi\)
\(594\) 0 0
\(595\) 9.52056i 0.390305i
\(596\) −31.1769 −1.27706
\(597\) 0 0
\(598\) 23.1822i 0.947991i
\(599\) 46.7434i 1.90988i −0.296795 0.954941i \(-0.595918\pi\)
0.296795 0.954941i \(-0.404082\pi\)
\(600\) 0 0
\(601\) 5.37945i 0.219432i 0.993963 + 0.109716i \(0.0349942\pi\)
−0.993963 + 0.109716i \(0.965006\pi\)
\(602\) 22.3923 0.912642
\(603\) 0 0
\(604\) 4.14359 0.168600
\(605\) 10.8564 0.441376
\(606\) 0 0
\(607\) 12.7279i 0.516610i −0.966063 0.258305i \(-0.916836\pi\)
0.966063 0.258305i \(-0.0831640\pi\)
\(608\) 32.1962 1.30573
\(609\) 0 0
\(610\) −22.3923 −0.906638
\(611\) 61.2645i 2.47849i
\(612\) 0 0
\(613\) 19.0718 0.770303 0.385151 0.922853i \(-0.374149\pi\)
0.385151 + 0.922853i \(0.374149\pi\)
\(614\) −64.9808 −2.62241
\(615\) 0 0
\(616\) 0.535898 0.0215920
\(617\) 21.4906i 0.865179i 0.901591 + 0.432590i \(0.142400\pi\)
−0.901591 + 0.432590i \(0.857600\pi\)
\(618\) 0 0
\(619\) 30.5307i 1.22713i 0.789643 + 0.613566i \(0.210266\pi\)
−0.789643 + 0.613566i \(0.789734\pi\)
\(620\) 7.34847i 0.295122i
\(621\) 0 0
\(622\) 38.0526 1.52577
\(623\) 21.1117i 0.845821i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 35.8086i 1.43120i
\(627\) 0 0
\(628\) 12.7279i 0.507899i
\(629\) 14.7846 0.589501
\(630\) 0 0
\(631\) 9.85641 0.392377 0.196189 0.980566i \(-0.437143\pi\)
0.196189 + 0.980566i \(0.437143\pi\)
\(632\) 0.588457 0.0234076
\(633\) 0 0
\(634\) −35.1244 −1.39497
\(635\) 12.7279i 0.505092i
\(636\) 0 0
\(637\) 2.53590 0.100476
\(638\) 3.80385 + 1.03528i 0.150596 + 0.0409870i
\(639\) 0 0
\(640\) 4.10394i 0.162222i
\(641\) 20.8343i 0.822904i 0.911431 + 0.411452i \(0.134978\pi\)
−0.911431 + 0.411452i \(0.865022\pi\)
\(642\) 0 0
\(643\) 48.0526 1.89501 0.947504 0.319744i \(-0.103597\pi\)
0.947504 + 0.319744i \(0.103597\pi\)
\(644\) −10.3923 −0.409514
\(645\) 0 0
\(646\) 28.5617i 1.12374i
\(647\) −45.3731 −1.78380 −0.891900 0.452233i \(-0.850627\pi\)
−0.891900 + 0.452233i \(0.850627\pi\)
\(648\) 0 0
\(649\) 2.27362i 0.0892476i
\(650\) 10.5558i 0.414034i
\(651\) 0 0
\(652\) 7.34847i 0.287788i
\(653\) 1.89469i 0.0741448i 0.999313 + 0.0370724i \(0.0118032\pi\)
−0.999313 + 0.0370724i \(0.988197\pi\)
\(654\) 0 0
\(655\) 11.9700i 0.467708i
\(656\) 26.4911i 1.03430i
\(657\) 0 0
\(658\) −59.1769 −2.30696
\(659\) 20.4553i 0.796826i −0.917206 0.398413i \(-0.869561\pi\)
0.917206 0.398413i \(-0.130439\pi\)
\(660\) 0 0
\(661\) 21.8564 0.850116 0.425058 0.905166i \(-0.360254\pi\)
0.425058 + 0.905166i \(0.360254\pi\)
\(662\) −20.1962 −0.784946
\(663\) 0 0
\(664\) 4.24264i 0.164646i
\(665\) 11.5911i 0.449484i
\(666\) 0 0
\(667\) 11.4115 + 3.10583i 0.441857 + 0.120258i
\(668\) 24.5885 0.951356
\(669\) 0 0
\(670\) 25.3543i 0.979522i
\(671\) −4.39230 −0.169563
\(672\) 0 0
\(673\) −9.32051 −0.359279 −0.179640 0.983732i \(-0.557493\pi\)
−0.179640 + 0.983732i \(0.557493\pi\)
\(674\) −63.3731 −2.44104
\(675\) 0 0
\(676\) −29.1962 −1.12293
\(677\) 44.4698i 1.70911i −0.519360 0.854556i \(-0.673830\pi\)
0.519360 0.854556i \(-0.326170\pi\)
\(678\) 0 0
\(679\) 20.0764i 0.770461i
\(680\) −1.80385 −0.0691744
\(681\) 0 0
\(682\) 3.10583i 0.118928i
\(683\) −21.8038 −0.834301 −0.417151 0.908837i \(-0.636971\pi\)
−0.417151 + 0.908837i \(0.636971\pi\)
\(684\) 0 0
\(685\) 9.89949i 0.378240i
\(686\) 34.4959i 1.31706i
\(687\) 0 0
\(688\) 18.9396i 0.722065i
\(689\) 0 0
\(690\) 0 0
\(691\) −16.9282 −0.643979 −0.321990 0.946743i \(-0.604352\pi\)
−0.321990 + 0.946743i \(0.604352\pi\)
\(692\) −36.0000 −1.36851
\(693\) 0 0
\(694\) 30.5307i 1.15893i
\(695\) −6.53590 −0.247921
\(696\) 0 0
\(697\) −20.6795 −0.783292
\(698\) 4.62158i 0.174929i
\(699\) 0 0
\(700\) 4.73205 0.178855
\(701\) 8.78461 0.331790 0.165895 0.986143i \(-0.446949\pi\)
0.165895 + 0.986143i \(0.446949\pi\)
\(702\) 0 0
\(703\) 18.0000 0.678883
\(704\) 2.17209i 0.0818637i
\(705\) 0 0
\(706\) 16.9706i 0.638696i
\(707\) 42.2233i 1.58797i
\(708\) 0 0
\(709\) −48.7846 −1.83214 −0.916072 0.401013i \(-0.868658\pi\)
−0.916072 + 0.401013i \(0.868658\pi\)
\(710\) 11.5911i 0.435007i
\(711\) 0 0
\(712\) −4.00000 −0.149906
\(713\) 9.31749i 0.348943i
\(714\) 0 0
\(715\) 2.07055i 0.0774343i
\(716\) −7.60770 −0.284313
\(717\) 0 0
\(718\) −13.6603 −0.509796
\(719\) −10.3923 −0.387568 −0.193784 0.981044i \(-0.562076\pi\)
−0.193784 + 0.981044i \(0.562076\pi\)
\(720\) 0 0
\(721\) −27.8564 −1.03743
\(722\) 1.93185i 0.0718961i
\(723\) 0 0
\(724\) −37.8564 −1.40692
\(725\) −5.19615 1.41421i −0.192980 0.0525226i
\(726\) 0 0
\(727\) 8.18067i 0.303404i 0.988426 + 0.151702i \(0.0484755\pi\)
−0.988426 + 0.151702i \(0.951525\pi\)
\(728\) 7.72741i 0.286397i
\(729\) 0 0
\(730\) −30.5885 −1.13213
\(731\) −14.7846 −0.546829
\(732\) 0 0
\(733\) 44.3954i 1.63978i 0.572519 + 0.819891i \(0.305966\pi\)
−0.572519 + 0.819891i \(0.694034\pi\)
\(734\) 52.9808 1.95556
\(735\) 0 0
\(736\) 16.6660i 0.614315i
\(737\) 4.97331i 0.183194i
\(738\) 0 0
\(739\) 42.1218i 1.54948i 0.632283 + 0.774738i \(0.282118\pi\)
−0.632283 + 0.774738i \(0.717882\pi\)
\(740\) 7.34847i 0.270135i
\(741\) 0 0
\(742\) 0 0
\(743\) 19.6975i 0.722629i 0.932444 + 0.361315i \(0.117672\pi\)
−0.932444 + 0.361315i \(0.882328\pi\)
\(744\) 0 0
\(745\) 18.0000 0.659469
\(746\) 42.5007i 1.55606i
\(747\) 0 0
\(748\) 2.28719 0.0836278
\(749\) −22.3923 −0.818197
\(750\) 0 0
\(751\) 10.4543i 0.381483i 0.981640 + 0.190741i \(0.0610892\pi\)
−0.981640 + 0.190741i \(0.938911\pi\)
\(752\) 50.0523i 1.82522i
\(753\) 0 0
\(754\) −14.9282 + 54.8497i −0.543653 + 1.99751i
\(755\) −2.39230 −0.0870649
\(756\) 0 0
\(757\) 13.5601i 0.492851i 0.969162 + 0.246426i \(0.0792561\pi\)
−0.969162 + 0.246426i \(0.920744\pi\)
\(758\) 2.19615 0.0797678
\(759\) 0 0
\(760\) −2.19615 −0.0796628
\(761\) −10.3923 −0.376721 −0.188360 0.982100i \(-0.560317\pi\)
−0.188360 + 0.982100i \(0.560317\pi\)
\(762\) 0 0
\(763\) −14.9282 −0.540437
\(764\) 43.0827i 1.55868i
\(765\) 0 0
\(766\) 15.8338i 0.572097i
\(767\) −32.7846 −1.18378
\(768\) 0 0
\(769\) 14.6969i 0.529985i −0.964250 0.264993i \(-0.914630\pi\)
0.964250 0.264993i \(-0.0853695\pi\)
\(770\) 2.00000 0.0720750
\(771\) 0 0
\(772\) 22.0454i 0.793432i
\(773\) 18.3848i 0.661254i 0.943761 + 0.330627i \(0.107260\pi\)
−0.943761 + 0.330627i \(0.892740\pi\)
\(774\) 0 0
\(775\) 4.24264i 0.152400i
\(776\) 3.80385 0.136550
\(777\) 0 0
\(778\) 3.07180 0.110129
\(779\) −25.1769 −0.902057
\(780\) 0 0
\(781\) 2.27362i 0.0813567i
\(782\) 14.7846 0.528697
\(783\) 0 0
\(784\) −2.07180 −0.0739927
\(785\) 7.34847i 0.262278i
\(786\) 0 0
\(787\) 7.41154 0.264193 0.132096 0.991237i \(-0.457829\pi\)
0.132096 + 0.991237i \(0.457829\pi\)
\(788\) −38.7846 −1.38164
\(789\) 0 0
\(790\) 2.19615 0.0781356
\(791\) 24.2175i 0.861075i
\(792\) 0 0
\(793\) 63.3350i 2.24909i
\(794\) 18.5606i 0.658693i
\(795\) 0 0
\(796\) 21.7128 0.769590
\(797\) 21.4906i 0.761236i 0.924732 + 0.380618i \(0.124289\pi\)
−0.924732 + 0.380618i \(0.875711\pi\)
\(798\) 0 0
\(799\) 39.0718 1.38226
\(800\) 7.58871i 0.268301i
\(801\) 0 0
\(802\) 63.3350i 2.23644i
\(803\) −6.00000 −0.211735
\(804\) 0 0
\(805\) 6.00000 0.211472
\(806\) −44.7846 −1.57747
\(807\) 0 0
\(808\) 8.00000 0.281439
\(809\) 41.6685i 1.46499i −0.680774 0.732494i \(-0.738356\pi\)
0.680774 0.732494i \(-0.261644\pi\)
\(810\) 0 0
\(811\) −39.3205 −1.38073 −0.690365 0.723461i \(-0.742550\pi\)
−0.690365 + 0.723461i \(0.742550\pi\)
\(812\) −24.5885 6.69213i −0.862886 0.234848i
\(813\) 0 0
\(814\) 3.10583i 0.108859i
\(815\) 4.24264i 0.148613i
\(816\) 0 0
\(817\) −18.0000 −0.629740
\(818\) 50.7846 1.77564
\(819\) 0 0
\(820\) 10.2784i 0.358938i
\(821\) −14.7846 −0.515986 −0.257993 0.966147i \(-0.583061\pi\)
−0.257993 + 0.966147i \(0.583061\pi\)
\(822\) 0 0
\(823\) 8.18067i 0.285160i 0.989783 + 0.142580i \(0.0455399\pi\)
−0.989783 + 0.142580i \(0.954460\pi\)
\(824\) 5.27792i 0.183865i
\(825\) 0 0
\(826\) 31.6675i 1.10185i
\(827\) 3.68784i 0.128239i 0.997942 + 0.0641193i \(0.0204238\pi\)
−0.997942 + 0.0641193i \(0.979576\pi\)
\(828\) 0 0
\(829\) 30.8353i 1.07095i 0.844550 + 0.535477i \(0.179868\pi\)
−0.844550 + 0.535477i \(0.820132\pi\)
\(830\) 15.8338i 0.549598i
\(831\) 0 0
\(832\) 31.3205 1.08584
\(833\) 1.61729i 0.0560356i
\(834\) 0 0
\(835\) −14.1962 −0.491278
\(836\) 2.78461 0.0963077
\(837\) 0 0
\(838\) 34.7733i 1.20122i
\(839\) 8.86422i 0.306027i −0.988224 0.153013i \(-0.951102\pi\)
0.988224 0.153013i \(-0.0488978\pi\)
\(840\) 0 0
\(841\) 25.0000 + 14.6969i 0.862069 + 0.506791i
\(842\) 50.7846 1.75015
\(843\) 0 0
\(844\) 38.1838i 1.31434i
\(845\) 16.8564 0.579878
\(846\) 0 0
\(847\) −29.6603 −1.01914
\(848\) 0 0
\(849\) 0 0
\(850\) −6.73205 −0.230907
\(851\) 9.31749i 0.319399i
\(852\) 0 0
\(853\) 6.51626i 0.223113i −0.993758 0.111556i \(-0.964416\pi\)
0.993758 0.111556i \(-0.0355836\pi\)
\(854\) 61.1769 2.09343
\(855\) 0 0
\(856\) 4.24264i 0.145010i
\(857\) 3.21539 0.109836 0.0549178 0.998491i \(-0.482510\pi\)
0.0549178 + 0.998491i \(0.482510\pi\)
\(858\) 0 0
\(859\) 39.0160i 1.33121i −0.746305 0.665604i \(-0.768174\pi\)
0.746305 0.665604i \(-0.231826\pi\)
\(860\) 7.34847i 0.250581i
\(861\) 0 0
\(862\) 31.6675i 1.07860i
\(863\) 27.8038 0.946454 0.473227 0.880941i \(-0.343089\pi\)
0.473227 + 0.880941i \(0.343089\pi\)
\(864\) 0 0
\(865\) 20.7846 0.706698
\(866\) 24.5885 0.835550
\(867\) 0 0
\(868\) 20.0764i 0.681437i
\(869\) 0.430781 0.0146132
\(870\) 0 0
\(871\) −71.7128 −2.42990
\(872\) 2.82843i 0.0957826i
\(873\) 0 0
\(874\) 18.0000 0.608859
\(875\) −2.73205 −0.0923602
\(876\) 0 0
\(877\) 16.7846 0.566776 0.283388 0.959005i \(-0.408542\pi\)
0.283388 + 0.959005i \(0.408542\pi\)
\(878\) 9.52056i 0.321303i
\(879\) 0 0
\(880\) 1.69161i 0.0570243i
\(881\) 6.13733i 0.206772i 0.994641 + 0.103386i \(0.0329677\pi\)
−0.994641 + 0.103386i \(0.967032\pi\)
\(882\) 0 0
\(883\) 8.58846 0.289025 0.144512 0.989503i \(-0.453839\pi\)
0.144512 + 0.989503i \(0.453839\pi\)
\(884\) 32.9802i 1.10924i
\(885\) 0 0
\(886\) 9.66025 0.324543
\(887\) 18.1817i 0.610482i −0.952275 0.305241i \(-0.901263\pi\)
0.952275 0.305241i \(-0.0987370\pi\)
\(888\) 0 0
\(889\) 34.7733i 1.16626i
\(890\) −14.9282 −0.500395
\(891\) 0 0
\(892\) −13.2679 −0.444244
\(893\) 47.5692 1.59184
\(894\) 0 0
\(895\) 4.39230 0.146819
\(896\) 11.2122i 0.374572i
\(897\) 0 0
\(898\) 11.8564 0.395653
\(899\) −6.00000 + 22.0454i −0.200111 + 0.735256i
\(900\) 0 0
\(901\) 0 0
\(902\) 4.34418i 0.144645i
\(903\) 0 0
\(904\) −4.58846 −0.152610
\(905\) 21.8564 0.726532
\(906\) 0 0
\(907\) 6.51626i 0.216369i 0.994131 + 0.108185i \(0.0345037\pi\)
−0.994131 + 0.108185i \(0.965496\pi\)
\(908\) −45.3731 −1.50576
\(909\) 0 0
\(910\) 28.8391i 0.956006i
\(911\) 18.1817i 0.602387i −0.953563 0.301193i \(-0.902615\pi\)
0.953563 0.301193i \(-0.0973850\pi\)
\(912\) 0 0
\(913\) 3.10583i 0.102788i
\(914\) 25.2528i 0.835287i
\(915\) 0 0
\(916\) 44.0908i 1.45680i
\(917\) 32.7028i 1.07994i
\(918\) 0 0
\(919\) 3.85641 0.127211 0.0636056 0.997975i \(-0.479740\pi\)
0.0636056 + 0.997975i \(0.479740\pi\)
\(920\) 1.13681i 0.0374796i
\(921\) 0 0
\(922\) 43.7128 1.43960
\(923\) −32.7846 −1.07912
\(924\) 0 0
\(925\) 4.24264i 0.139497i
\(926\) 8.38375i 0.275507i
\(927\) 0 0
\(928\) 10.7321 39.4321i 0.352297 1.29442i
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) 1.96902i 0.0645319i
\(932\) 2.78461 0.0912129
\(933\) 0 0
\(934\) 14.7321 0.482047
\(935\) −1.32051 −0.0431852
\(936\) 0 0
\(937\) 2.24871 0.0734622 0.0367311 0.999325i \(-0.488305\pi\)
0.0367311 + 0.999325i \(0.488305\pi\)
\(938\) 69.2693i 2.26172i
\(939\) 0 0
\(940\) 19.4201i 0.633412i
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 13.0325i 0.424398i
\(944\) 26.7846 0.871765
\(945\) 0 0
\(946\) 3.10583i 0.100979i
\(947\) 0.453267i 0.0147292i 0.999973 + 0.00736460i \(0.00234425\pi\)
−0.999973 + 0.00736460i \(0.997656\pi\)
\(948\) 0 0
\(949\) 86.5172i 2.80847i
\(950\) −8.19615 −0.265918
\(951\) 0 0
\(952\) 4.92820 0.159724
\(953\) −35.5692 −1.15220 −0.576100 0.817379i \(-0.695426\pi\)
−0.576100 + 0.817379i \(0.695426\pi\)
\(954\) 0 0
\(955\) 24.8738i 0.804898i
\(956\) 10.3923 0.336111
\(957\) 0 0
\(958\) −19.6603 −0.635194
\(959\) 27.0459i 0.873358i
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 44.7846 1.44391
\(963\) 0 0
\(964\) 8.53590 0.274923
\(965\) 12.7279i 0.409726i
\(966\) 0 0
\(967\) 0.304608i 0.00979553i 0.999988 + 0.00489776i \(0.00155901\pi\)
−0.999988 + 0.00489776i \(0.998441\pi\)
\(968\) 5.61969i 0.180624i
\(969\) 0 0
\(970\) 14.1962 0.455811
\(971\) 22.3228i 0.716373i 0.933650 + 0.358187i \(0.116605\pi\)
−0.933650 + 0.358187i \(0.883395\pi\)
\(972\) 0 0
\(973\) 17.8564 0.572450
\(974\) 16.5916i 0.531630i
\(975\) 0 0
\(976\) 51.7439i 1.65628i
\(977\) −48.0000 −1.53566 −0.767828 0.640656i \(-0.778662\pi\)
−0.767828 + 0.640656i \(0.778662\pi\)
\(978\) 0 0
\(979\) −2.92820 −0.0935858
\(980\) −0.803848 −0.0256780
\(981\) 0 0
\(982\) 2.73205 0.0871832
\(983\) 30.2533i 0.964930i −0.875915 0.482465i \(-0.839742\pi\)
0.875915 0.482465i \(-0.160258\pi\)
\(984\) 0 0
\(985\) 22.3923 0.713478
\(986\) 34.9808 + 9.52056i 1.11401 + 0.303196i
\(987\) 0 0
\(988\) 40.1528i 1.27743i
\(989\) 9.31749i 0.296279i
\(990\) 0 0
\(991\) 26.6795 0.847502 0.423751 0.905779i \(-0.360713\pi\)
0.423751 + 0.905779i \(0.360713\pi\)
\(992\) 32.1962 1.02223
\(993\) 0 0
\(994\) 31.6675i 1.00443i
\(995\) −12.5359 −0.397415
\(996\) 0 0
\(997\) 13.5601i 0.429454i −0.976674 0.214727i \(-0.931114\pi\)
0.976674 0.214727i \(-0.0688861\pi\)
\(998\) 42.2233i 1.33656i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.d.a.811.1 4
3.2 odd 2 145.2.c.a.86.4 yes 4
12.11 even 2 2320.2.g.e.1681.2 4
15.2 even 4 725.2.d.b.724.1 8
15.8 even 4 725.2.d.b.724.8 8
15.14 odd 2 725.2.c.d.376.1 4
29.28 even 2 inner 1305.2.d.a.811.4 4
87.17 even 4 4205.2.a.g.1.4 4
87.41 even 4 4205.2.a.g.1.1 4
87.86 odd 2 145.2.c.a.86.1 4
348.347 even 2 2320.2.g.e.1681.4 4
435.173 even 4 725.2.d.b.724.2 8
435.347 even 4 725.2.d.b.724.7 8
435.434 odd 2 725.2.c.d.376.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.c.a.86.1 4 87.86 odd 2
145.2.c.a.86.4 yes 4 3.2 odd 2
725.2.c.d.376.1 4 15.14 odd 2
725.2.c.d.376.4 4 435.434 odd 2
725.2.d.b.724.1 8 15.2 even 4
725.2.d.b.724.2 8 435.173 even 4
725.2.d.b.724.7 8 435.347 even 4
725.2.d.b.724.8 8 15.8 even 4
1305.2.d.a.811.1 4 1.1 even 1 trivial
1305.2.d.a.811.4 4 29.28 even 2 inner
2320.2.g.e.1681.2 4 12.11 even 2
2320.2.g.e.1681.4 4 348.347 even 2
4205.2.a.g.1.1 4 87.41 even 4
4205.2.a.g.1.4 4 87.17 even 4