Properties

Label 1305.2.cb
Level $1305$
Weight $2$
Character orbit 1305.cb
Rep. character $\chi_{1305}(62,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $720$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.cb (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 435 \)
Character field: \(\Q(\zeta_{28})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 2256 720 1536
Cusp forms 2064 720 1344
Eisenstein series 192 0 192

Trace form

\( 720 q - 16 q^{7} - 32 q^{13} + 120 q^{16} - 16 q^{22} - 16 q^{28} - 84 q^{40} + 56 q^{43} + 88 q^{52} + 268 q^{58} + 32 q^{67} + 28 q^{73} + 8 q^{82} - 168 q^{85} + 144 q^{88} - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)