Properties

Label 1305.2.ch
Level $1305$
Weight $2$
Character orbit 1305.ch
Rep. character $\chi_{1305}(37,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $876$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.ch (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 145 \)
Character field: \(\Q(\zeta_{28})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 2256 924 1332
Cusp forms 2064 876 1188
Eisenstein series 192 48 144

Trace form

\( 876 q + 14 q^{2} + 142 q^{4} + 14 q^{5} - 10 q^{7} + 14 q^{8} - 18 q^{10} + 20 q^{11} + 12 q^{13} + 4 q^{14} - 154 q^{16} - 6 q^{20} - 22 q^{22} + 10 q^{23} + 60 q^{25} + 84 q^{26} - 8 q^{28} + 8 q^{31}+ \cdots - 68 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(145, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)