Properties

Label 1305.2.cy
Level $1305$
Weight $2$
Character orbit 1305.cy
Rep. character $\chi_{1305}(11,\cdot)$
Character field $\Q(\zeta_{84})$
Dimension $2880$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.cy (of order \(84\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 261 \)
Character field: \(\Q(\zeta_{84})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 4416 2880 1536
Cusp forms 4224 2880 1344
Eisenstein series 192 0 192

Trace form

\( 2880 q + 12 q^{11} - 24 q^{12} - 12 q^{14} - 4 q^{15} - 240 q^{16} - 12 q^{18} + 44 q^{21} - 36 q^{24} + 240 q^{25} - 132 q^{27} - 36 q^{29} - 72 q^{32} + 84 q^{33} - 144 q^{36} - 4 q^{39} - 12 q^{41} + 24 q^{46}+ \cdots - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)