Properties

Label 1305.2.ca
Level $1305$
Weight $2$
Character orbit 1305.ca
Rep. character $\chi_{1305}(26,\cdot)$
Character field $\Q(\zeta_{28})$
Dimension $480$
Sturm bound $360$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.ca (of order \(28\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 87 \)
Character field: \(\Q(\zeta_{28})\)
Sturm bound: \(360\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1305, [\chi])\).

Total New Old
Modular forms 2256 480 1776
Cusp forms 2064 480 1584
Eisenstein series 192 0 192

Trace form

\( 480 q + 48 q^{16} - 80 q^{25} - 16 q^{37} - 48 q^{43} + 208 q^{46} + 80 q^{49} + 368 q^{52} + 16 q^{55} - 48 q^{58} + 176 q^{61} + 224 q^{67} - 48 q^{70} - 112 q^{73} + 64 q^{76} - 80 q^{79} - 96 q^{82}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1305, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1305, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1305, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(87, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(261, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(435, [\chi])\)\(^{\oplus 2}\)