Properties

Label 1305.2.c.l.784.10
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 148x^{8} + 502x^{6} + 792x^{4} + 496x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.10
Root \(1.78841i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.l.784.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.78841i q^{2} -1.19839 q^{4} +(0.766993 + 2.10041i) q^{5} -4.04635i q^{7} +1.43360i q^{8} +(-3.75638 + 1.37170i) q^{10} +4.80986 q^{11} -0.533576i q^{13} +7.23651 q^{14} -4.96064 q^{16} -0.299844i q^{17} +6.02908 q^{19} +(-0.919161 - 2.51712i) q^{20} +8.60198i q^{22} -0.379104i q^{23} +(-3.82344 + 3.22200i) q^{25} +0.954250 q^{26} +4.84912i q^{28} +1.00000 q^{29} +9.14506 q^{31} -6.00444i q^{32} +0.536243 q^{34} +(8.49899 - 3.10352i) q^{35} +8.51769i q^{37} +10.7824i q^{38} +(-3.01114 + 1.09956i) q^{40} -2.24106 q^{41} -6.01126i q^{43} -5.76411 q^{44} +0.677992 q^{46} -0.299844i q^{47} -9.37293 q^{49} +(-5.76224 - 6.83787i) q^{50} +0.639435i q^{52} +11.8608i q^{53} +(3.68913 + 10.1027i) q^{55} +5.80083 q^{56} +1.78841i q^{58} -6.53090 q^{59} -0.755856 q^{61} +16.3551i q^{62} +0.817104 q^{64} +(1.12073 - 0.409249i) q^{65} +3.95461i q^{67} +0.359332i q^{68} +(5.55036 + 15.1996i) q^{70} +10.6771 q^{71} -11.0455i q^{73} -15.2331 q^{74} -7.22522 q^{76} -19.4624i q^{77} -7.01095 q^{79} +(-3.80478 - 10.4194i) q^{80} -4.00793i q^{82} -6.15340i q^{83} +(0.629796 - 0.229979i) q^{85} +10.7506 q^{86} +6.89539i q^{88} -10.0521 q^{89} -2.15903 q^{91} +0.454316i q^{92} +0.536243 q^{94} +(4.62427 + 12.6635i) q^{95} +2.41013i q^{97} -16.7626i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 10 q^{10} + 12 q^{11} - 16 q^{14} + 16 q^{16} + 20 q^{19} - 14 q^{20} + 8 q^{25} + 56 q^{26} + 12 q^{29} - 16 q^{31} - 4 q^{34} + 16 q^{35} + 16 q^{40} + 32 q^{41} - 68 q^{44} + 20 q^{46}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78841i 1.26459i 0.774726 + 0.632297i \(0.217888\pi\)
−0.774726 + 0.632297i \(0.782112\pi\)
\(3\) 0 0
\(4\) −1.19839 −0.599197
\(5\) 0.766993 + 2.10041i 0.343010 + 0.939332i
\(6\) 0 0
\(7\) 4.04635i 1.52938i −0.644401 0.764688i \(-0.722893\pi\)
0.644401 0.764688i \(-0.277107\pi\)
\(8\) 1.43360i 0.506853i
\(9\) 0 0
\(10\) −3.75638 + 1.37170i −1.18787 + 0.433768i
\(11\) 4.80986 1.45023 0.725113 0.688630i \(-0.241787\pi\)
0.725113 + 0.688630i \(0.241787\pi\)
\(12\) 0 0
\(13\) 0.533576i 0.147987i −0.997259 0.0739937i \(-0.976426\pi\)
0.997259 0.0739937i \(-0.0235745\pi\)
\(14\) 7.23651 1.93404
\(15\) 0 0
\(16\) −4.96064 −1.24016
\(17\) 0.299844i 0.0727229i −0.999339 0.0363615i \(-0.988423\pi\)
0.999339 0.0363615i \(-0.0115768\pi\)
\(18\) 0 0
\(19\) 6.02908 1.38317 0.691583 0.722297i \(-0.256914\pi\)
0.691583 + 0.722297i \(0.256914\pi\)
\(20\) −0.919161 2.51712i −0.205531 0.562845i
\(21\) 0 0
\(22\) 8.60198i 1.83395i
\(23\) 0.379104i 0.0790487i −0.999219 0.0395243i \(-0.987416\pi\)
0.999219 0.0395243i \(-0.0125843\pi\)
\(24\) 0 0
\(25\) −3.82344 + 3.22200i −0.764688 + 0.644400i
\(26\) 0.954250 0.187144
\(27\) 0 0
\(28\) 4.84912i 0.916398i
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 9.14506 1.64250 0.821251 0.570567i \(-0.193277\pi\)
0.821251 + 0.570567i \(0.193277\pi\)
\(32\) 6.00444i 1.06145i
\(33\) 0 0
\(34\) 0.536243 0.0919650
\(35\) 8.49899 3.10352i 1.43659 0.524591i
\(36\) 0 0
\(37\) 8.51769i 1.40030i 0.713996 + 0.700150i \(0.246884\pi\)
−0.713996 + 0.700150i \(0.753116\pi\)
\(38\) 10.7824i 1.74914i
\(39\) 0 0
\(40\) −3.01114 + 1.09956i −0.476103 + 0.173855i
\(41\) −2.24106 −0.349995 −0.174998 0.984569i \(-0.555992\pi\)
−0.174998 + 0.984569i \(0.555992\pi\)
\(42\) 0 0
\(43\) 6.01126i 0.916708i −0.888770 0.458354i \(-0.848439\pi\)
0.888770 0.458354i \(-0.151561\pi\)
\(44\) −5.76411 −0.868972
\(45\) 0 0
\(46\) 0.677992 0.0999645
\(47\) 0.299844i 0.0437368i −0.999761 0.0218684i \(-0.993039\pi\)
0.999761 0.0218684i \(-0.00696148\pi\)
\(48\) 0 0
\(49\) −9.37293 −1.33899
\(50\) −5.76224 6.83787i −0.814904 0.967020i
\(51\) 0 0
\(52\) 0.639435i 0.0886736i
\(53\) 11.8608i 1.62920i 0.580022 + 0.814601i \(0.303044\pi\)
−0.580022 + 0.814601i \(0.696956\pi\)
\(54\) 0 0
\(55\) 3.68913 + 10.1027i 0.497442 + 1.36224i
\(56\) 5.80083 0.775168
\(57\) 0 0
\(58\) 1.78841i 0.234829i
\(59\) −6.53090 −0.850251 −0.425126 0.905134i \(-0.639770\pi\)
−0.425126 + 0.905134i \(0.639770\pi\)
\(60\) 0 0
\(61\) −0.755856 −0.0967774 −0.0483887 0.998829i \(-0.515409\pi\)
−0.0483887 + 0.998829i \(0.515409\pi\)
\(62\) 16.3551i 2.07710i
\(63\) 0 0
\(64\) 0.817104 0.102138
\(65\) 1.12073 0.409249i 0.139009 0.0507611i
\(66\) 0 0
\(67\) 3.95461i 0.483133i 0.970384 + 0.241567i \(0.0776612\pi\)
−0.970384 + 0.241567i \(0.922339\pi\)
\(68\) 0.359332i 0.0435754i
\(69\) 0 0
\(70\) 5.55036 + 15.1996i 0.663394 + 1.81670i
\(71\) 10.6771 1.26714 0.633571 0.773684i \(-0.281588\pi\)
0.633571 + 0.773684i \(0.281588\pi\)
\(72\) 0 0
\(73\) 11.0455i 1.29278i −0.763008 0.646389i \(-0.776278\pi\)
0.763008 0.646389i \(-0.223722\pi\)
\(74\) −15.2331 −1.77081
\(75\) 0 0
\(76\) −7.22522 −0.828790
\(77\) 19.4624i 2.21794i
\(78\) 0 0
\(79\) −7.01095 −0.788793 −0.394397 0.918940i \(-0.629046\pi\)
−0.394397 + 0.918940i \(0.629046\pi\)
\(80\) −3.80478 10.4194i −0.425387 1.16492i
\(81\) 0 0
\(82\) 4.00793i 0.442602i
\(83\) 6.15340i 0.675424i −0.941250 0.337712i \(-0.890347\pi\)
0.941250 0.337712i \(-0.109653\pi\)
\(84\) 0 0
\(85\) 0.629796 0.229979i 0.0683110 0.0249447i
\(86\) 10.7506 1.15926
\(87\) 0 0
\(88\) 6.89539i 0.735051i
\(89\) −10.0521 −1.06552 −0.532760 0.846267i \(-0.678845\pi\)
−0.532760 + 0.846267i \(0.678845\pi\)
\(90\) 0 0
\(91\) −2.15903 −0.226328
\(92\) 0.454316i 0.0473658i
\(93\) 0 0
\(94\) 0.536243 0.0553093
\(95\) 4.62427 + 12.6635i 0.474440 + 1.29925i
\(96\) 0 0
\(97\) 2.41013i 0.244711i 0.992486 + 0.122356i \(0.0390449\pi\)
−0.992486 + 0.122356i \(0.960955\pi\)
\(98\) 16.7626i 1.69328i
\(99\) 0 0
\(100\) 4.58199 3.86123i 0.458199 0.386123i
\(101\) 16.6038 1.65214 0.826071 0.563565i \(-0.190571\pi\)
0.826071 + 0.563565i \(0.190571\pi\)
\(102\) 0 0
\(103\) 13.4127i 1.32159i 0.750566 + 0.660795i \(0.229781\pi\)
−0.750566 + 0.660795i \(0.770219\pi\)
\(104\) 0.764932 0.0750078
\(105\) 0 0
\(106\) −21.2119 −2.06028
\(107\) 9.12013i 0.881676i −0.897587 0.440838i \(-0.854681\pi\)
0.897587 0.440838i \(-0.145319\pi\)
\(108\) 0 0
\(109\) −12.7379 −1.22007 −0.610037 0.792373i \(-0.708845\pi\)
−0.610037 + 0.792373i \(0.708845\pi\)
\(110\) −18.0677 + 6.59766i −1.72269 + 0.629062i
\(111\) 0 0
\(112\) 20.0725i 1.89667i
\(113\) 13.7766i 1.29599i 0.761645 + 0.647995i \(0.224392\pi\)
−0.761645 + 0.647995i \(0.775608\pi\)
\(114\) 0 0
\(115\) 0.796274 0.290770i 0.0742529 0.0271145i
\(116\) −1.19839 −0.111268
\(117\) 0 0
\(118\) 11.6799i 1.07522i
\(119\) −1.21327 −0.111221
\(120\) 0 0
\(121\) 12.1347 1.10316
\(122\) 1.35178i 0.122384i
\(123\) 0 0
\(124\) −10.9594 −0.984183
\(125\) −9.70008 5.55954i −0.867601 0.497260i
\(126\) 0 0
\(127\) 6.39541i 0.567501i −0.958898 0.283751i \(-0.908421\pi\)
0.958898 0.283751i \(-0.0915788\pi\)
\(128\) 10.5476i 0.932283i
\(129\) 0 0
\(130\) 0.731904 + 2.00432i 0.0641922 + 0.175790i
\(131\) −15.6797 −1.36994 −0.684970 0.728572i \(-0.740184\pi\)
−0.684970 + 0.728572i \(0.740184\pi\)
\(132\) 0 0
\(133\) 24.3958i 2.11538i
\(134\) −7.07246 −0.610967
\(135\) 0 0
\(136\) 0.429855 0.0368598
\(137\) 14.1792i 1.21141i 0.795690 + 0.605704i \(0.207108\pi\)
−0.795690 + 0.605704i \(0.792892\pi\)
\(138\) 0 0
\(139\) −6.15903 −0.522402 −0.261201 0.965284i \(-0.584119\pi\)
−0.261201 + 0.965284i \(0.584119\pi\)
\(140\) −10.1851 + 3.71924i −0.860802 + 0.314334i
\(141\) 0 0
\(142\) 19.0950i 1.60242i
\(143\) 2.56643i 0.214615i
\(144\) 0 0
\(145\) 0.766993 + 2.10041i 0.0636953 + 0.174430i
\(146\) 19.7538 1.63484
\(147\) 0 0
\(148\) 10.2076i 0.839056i
\(149\) −3.29888 −0.270254 −0.135127 0.990828i \(-0.543144\pi\)
−0.135127 + 0.990828i \(0.543144\pi\)
\(150\) 0 0
\(151\) −11.7747 −0.958209 −0.479104 0.877758i \(-0.659039\pi\)
−0.479104 + 0.877758i \(0.659039\pi\)
\(152\) 8.64327i 0.701061i
\(153\) 0 0
\(154\) 34.8066 2.80479
\(155\) 7.01420 + 19.2084i 0.563394 + 1.54285i
\(156\) 0 0
\(157\) 20.0255i 1.59821i −0.601195 0.799103i \(-0.705308\pi\)
0.601195 0.799103i \(-0.294692\pi\)
\(158\) 12.5384i 0.997503i
\(159\) 0 0
\(160\) 12.6118 4.60537i 0.997050 0.364086i
\(161\) −1.53399 −0.120895
\(162\) 0 0
\(163\) 8.63537i 0.676374i −0.941079 0.338187i \(-0.890186\pi\)
0.941079 0.338187i \(-0.109814\pi\)
\(164\) 2.68568 0.209716
\(165\) 0 0
\(166\) 11.0048 0.854137
\(167\) 5.98646i 0.463246i 0.972806 + 0.231623i \(0.0744036\pi\)
−0.972806 + 0.231623i \(0.925596\pi\)
\(168\) 0 0
\(169\) 12.7153 0.978100
\(170\) 0.411295 + 1.12633i 0.0315449 + 0.0863856i
\(171\) 0 0
\(172\) 7.20386i 0.549289i
\(173\) 7.75331i 0.589473i −0.955579 0.294737i \(-0.904768\pi\)
0.955579 0.294737i \(-0.0952319\pi\)
\(174\) 0 0
\(175\) 13.0373 + 15.4710i 0.985530 + 1.16950i
\(176\) −23.8600 −1.79851
\(177\) 0 0
\(178\) 17.9772i 1.34745i
\(179\) −9.21698 −0.688909 −0.344455 0.938803i \(-0.611936\pi\)
−0.344455 + 0.938803i \(0.611936\pi\)
\(180\) 0 0
\(181\) 13.9345 1.03574 0.517871 0.855459i \(-0.326725\pi\)
0.517871 + 0.855459i \(0.326725\pi\)
\(182\) 3.86123i 0.286213i
\(183\) 0 0
\(184\) 0.543482 0.0400660
\(185\) −17.8906 + 6.53301i −1.31535 + 0.480317i
\(186\) 0 0
\(187\) 1.44221i 0.105465i
\(188\) 0.359332i 0.0262070i
\(189\) 0 0
\(190\) −22.6476 + 8.27007i −1.64303 + 0.599974i
\(191\) 15.8529 1.14708 0.573538 0.819179i \(-0.305570\pi\)
0.573538 + 0.819179i \(0.305570\pi\)
\(192\) 0 0
\(193\) 12.3360i 0.887963i −0.896036 0.443982i \(-0.853566\pi\)
0.896036 0.443982i \(-0.146434\pi\)
\(194\) −4.31029 −0.309460
\(195\) 0 0
\(196\) 11.2325 0.802319
\(197\) 6.51599i 0.464245i −0.972687 0.232122i \(-0.925433\pi\)
0.972687 0.232122i \(-0.0745670\pi\)
\(198\) 0 0
\(199\) 8.40626 0.595904 0.297952 0.954581i \(-0.403696\pi\)
0.297952 + 0.954581i \(0.403696\pi\)
\(200\) −4.61905 5.48127i −0.326616 0.387584i
\(201\) 0 0
\(202\) 29.6944i 2.08929i
\(203\) 4.04635i 0.283998i
\(204\) 0 0
\(205\) −1.71888 4.70715i −0.120052 0.328761i
\(206\) −23.9873 −1.67128
\(207\) 0 0
\(208\) 2.64688i 0.183528i
\(209\) 28.9990 2.00591
\(210\) 0 0
\(211\) −9.42279 −0.648692 −0.324346 0.945939i \(-0.605144\pi\)
−0.324346 + 0.945939i \(0.605144\pi\)
\(212\) 14.2139i 0.976214i
\(213\) 0 0
\(214\) 16.3105 1.11496
\(215\) 12.6261 4.61060i 0.861093 0.314440i
\(216\) 0 0
\(217\) 37.0041i 2.51200i
\(218\) 22.7806i 1.54290i
\(219\) 0 0
\(220\) −4.42103 12.1070i −0.298066 0.816253i
\(221\) −0.159990 −0.0107621
\(222\) 0 0
\(223\) 18.6498i 1.24889i −0.781071 0.624443i \(-0.785326\pi\)
0.781071 0.624443i \(-0.214674\pi\)
\(224\) −24.2961 −1.62335
\(225\) 0 0
\(226\) −24.6381 −1.63890
\(227\) 4.72192i 0.313405i 0.987646 + 0.156703i \(0.0500864\pi\)
−0.987646 + 0.156703i \(0.949914\pi\)
\(228\) 0 0
\(229\) −23.6102 −1.56021 −0.780104 0.625650i \(-0.784834\pi\)
−0.780104 + 0.625650i \(0.784834\pi\)
\(230\) 0.520015 + 1.42406i 0.0342888 + 0.0938998i
\(231\) 0 0
\(232\) 1.43360i 0.0941201i
\(233\) 15.0959i 0.988965i −0.869188 0.494482i \(-0.835358\pi\)
0.869188 0.494482i \(-0.164642\pi\)
\(234\) 0 0
\(235\) 0.629796 0.229979i 0.0410834 0.0150022i
\(236\) 7.82660 0.509468
\(237\) 0 0
\(238\) 2.16983i 0.140649i
\(239\) 16.5534 1.07075 0.535374 0.844615i \(-0.320171\pi\)
0.535374 + 0.844615i \(0.320171\pi\)
\(240\) 0 0
\(241\) 14.0704 0.906356 0.453178 0.891420i \(-0.350290\pi\)
0.453178 + 0.891420i \(0.350290\pi\)
\(242\) 21.7018i 1.39505i
\(243\) 0 0
\(244\) 0.905814 0.0579888
\(245\) −7.18897 19.6870i −0.459287 1.25776i
\(246\) 0 0
\(247\) 3.21697i 0.204691i
\(248\) 13.1103i 0.832506i
\(249\) 0 0
\(250\) 9.94271 17.3477i 0.628833 1.09716i
\(251\) 28.4712 1.79709 0.898544 0.438883i \(-0.144626\pi\)
0.898544 + 0.438883i \(0.144626\pi\)
\(252\) 0 0
\(253\) 1.82344i 0.114638i
\(254\) 11.4376 0.717659
\(255\) 0 0
\(256\) 20.4976 1.28110
\(257\) 16.3705i 1.02117i 0.859829 + 0.510583i \(0.170570\pi\)
−0.859829 + 0.510583i \(0.829430\pi\)
\(258\) 0 0
\(259\) 34.4655 2.14158
\(260\) −1.34308 + 0.490442i −0.0832940 + 0.0304159i
\(261\) 0 0
\(262\) 28.0416i 1.73242i
\(263\) 6.95196i 0.428676i 0.976760 + 0.214338i \(0.0687594\pi\)
−0.976760 + 0.214338i \(0.931241\pi\)
\(264\) 0 0
\(265\) −24.9125 + 9.09713i −1.53036 + 0.558832i
\(266\) 43.6295 2.67510
\(267\) 0 0
\(268\) 4.73919i 0.289492i
\(269\) −17.9274 −1.09305 −0.546525 0.837443i \(-0.684050\pi\)
−0.546525 + 0.837443i \(0.684050\pi\)
\(270\) 0 0
\(271\) −16.2551 −0.987427 −0.493713 0.869625i \(-0.664361\pi\)
−0.493713 + 0.869625i \(0.664361\pi\)
\(272\) 1.48742i 0.0901881i
\(273\) 0 0
\(274\) −25.3581 −1.53194
\(275\) −18.3902 + 15.4974i −1.10897 + 0.934526i
\(276\) 0 0
\(277\) 26.4786i 1.59094i −0.605992 0.795471i \(-0.707224\pi\)
0.605992 0.795471i \(-0.292776\pi\)
\(278\) 11.0149i 0.660627i
\(279\) 0 0
\(280\) 4.44919 + 12.1841i 0.265890 + 0.728140i
\(281\) −9.09714 −0.542690 −0.271345 0.962482i \(-0.587468\pi\)
−0.271345 + 0.962482i \(0.587468\pi\)
\(282\) 0 0
\(283\) 6.18547i 0.367688i 0.982955 + 0.183844i \(0.0588541\pi\)
−0.982955 + 0.183844i \(0.941146\pi\)
\(284\) −12.7954 −0.759269
\(285\) 0 0
\(286\) 4.58981 0.271401
\(287\) 9.06811i 0.535274i
\(288\) 0 0
\(289\) 16.9101 0.994711
\(290\) −3.75638 + 1.37170i −0.220582 + 0.0805487i
\(291\) 0 0
\(292\) 13.2369i 0.774629i
\(293\) 2.22796i 0.130159i 0.997880 + 0.0650795i \(0.0207301\pi\)
−0.997880 + 0.0650795i \(0.979270\pi\)
\(294\) 0 0
\(295\) −5.00916 13.7176i −0.291645 0.798668i
\(296\) −12.2109 −0.709745
\(297\) 0 0
\(298\) 5.89973i 0.341762i
\(299\) −0.202281 −0.0116982
\(300\) 0 0
\(301\) −24.3236 −1.40199
\(302\) 21.0579i 1.21175i
\(303\) 0 0
\(304\) −29.9081 −1.71535
\(305\) −0.579736 1.58761i −0.0331956 0.0909061i
\(306\) 0 0
\(307\) 34.9479i 1.99458i 0.0735559 + 0.997291i \(0.476565\pi\)
−0.0735559 + 0.997291i \(0.523435\pi\)
\(308\) 23.3236i 1.32898i
\(309\) 0 0
\(310\) −34.3524 + 12.5442i −1.95108 + 0.712465i
\(311\) 11.8968 0.674608 0.337304 0.941396i \(-0.390485\pi\)
0.337304 + 0.941396i \(0.390485\pi\)
\(312\) 0 0
\(313\) 2.38938i 0.135056i 0.997717 + 0.0675278i \(0.0215111\pi\)
−0.997717 + 0.0675278i \(0.978489\pi\)
\(314\) 35.8136 2.02108
\(315\) 0 0
\(316\) 8.40188 0.472643
\(317\) 23.9964i 1.34777i −0.738836 0.673886i \(-0.764624\pi\)
0.738836 0.673886i \(-0.235376\pi\)
\(318\) 0 0
\(319\) 4.80986 0.269300
\(320\) 0.626714 + 1.71625i 0.0350344 + 0.0959415i
\(321\) 0 0
\(322\) 2.74339i 0.152883i
\(323\) 1.80779i 0.100588i
\(324\) 0 0
\(325\) 1.71918 + 2.04010i 0.0953631 + 0.113164i
\(326\) 15.4435 0.855339
\(327\) 0 0
\(328\) 3.21278i 0.177396i
\(329\) −1.21327 −0.0668900
\(330\) 0 0
\(331\) 31.5068 1.73177 0.865885 0.500243i \(-0.166756\pi\)
0.865885 + 0.500243i \(0.166756\pi\)
\(332\) 7.37421i 0.404712i
\(333\) 0 0
\(334\) −10.7062 −0.585818
\(335\) −8.30631 + 3.03316i −0.453822 + 0.165719i
\(336\) 0 0
\(337\) 22.5941i 1.23078i 0.788223 + 0.615389i \(0.211001\pi\)
−0.788223 + 0.615389i \(0.788999\pi\)
\(338\) 22.7401i 1.23690i
\(339\) 0 0
\(340\) −0.754744 + 0.275605i −0.0409318 + 0.0149468i
\(341\) 43.9865 2.38200
\(342\) 0 0
\(343\) 9.60169i 0.518443i
\(344\) 8.61771 0.464636
\(345\) 0 0
\(346\) 13.8661 0.745444
\(347\) 25.3237i 1.35945i −0.733468 0.679724i \(-0.762099\pi\)
0.733468 0.679724i \(-0.237901\pi\)
\(348\) 0 0
\(349\) 11.9657 0.640511 0.320255 0.947331i \(-0.396231\pi\)
0.320255 + 0.947331i \(0.396231\pi\)
\(350\) −27.6684 + 23.3160i −1.47894 + 1.24630i
\(351\) 0 0
\(352\) 28.8805i 1.53934i
\(353\) 27.8488i 1.48224i 0.671372 + 0.741120i \(0.265705\pi\)
−0.671372 + 0.741120i \(0.734295\pi\)
\(354\) 0 0
\(355\) 8.18929 + 22.4264i 0.434643 + 1.19027i
\(356\) 12.0464 0.638456
\(357\) 0 0
\(358\) 16.4837i 0.871190i
\(359\) −25.8847 −1.36614 −0.683071 0.730352i \(-0.739356\pi\)
−0.683071 + 0.730352i \(0.739356\pi\)
\(360\) 0 0
\(361\) 17.3498 0.913150
\(362\) 24.9205i 1.30979i
\(363\) 0 0
\(364\) 2.58738 0.135615
\(365\) 23.2001 8.47182i 1.21435 0.443436i
\(366\) 0 0
\(367\) 30.0434i 1.56825i −0.620602 0.784126i \(-0.713112\pi\)
0.620602 0.784126i \(-0.286888\pi\)
\(368\) 1.88060i 0.0980330i
\(369\) 0 0
\(370\) −11.6837 31.9957i −0.607405 1.66338i
\(371\) 47.9928 2.49166
\(372\) 0 0
\(373\) 17.3011i 0.895819i −0.894079 0.447909i \(-0.852169\pi\)
0.894079 0.447909i \(-0.147831\pi\)
\(374\) 2.57925 0.133370
\(375\) 0 0
\(376\) 0.429855 0.0221681
\(377\) 0.533576i 0.0274806i
\(378\) 0 0
\(379\) −6.00981 −0.308703 −0.154351 0.988016i \(-0.549329\pi\)
−0.154351 + 0.988016i \(0.549329\pi\)
\(380\) −5.54170 15.1759i −0.284283 0.778509i
\(381\) 0 0
\(382\) 28.3514i 1.45059i
\(383\) 15.9914i 0.817124i −0.912731 0.408562i \(-0.866030\pi\)
0.912731 0.408562i \(-0.133970\pi\)
\(384\) 0 0
\(385\) 40.8789 14.9275i 2.08338 0.760776i
\(386\) 22.0617 1.12291
\(387\) 0 0
\(388\) 2.88828i 0.146630i
\(389\) 3.12916 0.158655 0.0793274 0.996849i \(-0.474723\pi\)
0.0793274 + 0.996849i \(0.474723\pi\)
\(390\) 0 0
\(391\) −0.113672 −0.00574865
\(392\) 13.4370i 0.678670i
\(393\) 0 0
\(394\) 11.6532 0.587081
\(395\) −5.37735 14.7259i −0.270564 0.740939i
\(396\) 0 0
\(397\) 39.3500i 1.97492i −0.157863 0.987461i \(-0.550460\pi\)
0.157863 0.987461i \(-0.449540\pi\)
\(398\) 15.0338i 0.753577i
\(399\) 0 0
\(400\) 18.9667 15.9832i 0.948336 0.799159i
\(401\) −5.07853 −0.253610 −0.126805 0.991928i \(-0.540472\pi\)
−0.126805 + 0.991928i \(0.540472\pi\)
\(402\) 0 0
\(403\) 4.87959i 0.243070i
\(404\) −19.8979 −0.989960
\(405\) 0 0
\(406\) 7.23651 0.359142
\(407\) 40.9689i 2.03075i
\(408\) 0 0
\(409\) 4.17655 0.206517 0.103259 0.994655i \(-0.467073\pi\)
0.103259 + 0.994655i \(0.467073\pi\)
\(410\) 8.41829 3.07405i 0.415750 0.151817i
\(411\) 0 0
\(412\) 16.0737i 0.791894i
\(413\) 26.4263i 1.30035i
\(414\) 0 0
\(415\) 12.9247 4.71962i 0.634447 0.231677i
\(416\) −3.20383 −0.157081
\(417\) 0 0
\(418\) 51.8620i 2.53666i
\(419\) −16.1637 −0.789647 −0.394824 0.918757i \(-0.629194\pi\)
−0.394824 + 0.918757i \(0.629194\pi\)
\(420\) 0 0
\(421\) 4.91937 0.239755 0.119878 0.992789i \(-0.461750\pi\)
0.119878 + 0.992789i \(0.461750\pi\)
\(422\) 16.8518i 0.820331i
\(423\) 0 0
\(424\) −17.0035 −0.825765
\(425\) 0.966099 + 1.14644i 0.0468627 + 0.0556104i
\(426\) 0 0
\(427\) 3.05846i 0.148009i
\(428\) 10.9295i 0.528298i
\(429\) 0 0
\(430\) 8.24562 + 22.5806i 0.397639 + 1.08893i
\(431\) −41.1719 −1.98318 −0.991591 0.129411i \(-0.958691\pi\)
−0.991591 + 0.129411i \(0.958691\pi\)
\(432\) 0 0
\(433\) 22.9724i 1.10398i 0.833850 + 0.551991i \(0.186132\pi\)
−0.833850 + 0.551991i \(0.813868\pi\)
\(434\) 66.1783 3.17666
\(435\) 0 0
\(436\) 15.2651 0.731065
\(437\) 2.28565i 0.109337i
\(438\) 0 0
\(439\) −5.53152 −0.264005 −0.132003 0.991249i \(-0.542141\pi\)
−0.132003 + 0.991249i \(0.542141\pi\)
\(440\) −14.4831 + 5.28872i −0.690457 + 0.252130i
\(441\) 0 0
\(442\) 0.286127i 0.0136097i
\(443\) 3.02219i 0.143589i −0.997419 0.0717944i \(-0.977127\pi\)
0.997419 0.0717944i \(-0.0228725\pi\)
\(444\) 0 0
\(445\) −7.70989 21.1135i −0.365484 1.00088i
\(446\) 33.3535 1.57933
\(447\) 0 0
\(448\) 3.30629i 0.156207i
\(449\) 7.44290 0.351252 0.175626 0.984457i \(-0.443805\pi\)
0.175626 + 0.984457i \(0.443805\pi\)
\(450\) 0 0
\(451\) −10.7792 −0.507572
\(452\) 16.5098i 0.776554i
\(453\) 0 0
\(454\) −8.44471 −0.396330
\(455\) −1.65597 4.53486i −0.0776328 0.212597i
\(456\) 0 0
\(457\) 2.81240i 0.131558i 0.997834 + 0.0657792i \(0.0209533\pi\)
−0.997834 + 0.0657792i \(0.979047\pi\)
\(458\) 42.2246i 1.97303i
\(459\) 0 0
\(460\) −0.954250 + 0.348458i −0.0444922 + 0.0162469i
\(461\) −15.3906 −0.716810 −0.358405 0.933566i \(-0.616679\pi\)
−0.358405 + 0.933566i \(0.616679\pi\)
\(462\) 0 0
\(463\) 23.7976i 1.10597i −0.833192 0.552984i \(-0.813489\pi\)
0.833192 0.552984i \(-0.186511\pi\)
\(464\) −4.96064 −0.230292
\(465\) 0 0
\(466\) 26.9976 1.25064
\(467\) 41.1731i 1.90526i 0.304126 + 0.952632i \(0.401636\pi\)
−0.304126 + 0.952632i \(0.598364\pi\)
\(468\) 0 0
\(469\) 16.0017 0.738892
\(470\) 0.411295 + 1.12633i 0.0189716 + 0.0519538i
\(471\) 0 0
\(472\) 9.36267i 0.430952i
\(473\) 28.9133i 1.32943i
\(474\) 0 0
\(475\) −23.0518 + 19.4257i −1.05769 + 0.891313i
\(476\) 1.45398 0.0666431
\(477\) 0 0
\(478\) 29.6041i 1.35406i
\(479\) 21.5362 0.984013 0.492007 0.870591i \(-0.336264\pi\)
0.492007 + 0.870591i \(0.336264\pi\)
\(480\) 0 0
\(481\) 4.54484 0.207227
\(482\) 25.1636i 1.14617i
\(483\) 0 0
\(484\) −14.5422 −0.661009
\(485\) −5.06225 + 1.84855i −0.229865 + 0.0839384i
\(486\) 0 0
\(487\) 6.21272i 0.281525i −0.990043 0.140763i \(-0.955045\pi\)
0.990043 0.140763i \(-0.0449555\pi\)
\(488\) 1.08359i 0.0490519i
\(489\) 0 0
\(490\) 35.2083 12.8568i 1.59055 0.580811i
\(491\) −24.2502 −1.09439 −0.547197 0.837004i \(-0.684305\pi\)
−0.547197 + 0.837004i \(0.684305\pi\)
\(492\) 0 0
\(493\) 0.299844i 0.0135043i
\(494\) 5.75326 0.258851
\(495\) 0 0
\(496\) −45.3654 −2.03696
\(497\) 43.2034i 1.93794i
\(498\) 0 0
\(499\) −35.0007 −1.56685 −0.783424 0.621487i \(-0.786529\pi\)
−0.783424 + 0.621487i \(0.786529\pi\)
\(500\) 11.6245 + 6.66252i 0.519864 + 0.297957i
\(501\) 0 0
\(502\) 50.9181i 2.27259i
\(503\) 2.11250i 0.0941917i −0.998890 0.0470958i \(-0.985003\pi\)
0.998890 0.0470958i \(-0.0149966\pi\)
\(504\) 0 0
\(505\) 12.7350 + 34.8748i 0.566701 + 1.55191i
\(506\) 3.26104 0.144971
\(507\) 0 0
\(508\) 7.66423i 0.340045i
\(509\) −39.5330 −1.75227 −0.876134 0.482068i \(-0.839886\pi\)
−0.876134 + 0.482068i \(0.839886\pi\)
\(510\) 0 0
\(511\) −44.6939 −1.97714
\(512\) 15.5628i 0.687785i
\(513\) 0 0
\(514\) −29.2772 −1.29136
\(515\) −28.1721 + 10.2874i −1.24141 + 0.453319i
\(516\) 0 0
\(517\) 1.44221i 0.0634283i
\(518\) 61.6384i 2.70823i
\(519\) 0 0
\(520\) 0.586698 + 1.60667i 0.0257284 + 0.0704572i
\(521\) −24.4951 −1.07315 −0.536575 0.843853i \(-0.680282\pi\)
−0.536575 + 0.843853i \(0.680282\pi\)
\(522\) 0 0
\(523\) 13.4730i 0.589133i 0.955631 + 0.294567i \(0.0951753\pi\)
−0.955631 + 0.294567i \(0.904825\pi\)
\(524\) 18.7904 0.820864
\(525\) 0 0
\(526\) −12.4329 −0.542101
\(527\) 2.74210i 0.119448i
\(528\) 0 0
\(529\) 22.8563 0.993751
\(530\) −16.2694 44.5536i −0.706696 1.93529i
\(531\) 0 0
\(532\) 29.2358i 1.26753i
\(533\) 1.19578i 0.0517949i
\(534\) 0 0
\(535\) 19.1560 6.99508i 0.828186 0.302424i
\(536\) −5.66932 −0.244877
\(537\) 0 0
\(538\) 32.0614i 1.38226i
\(539\) −45.0825 −1.94184
\(540\) 0 0
\(541\) −36.4294 −1.56622 −0.783111 0.621882i \(-0.786368\pi\)
−0.783111 + 0.621882i \(0.786368\pi\)
\(542\) 29.0707i 1.24869i
\(543\) 0 0
\(544\) −1.80040 −0.0771915
\(545\) −9.76992 26.7549i −0.418497 1.14605i
\(546\) 0 0
\(547\) 27.1863i 1.16240i −0.813760 0.581201i \(-0.802583\pi\)
0.813760 0.581201i \(-0.197417\pi\)
\(548\) 16.9922i 0.725872i
\(549\) 0 0
\(550\) −27.7156 32.8892i −1.18180 1.40240i
\(551\) 6.02908 0.256848
\(552\) 0 0
\(553\) 28.3687i 1.20636i
\(554\) 47.3544 2.01190
\(555\) 0 0
\(556\) 7.38095 0.313022
\(557\) 41.0921i 1.74113i −0.492055 0.870564i \(-0.663754\pi\)
0.492055 0.870564i \(-0.336246\pi\)
\(558\) 0 0
\(559\) −3.20746 −0.135661
\(560\) −42.1604 + 15.3955i −1.78160 + 0.650577i
\(561\) 0 0
\(562\) 16.2694i 0.686282i
\(563\) 26.6574i 1.12348i −0.827315 0.561738i \(-0.810133\pi\)
0.827315 0.561738i \(-0.189867\pi\)
\(564\) 0 0
\(565\) −28.9364 + 10.5665i −1.21736 + 0.444537i
\(566\) −11.0621 −0.464976
\(567\) 0 0
\(568\) 15.3067i 0.642254i
\(569\) −17.9467 −0.752363 −0.376181 0.926546i \(-0.622763\pi\)
−0.376181 + 0.926546i \(0.622763\pi\)
\(570\) 0 0
\(571\) −44.9019 −1.87909 −0.939543 0.342432i \(-0.888749\pi\)
−0.939543 + 0.342432i \(0.888749\pi\)
\(572\) 3.07559i 0.128597i
\(573\) 0 0
\(574\) −16.2175 −0.676904
\(575\) 1.22147 + 1.44948i 0.0509390 + 0.0604476i
\(576\) 0 0
\(577\) 24.3767i 1.01482i −0.861706 0.507408i \(-0.830604\pi\)
0.861706 0.507408i \(-0.169396\pi\)
\(578\) 30.2421i 1.25791i
\(579\) 0 0
\(580\) −0.919161 2.51712i −0.0381661 0.104518i
\(581\) −24.8988 −1.03298
\(582\) 0 0
\(583\) 57.0486i 2.36271i
\(584\) 15.8348 0.655248
\(585\) 0 0
\(586\) −3.98450 −0.164598
\(587\) 0.641677i 0.0264848i −0.999912 0.0132424i \(-0.995785\pi\)
0.999912 0.0132424i \(-0.00421532\pi\)
\(588\) 0 0
\(589\) 55.1363 2.27185
\(590\) 24.5326 8.95841i 1.00999 0.368812i
\(591\) 0 0
\(592\) 42.2532i 1.73660i
\(593\) 7.16264i 0.294134i 0.989127 + 0.147067i \(0.0469833\pi\)
−0.989127 + 0.147067i \(0.953017\pi\)
\(594\) 0 0
\(595\) −0.930574 2.54837i −0.0381498 0.104473i
\(596\) 3.95336 0.161936
\(597\) 0 0
\(598\) 0.361760i 0.0147935i
\(599\) −33.7150 −1.37756 −0.688779 0.724971i \(-0.741853\pi\)
−0.688779 + 0.724971i \(0.741853\pi\)
\(600\) 0 0
\(601\) 12.3214 0.502600 0.251300 0.967909i \(-0.419142\pi\)
0.251300 + 0.967909i \(0.419142\pi\)
\(602\) 43.5005i 1.77295i
\(603\) 0 0
\(604\) 14.1107 0.574156
\(605\) 9.30726 + 25.4879i 0.378394 + 1.03623i
\(606\) 0 0
\(607\) 3.07175i 0.124678i −0.998055 0.0623392i \(-0.980144\pi\)
0.998055 0.0623392i \(-0.0198561\pi\)
\(608\) 36.2013i 1.46816i
\(609\) 0 0
\(610\) 2.83928 1.03680i 0.114959 0.0419790i
\(611\) −0.159990 −0.00647249
\(612\) 0 0
\(613\) 35.7184i 1.44265i 0.692595 + 0.721327i \(0.256468\pi\)
−0.692595 + 0.721327i \(0.743532\pi\)
\(614\) −62.5010 −2.52234
\(615\) 0 0
\(616\) 27.9011 1.12417
\(617\) 29.1211i 1.17237i 0.810177 + 0.586185i \(0.199371\pi\)
−0.810177 + 0.586185i \(0.800629\pi\)
\(618\) 0 0
\(619\) −11.7565 −0.472534 −0.236267 0.971688i \(-0.575924\pi\)
−0.236267 + 0.971688i \(0.575924\pi\)
\(620\) −8.40578 23.0192i −0.337584 0.924474i
\(621\) 0 0
\(622\) 21.2764i 0.853105i
\(623\) 40.6742i 1.62958i
\(624\) 0 0
\(625\) 4.23742 24.6383i 0.169497 0.985531i
\(626\) −4.27317 −0.170790
\(627\) 0 0
\(628\) 23.9984i 0.957640i
\(629\) 2.55398 0.101834
\(630\) 0 0
\(631\) 30.6569 1.22043 0.610216 0.792235i \(-0.291083\pi\)
0.610216 + 0.792235i \(0.291083\pi\)
\(632\) 10.0509i 0.399802i
\(633\) 0 0
\(634\) 42.9153 1.70438
\(635\) 13.4330 4.90524i 0.533072 0.194659i
\(636\) 0 0
\(637\) 5.00117i 0.198154i
\(638\) 8.60198i 0.340556i
\(639\) 0 0
\(640\) 22.1542 8.08992i 0.875723 0.319782i
\(641\) −45.7844 −1.80838 −0.904188 0.427135i \(-0.859523\pi\)
−0.904188 + 0.427135i \(0.859523\pi\)
\(642\) 0 0
\(643\) 43.7394i 1.72491i 0.506132 + 0.862456i \(0.331075\pi\)
−0.506132 + 0.862456i \(0.668925\pi\)
\(644\) 1.83832 0.0724400
\(645\) 0 0
\(646\) 3.23306 0.127203
\(647\) 10.6969i 0.420537i −0.977644 0.210269i \(-0.932566\pi\)
0.977644 0.210269i \(-0.0674338\pi\)
\(648\) 0 0
\(649\) −31.4127 −1.23306
\(650\) −3.64852 + 3.07460i −0.143107 + 0.120596i
\(651\) 0 0
\(652\) 10.3486i 0.405282i
\(653\) 17.4970i 0.684709i 0.939571 + 0.342355i \(0.111224\pi\)
−0.939571 + 0.342355i \(0.888776\pi\)
\(654\) 0 0
\(655\) −12.0262 32.9337i −0.469903 1.28683i
\(656\) 11.1171 0.434050
\(657\) 0 0
\(658\) 2.16983i 0.0845887i
\(659\) −38.0331 −1.48156 −0.740779 0.671748i \(-0.765544\pi\)
−0.740779 + 0.671748i \(0.765544\pi\)
\(660\) 0 0
\(661\) −1.61112 −0.0626654 −0.0313327 0.999509i \(-0.509975\pi\)
−0.0313327 + 0.999509i \(0.509975\pi\)
\(662\) 56.3469i 2.18999i
\(663\) 0 0
\(664\) 8.82149 0.342340
\(665\) 51.2411 18.7114i 1.98704 0.725597i
\(666\) 0 0
\(667\) 0.379104i 0.0146790i
\(668\) 7.17414i 0.277576i
\(669\) 0 0
\(670\) −5.42453 14.8551i −0.209568 0.573901i
\(671\) −3.63556 −0.140349
\(672\) 0 0
\(673\) 6.25241i 0.241013i 0.992713 + 0.120506i \(0.0384518\pi\)
−0.992713 + 0.120506i \(0.961548\pi\)
\(674\) −40.4074 −1.55644
\(675\) 0 0
\(676\) −15.2379 −0.586075
\(677\) 23.4775i 0.902312i −0.892445 0.451156i \(-0.851012\pi\)
0.892445 0.451156i \(-0.148988\pi\)
\(678\) 0 0
\(679\) 9.75221 0.374256
\(680\) 0.329696 + 0.902873i 0.0126433 + 0.0346236i
\(681\) 0 0
\(682\) 78.6656i 3.01226i
\(683\) 6.95644i 0.266181i 0.991104 + 0.133090i \(0.0424900\pi\)
−0.991104 + 0.133090i \(0.957510\pi\)
\(684\) 0 0
\(685\) −29.7821 + 10.8753i −1.13791 + 0.415525i
\(686\) −17.1717 −0.655619
\(687\) 0 0
\(688\) 29.8197i 1.13686i
\(689\) 6.32862 0.241101
\(690\) 0 0
\(691\) −50.6725 −1.92767 −0.963836 0.266498i \(-0.914133\pi\)
−0.963836 + 0.266498i \(0.914133\pi\)
\(692\) 9.29153i 0.353211i
\(693\) 0 0
\(694\) 45.2891 1.71915
\(695\) −4.72394 12.9365i −0.179189 0.490709i
\(696\) 0 0
\(697\) 0.671970i 0.0254527i
\(698\) 21.3996i 0.809986i
\(699\) 0 0
\(700\) −15.6239 18.5403i −0.590527 0.700759i
\(701\) 26.3580 0.995527 0.497763 0.867313i \(-0.334155\pi\)
0.497763 + 0.867313i \(0.334155\pi\)
\(702\) 0 0
\(703\) 51.3539i 1.93685i
\(704\) 3.93015 0.148123
\(705\) 0 0
\(706\) −49.8049 −1.87443
\(707\) 67.1849i 2.52675i
\(708\) 0 0
\(709\) −1.33497 −0.0501357 −0.0250678 0.999686i \(-0.507980\pi\)
−0.0250678 + 0.999686i \(0.507980\pi\)
\(710\) −40.1074 + 14.6458i −1.50520 + 0.549646i
\(711\) 0 0
\(712\) 14.4106i 0.540061i
\(713\) 3.46693i 0.129838i
\(714\) 0 0
\(715\) 5.39054 1.96843i 0.201595 0.0736152i
\(716\) 11.0456 0.412793
\(717\) 0 0
\(718\) 46.2923i 1.72761i
\(719\) −5.44486 −0.203059 −0.101530 0.994833i \(-0.532374\pi\)
−0.101530 + 0.994833i \(0.532374\pi\)
\(720\) 0 0
\(721\) 54.2724 2.02121
\(722\) 31.0286i 1.15476i
\(723\) 0 0
\(724\) −16.6990 −0.620614
\(725\) −3.82344 + 3.22200i −0.141999 + 0.119662i
\(726\) 0 0
\(727\) 32.6745i 1.21183i 0.795529 + 0.605916i \(0.207193\pi\)
−0.795529 + 0.605916i \(0.792807\pi\)
\(728\) 3.09518i 0.114715i
\(729\) 0 0
\(730\) 15.1511 + 41.4911i 0.560766 + 1.53566i
\(731\) −1.80244 −0.0666657
\(732\) 0 0
\(733\) 20.9195i 0.772678i −0.922357 0.386339i \(-0.873740\pi\)
0.922357 0.386339i \(-0.126260\pi\)
\(734\) 53.7297 1.98320
\(735\) 0 0
\(736\) −2.27631 −0.0839059
\(737\) 19.0211i 0.700653i
\(738\) 0 0
\(739\) −13.2392 −0.487011 −0.243505 0.969900i \(-0.578297\pi\)
−0.243505 + 0.969900i \(0.578297\pi\)
\(740\) 21.4400 7.82913i 0.788152 0.287804i
\(741\) 0 0
\(742\) 85.8306i 3.15094i
\(743\) 45.8151i 1.68079i −0.541971 0.840397i \(-0.682322\pi\)
0.541971 0.840397i \(-0.317678\pi\)
\(744\) 0 0
\(745\) −2.53022 6.92899i −0.0926999 0.253859i
\(746\) 30.9414 1.13285
\(747\) 0 0
\(748\) 1.72834i 0.0631942i
\(749\) −36.9032 −1.34841
\(750\) 0 0
\(751\) −26.2736 −0.958738 −0.479369 0.877614i \(-0.659134\pi\)
−0.479369 + 0.877614i \(0.659134\pi\)
\(752\) 1.48742i 0.0542406i
\(753\) 0 0
\(754\) 0.954250 0.0347518
\(755\) −9.03109 24.7316i −0.328675 0.900076i
\(756\) 0 0
\(757\) 19.2465i 0.699527i −0.936838 0.349763i \(-0.886262\pi\)
0.936838 0.349763i \(-0.113738\pi\)
\(758\) 10.7480i 0.390384i
\(759\) 0 0
\(760\) −18.1544 + 6.62933i −0.658529 + 0.240471i
\(761\) −19.9183 −0.722037 −0.361019 0.932559i \(-0.617571\pi\)
−0.361019 + 0.932559i \(0.617571\pi\)
\(762\) 0 0
\(763\) 51.5422i 1.86595i
\(764\) −18.9980 −0.687325
\(765\) 0 0
\(766\) 28.5992 1.03333
\(767\) 3.48473i 0.125826i
\(768\) 0 0
\(769\) −13.5530 −0.488734 −0.244367 0.969683i \(-0.578580\pi\)
−0.244367 + 0.969683i \(0.578580\pi\)
\(770\) 26.6964 + 73.1081i 0.962072 + 2.63463i
\(771\) 0 0
\(772\) 14.7834i 0.532065i
\(773\) 4.56321i 0.164127i 0.996627 + 0.0820635i \(0.0261510\pi\)
−0.996627 + 0.0820635i \(0.973849\pi\)
\(774\) 0 0
\(775\) −34.9656 + 29.4654i −1.25600 + 1.05843i
\(776\) −3.45515 −0.124033
\(777\) 0 0
\(778\) 5.59621i 0.200634i
\(779\) −13.5115 −0.484101
\(780\) 0 0
\(781\) 51.3555 1.83764
\(782\) 0.203292i 0.00726971i
\(783\) 0 0
\(784\) 46.4957 1.66056
\(785\) 42.0617 15.3594i 1.50124 0.548200i
\(786\) 0 0
\(787\) 17.3056i 0.616878i 0.951244 + 0.308439i \(0.0998066\pi\)
−0.951244 + 0.308439i \(0.900193\pi\)
\(788\) 7.80873i 0.278174i
\(789\) 0 0
\(790\) 26.3358 9.61688i 0.936986 0.342153i
\(791\) 55.7448 1.98206
\(792\) 0 0
\(793\) 0.403307i 0.0143218i
\(794\) 70.3738 2.49747
\(795\) 0 0
\(796\) −10.0740 −0.357064
\(797\) 25.4230i 0.900531i 0.892895 + 0.450265i \(0.148671\pi\)
−0.892895 + 0.450265i \(0.851329\pi\)
\(798\) 0 0
\(799\) −0.0899066 −0.00318067
\(800\) 19.3463 + 22.9576i 0.683996 + 0.811675i
\(801\) 0 0
\(802\) 9.08247i 0.320713i
\(803\) 53.1273i 1.87482i
\(804\) 0 0
\(805\) −1.17656 3.22200i −0.0414682 0.113561i
\(806\) 8.72668 0.307384
\(807\) 0 0
\(808\) 23.8032i 0.837393i
\(809\) 39.8770 1.40200 0.701001 0.713160i \(-0.252737\pi\)
0.701001 + 0.713160i \(0.252737\pi\)
\(810\) 0 0
\(811\) 37.9902 1.33402 0.667008 0.745050i \(-0.267574\pi\)
0.667008 + 0.745050i \(0.267574\pi\)
\(812\) 4.84912i 0.170171i
\(813\) 0 0
\(814\) −73.2690 −2.56808
\(815\) 18.1378 6.62327i 0.635340 0.232003i
\(816\) 0 0
\(817\) 36.2424i 1.26796i
\(818\) 7.46937i 0.261160i
\(819\) 0 0
\(820\) 2.05990 + 5.64102i 0.0719347 + 0.196993i
\(821\) −2.02361 −0.0706245 −0.0353122 0.999376i \(-0.511243\pi\)
−0.0353122 + 0.999376i \(0.511243\pi\)
\(822\) 0 0
\(823\) 1.80919i 0.0630642i 0.999503 + 0.0315321i \(0.0100386\pi\)
−0.999503 + 0.0315321i \(0.989961\pi\)
\(824\) −19.2284 −0.669851
\(825\) 0 0
\(826\) −47.2610 −1.64442
\(827\) 18.8027i 0.653834i 0.945053 + 0.326917i \(0.106010\pi\)
−0.945053 + 0.326917i \(0.893990\pi\)
\(828\) 0 0
\(829\) −13.7594 −0.477884 −0.238942 0.971034i \(-0.576801\pi\)
−0.238942 + 0.971034i \(0.576801\pi\)
\(830\) 8.44060 + 23.1146i 0.292977 + 0.802318i
\(831\) 0 0
\(832\) 0.435987i 0.0151151i
\(833\) 2.81042i 0.0973753i
\(834\) 0 0
\(835\) −12.5740 + 4.59158i −0.435142 + 0.158898i
\(836\) −34.7523 −1.20193
\(837\) 0 0
\(838\) 28.9072i 0.998583i
\(839\) 14.1913 0.489938 0.244969 0.969531i \(-0.421222\pi\)
0.244969 + 0.969531i \(0.421222\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 8.79782i 0.303193i
\(843\) 0 0
\(844\) 11.2922 0.388694
\(845\) 9.75255 + 26.7073i 0.335498 + 0.918760i
\(846\) 0 0
\(847\) 49.1014i 1.68714i
\(848\) 58.8370i 2.02047i
\(849\) 0 0
\(850\) −2.05030 + 1.72778i −0.0703246 + 0.0592622i
\(851\) 3.22909 0.110692
\(852\) 0 0
\(853\) 16.7293i 0.572801i −0.958110 0.286401i \(-0.907541\pi\)
0.958110 0.286401i \(-0.0924589\pi\)
\(854\) −5.46976 −0.187171
\(855\) 0 0
\(856\) 13.0746 0.446880
\(857\) 33.2564i 1.13602i 0.823023 + 0.568009i \(0.192286\pi\)
−0.823023 + 0.568009i \(0.807714\pi\)
\(858\) 0 0
\(859\) 56.5319 1.92884 0.964422 0.264366i \(-0.0851628\pi\)
0.964422 + 0.264366i \(0.0851628\pi\)
\(860\) −15.1311 + 5.52531i −0.515965 + 0.188412i
\(861\) 0 0
\(862\) 73.6321i 2.50792i
\(863\) 43.9271i 1.49530i −0.664096 0.747648i \(-0.731183\pi\)
0.664096 0.747648i \(-0.268817\pi\)
\(864\) 0 0
\(865\) 16.2851 5.94674i 0.553711 0.202195i
\(866\) −41.0839 −1.39609
\(867\) 0 0
\(868\) 44.3455i 1.50519i
\(869\) −33.7217 −1.14393
\(870\) 0 0
\(871\) 2.11009 0.0714976
\(872\) 18.2611i 0.618397i
\(873\) 0 0
\(874\) 4.08767 0.138267
\(875\) −22.4958 + 39.2499i −0.760498 + 1.32689i
\(876\) 0 0
\(877\) 13.5059i 0.456063i 0.973654 + 0.228032i \(0.0732290\pi\)
−0.973654 + 0.228032i \(0.926771\pi\)
\(878\) 9.89261i 0.333859i
\(879\) 0 0
\(880\) −18.3004 50.1157i −0.616908 1.68940i
\(881\) 40.0575 1.34957 0.674785 0.738014i \(-0.264236\pi\)
0.674785 + 0.738014i \(0.264236\pi\)
\(882\) 0 0
\(883\) 16.0102i 0.538786i 0.963030 + 0.269393i \(0.0868231\pi\)
−0.963030 + 0.269393i \(0.913177\pi\)
\(884\) 0.191731 0.00644861
\(885\) 0 0
\(886\) 5.40491 0.181581
\(887\) 13.8430i 0.464802i 0.972620 + 0.232401i \(0.0746581\pi\)
−0.972620 + 0.232401i \(0.925342\pi\)
\(888\) 0 0
\(889\) −25.8781 −0.867923
\(890\) 37.7595 13.7884i 1.26570 0.462188i
\(891\) 0 0
\(892\) 22.3499i 0.748329i
\(893\) 1.80779i 0.0604953i
\(894\) 0 0
\(895\) −7.06936 19.3594i −0.236303 0.647114i
\(896\) −42.6792 −1.42581
\(897\) 0 0
\(898\) 13.3109i 0.444191i
\(899\) 9.14506 0.305005
\(900\) 0 0
\(901\) 3.55639 0.118480
\(902\) 19.2776i 0.641873i
\(903\) 0 0
\(904\) −19.7500 −0.656876
\(905\) 10.6877 + 29.2681i 0.355270 + 0.972905i
\(906\) 0 0
\(907\) 2.47532i 0.0821915i 0.999155 + 0.0410958i \(0.0130849\pi\)
−0.999155 + 0.0410958i \(0.986915\pi\)
\(908\) 5.65873i 0.187791i
\(909\) 0 0
\(910\) 8.11016 2.96154i 0.268849 0.0981740i
\(911\) 4.32063 0.143149 0.0715744 0.997435i \(-0.477198\pi\)
0.0715744 + 0.997435i \(0.477198\pi\)
\(912\) 0 0
\(913\) 29.5970i 0.979518i
\(914\) −5.02971 −0.166368
\(915\) 0 0
\(916\) 28.2944 0.934872
\(917\) 63.4454i 2.09515i
\(918\) 0 0
\(919\) −34.6470 −1.14290 −0.571450 0.820637i \(-0.693619\pi\)
−0.571450 + 0.820637i \(0.693619\pi\)
\(920\) 0.416847 + 1.14153i 0.0137430 + 0.0376353i
\(921\) 0 0
\(922\) 27.5246i 0.906473i
\(923\) 5.69706i 0.187521i
\(924\) 0 0
\(925\) −27.4440 32.5669i −0.902353 1.07079i
\(926\) 42.5597 1.39860
\(927\) 0 0
\(928\) 6.00444i 0.197106i
\(929\) −9.64854 −0.316558 −0.158279 0.987394i \(-0.550595\pi\)
−0.158279 + 0.987394i \(0.550595\pi\)
\(930\) 0 0
\(931\) −56.5102 −1.85205
\(932\) 18.0908i 0.592585i
\(933\) 0 0
\(934\) −73.6342 −2.40938
\(935\) 3.02923 1.10616i 0.0990664 0.0361755i
\(936\) 0 0
\(937\) 5.16386i 0.168696i −0.996436 0.0843480i \(-0.973119\pi\)
0.996436 0.0843480i \(-0.0268807\pi\)
\(938\) 28.6176i 0.934398i
\(939\) 0 0
\(940\) −0.754744 + 0.275605i −0.0246170 + 0.00898925i
\(941\) 46.0541 1.50132 0.750661 0.660688i \(-0.229735\pi\)
0.750661 + 0.660688i \(0.229735\pi\)
\(942\) 0 0
\(943\) 0.849596i 0.0276666i
\(944\) 32.3975 1.05445
\(945\) 0 0
\(946\) 51.7087 1.68120
\(947\) 7.00646i 0.227679i −0.993499 0.113840i \(-0.963685\pi\)
0.993499 0.113840i \(-0.0363150\pi\)
\(948\) 0 0
\(949\) −5.89361 −0.191315
\(950\) −34.7411 41.2261i −1.12715 1.33755i
\(951\) 0 0
\(952\) 1.73934i 0.0563725i
\(953\) 48.2817i 1.56400i 0.623281 + 0.781998i \(0.285799\pi\)
−0.623281 + 0.781998i \(0.714201\pi\)
\(954\) 0 0
\(955\) 12.1591 + 33.2976i 0.393459 + 1.07749i
\(956\) −19.8375 −0.641589
\(957\) 0 0
\(958\) 38.5154i 1.24438i
\(959\) 57.3738 1.85270
\(960\) 0 0
\(961\) 52.6322 1.69781
\(962\) 8.12801i 0.262058i
\(963\) 0 0
\(964\) −16.8619 −0.543086
\(965\) 25.9106 9.46162i 0.834092 0.304580i
\(966\) 0 0
\(967\) 19.8989i 0.639906i 0.947433 + 0.319953i \(0.103667\pi\)
−0.947433 + 0.319953i \(0.896333\pi\)
\(968\) 17.3963i 0.559138i
\(969\) 0 0
\(970\) −3.30596 9.05337i −0.106148 0.290686i
\(971\) −28.8071 −0.924464 −0.462232 0.886759i \(-0.652951\pi\)
−0.462232 + 0.886759i \(0.652951\pi\)
\(972\) 0 0
\(973\) 24.9216i 0.798950i
\(974\) 11.1109 0.356015
\(975\) 0 0
\(976\) 3.74953 0.120019
\(977\) 34.4662i 1.10267i 0.834284 + 0.551336i \(0.185882\pi\)
−0.834284 + 0.551336i \(0.814118\pi\)
\(978\) 0 0
\(979\) −48.3491 −1.54524
\(980\) 8.61523 + 23.5928i 0.275203 + 0.753644i
\(981\) 0 0
\(982\) 43.3691i 1.38396i
\(983\) 21.8433i 0.696695i −0.937366 0.348347i \(-0.886743\pi\)
0.937366 0.348347i \(-0.113257\pi\)
\(984\) 0 0
\(985\) 13.6862 4.99772i 0.436080 0.159241i
\(986\) 0.536243 0.0170775
\(987\) 0 0
\(988\) 3.85521i 0.122650i
\(989\) −2.27889 −0.0724646
\(990\) 0 0
\(991\) −6.00703 −0.190820 −0.0954099 0.995438i \(-0.530416\pi\)
−0.0954099 + 0.995438i \(0.530416\pi\)
\(992\) 54.9110i 1.74343i
\(993\) 0 0
\(994\) 77.2652 2.45070
\(995\) 6.44755 + 17.6566i 0.204401 + 0.559752i
\(996\) 0 0
\(997\) 19.9499i 0.631821i −0.948789 0.315911i \(-0.897690\pi\)
0.948789 0.315911i \(-0.102310\pi\)
\(998\) 62.5955i 1.98143i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.l.784.10 yes 12
3.2 odd 2 1305.2.c.k.784.3 12
5.2 odd 4 6525.2.a.cf.1.3 12
5.3 odd 4 6525.2.a.cf.1.10 12
5.4 even 2 inner 1305.2.c.l.784.3 yes 12
15.2 even 4 6525.2.a.ce.1.10 12
15.8 even 4 6525.2.a.ce.1.3 12
15.14 odd 2 1305.2.c.k.784.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.c.k.784.3 12 3.2 odd 2
1305.2.c.k.784.10 yes 12 15.14 odd 2
1305.2.c.l.784.3 yes 12 5.4 even 2 inner
1305.2.c.l.784.10 yes 12 1.1 even 1 trivial
6525.2.a.ce.1.3 12 15.8 even 4
6525.2.a.ce.1.10 12 15.2 even 4
6525.2.a.cf.1.3 12 5.2 odd 4
6525.2.a.cf.1.10 12 5.3 odd 4