Properties

Label 1305.2.c.k.784.9
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 148x^{8} + 502x^{6} + 792x^{4} + 496x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.9
Root \(1.35513i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.k.784.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.35513i q^{2} +0.163621 q^{4} +(-1.94590 + 1.10158i) q^{5} -1.26969i q^{7} +2.93199i q^{8} +(-1.49278 - 2.63695i) q^{10} +0.474782 q^{11} +0.407685i q^{13} +1.72060 q^{14} -3.64599 q^{16} +2.97132i q^{17} -5.80491 q^{19} +(-0.318389 + 0.180241i) q^{20} +0.643392i q^{22} +3.06516i q^{23} +(2.57305 - 4.28712i) q^{25} -0.552466 q^{26} -0.207747i q^{28} -1.00000 q^{29} -4.49210 q^{31} +0.923188i q^{32} -4.02653 q^{34} +(1.39866 + 2.47069i) q^{35} +7.20325i q^{37} -7.86641i q^{38} +(-3.22981 - 5.70536i) q^{40} -12.0668 q^{41} +1.03847i q^{43} +0.0776841 q^{44} -4.15369 q^{46} +2.97132i q^{47} +5.38789 q^{49} +(5.80961 + 3.48682i) q^{50} +0.0667056i q^{52} -7.87199i q^{53} +(-0.923879 + 0.523010i) q^{55} +3.72271 q^{56} -1.35513i q^{58} -4.45891 q^{59} -1.71609 q^{61} -6.08739i q^{62} -8.54301 q^{64} +(-0.449097 - 0.793314i) q^{65} -15.7754i q^{67} +0.486169i q^{68} +(-3.34811 + 1.89537i) q^{70} -9.00806 q^{71} +0.677990i q^{73} -9.76134 q^{74} -0.949802 q^{76} -0.602826i q^{77} -1.63957 q^{79} +(7.09473 - 4.01634i) q^{80} -16.3521i q^{82} +15.5423i q^{83} +(-3.27314 - 5.78189i) q^{85} -1.40726 q^{86} +1.39206i q^{88} +13.4175 q^{89} +0.517633 q^{91} +0.501523i q^{92} -4.02653 q^{94} +(11.2958 - 6.39456i) q^{95} +7.10733i q^{97} +7.30129i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 10 q^{10} - 12 q^{11} + 16 q^{14} + 16 q^{16} + 20 q^{19} + 14 q^{20} + 8 q^{25} - 56 q^{26} - 12 q^{29} - 16 q^{31} - 4 q^{34} - 16 q^{35} + 16 q^{40} - 32 q^{41} + 68 q^{44} + 20 q^{46}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35513i 0.958222i 0.877754 + 0.479111i \(0.159041\pi\)
−0.877754 + 0.479111i \(0.840959\pi\)
\(3\) 0 0
\(4\) 0.163621 0.0818103
\(5\) −1.94590 + 1.10158i −0.870233 + 0.492640i
\(6\) 0 0
\(7\) 1.26969i 0.479897i −0.970786 0.239949i \(-0.922869\pi\)
0.970786 0.239949i \(-0.0771306\pi\)
\(8\) 2.93199i 1.03661i
\(9\) 0 0
\(10\) −1.49278 2.63695i −0.472059 0.833877i
\(11\) 0.474782 0.143152 0.0715761 0.997435i \(-0.477197\pi\)
0.0715761 + 0.997435i \(0.477197\pi\)
\(12\) 0 0
\(13\) 0.407685i 0.113071i 0.998401 + 0.0565357i \(0.0180055\pi\)
−0.998401 + 0.0565357i \(0.981995\pi\)
\(14\) 1.72060 0.459848
\(15\) 0 0
\(16\) −3.64599 −0.911497
\(17\) 2.97132i 0.720651i 0.932827 + 0.360326i \(0.117334\pi\)
−0.932827 + 0.360326i \(0.882666\pi\)
\(18\) 0 0
\(19\) −5.80491 −1.33174 −0.665868 0.746069i \(-0.731939\pi\)
−0.665868 + 0.746069i \(0.731939\pi\)
\(20\) −0.318389 + 0.180241i −0.0711940 + 0.0403030i
\(21\) 0 0
\(22\) 0.643392i 0.137172i
\(23\) 3.06516i 0.639130i 0.947564 + 0.319565i \(0.103537\pi\)
−0.947564 + 0.319565i \(0.896463\pi\)
\(24\) 0 0
\(25\) 2.57305 4.28712i 0.514611 0.857424i
\(26\) −0.552466 −0.108348
\(27\) 0 0
\(28\) 0.207747i 0.0392605i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −4.49210 −0.806805 −0.403403 0.915023i \(-0.632173\pi\)
−0.403403 + 0.915023i \(0.632173\pi\)
\(32\) 0.923188i 0.163198i
\(33\) 0 0
\(34\) −4.02653 −0.690544
\(35\) 1.39866 + 2.47069i 0.236417 + 0.417623i
\(36\) 0 0
\(37\) 7.20325i 1.18421i 0.805862 + 0.592103i \(0.201702\pi\)
−0.805862 + 0.592103i \(0.798298\pi\)
\(38\) 7.86641i 1.27610i
\(39\) 0 0
\(40\) −3.22981 5.70536i −0.510678 0.902096i
\(41\) −12.0668 −1.88452 −0.942259 0.334886i \(-0.891302\pi\)
−0.942259 + 0.334886i \(0.891302\pi\)
\(42\) 0 0
\(43\) 1.03847i 0.158365i 0.996860 + 0.0791827i \(0.0252310\pi\)
−0.996860 + 0.0791827i \(0.974769\pi\)
\(44\) 0.0776841 0.0117113
\(45\) 0 0
\(46\) −4.15369 −0.612428
\(47\) 2.97132i 0.433412i 0.976237 + 0.216706i \(0.0695313\pi\)
−0.976237 + 0.216706i \(0.930469\pi\)
\(48\) 0 0
\(49\) 5.38789 0.769698
\(50\) 5.80961 + 3.48682i 0.821603 + 0.493111i
\(51\) 0 0
\(52\) 0.0667056i 0.00925040i
\(53\) 7.87199i 1.08130i −0.841247 0.540651i \(-0.818178\pi\)
0.841247 0.540651i \(-0.181822\pi\)
\(54\) 0 0
\(55\) −0.923879 + 0.523010i −0.124576 + 0.0705226i
\(56\) 3.72271 0.497469
\(57\) 0 0
\(58\) 1.35513i 0.177937i
\(59\) −4.45891 −0.580501 −0.290250 0.956951i \(-0.593739\pi\)
−0.290250 + 0.956951i \(0.593739\pi\)
\(60\) 0 0
\(61\) −1.71609 −0.219722 −0.109861 0.993947i \(-0.535041\pi\)
−0.109861 + 0.993947i \(0.535041\pi\)
\(62\) 6.08739i 0.773099i
\(63\) 0 0
\(64\) −8.54301 −1.06788
\(65\) −0.449097 0.793314i −0.0557036 0.0983985i
\(66\) 0 0
\(67\) 15.7754i 1.92727i −0.267218 0.963636i \(-0.586104\pi\)
0.267218 0.963636i \(-0.413896\pi\)
\(68\) 0.486169i 0.0589567i
\(69\) 0 0
\(70\) −3.34811 + 1.89537i −0.400175 + 0.226540i
\(71\) −9.00806 −1.06906 −0.534530 0.845149i \(-0.679511\pi\)
−0.534530 + 0.845149i \(0.679511\pi\)
\(72\) 0 0
\(73\) 0.677990i 0.0793527i 0.999213 + 0.0396763i \(0.0126327\pi\)
−0.999213 + 0.0396763i \(0.987367\pi\)
\(74\) −9.76134 −1.13473
\(75\) 0 0
\(76\) −0.949802 −0.108950
\(77\) 0.602826i 0.0686984i
\(78\) 0 0
\(79\) −1.63957 −0.184466 −0.0922329 0.995737i \(-0.529400\pi\)
−0.0922329 + 0.995737i \(0.529400\pi\)
\(80\) 7.09473 4.01634i 0.793215 0.449040i
\(81\) 0 0
\(82\) 16.3521i 1.80579i
\(83\) 15.5423i 1.70599i 0.521919 + 0.852995i \(0.325216\pi\)
−0.521919 + 0.852995i \(0.674784\pi\)
\(84\) 0 0
\(85\) −3.27314 5.78189i −0.355022 0.627135i
\(86\) −1.40726 −0.151749
\(87\) 0 0
\(88\) 1.39206i 0.148394i
\(89\) 13.4175 1.42225 0.711126 0.703065i \(-0.248186\pi\)
0.711126 + 0.703065i \(0.248186\pi\)
\(90\) 0 0
\(91\) 0.517633 0.0542627
\(92\) 0.501523i 0.0522874i
\(93\) 0 0
\(94\) −4.02653 −0.415305
\(95\) 11.2958 6.39456i 1.15892 0.656068i
\(96\) 0 0
\(97\) 7.10733i 0.721640i 0.932636 + 0.360820i \(0.117503\pi\)
−0.932636 + 0.360820i \(0.882497\pi\)
\(98\) 7.30129i 0.737542i
\(99\) 0 0
\(100\) 0.421004 0.701461i 0.0421004 0.0701461i
\(101\) −4.68433 −0.466108 −0.233054 0.972464i \(-0.574872\pi\)
−0.233054 + 0.972464i \(0.574872\pi\)
\(102\) 0 0
\(103\) 15.5180i 1.52904i 0.644601 + 0.764519i \(0.277024\pi\)
−0.644601 + 0.764519i \(0.722976\pi\)
\(104\) −1.19533 −0.117212
\(105\) 0 0
\(106\) 10.6676 1.03613
\(107\) 0.676108i 0.0653618i 0.999466 + 0.0326809i \(0.0104045\pi\)
−0.999466 + 0.0326809i \(0.989595\pi\)
\(108\) 0 0
\(109\) 7.44734 0.713326 0.356663 0.934233i \(-0.383914\pi\)
0.356663 + 0.934233i \(0.383914\pi\)
\(110\) −0.708746 1.25198i −0.0675763 0.119371i
\(111\) 0 0
\(112\) 4.62927i 0.437425i
\(113\) 14.1017i 1.32658i −0.748363 0.663290i \(-0.769160\pi\)
0.748363 0.663290i \(-0.230840\pi\)
\(114\) 0 0
\(115\) −3.37651 5.96449i −0.314861 0.556192i
\(116\) −0.163621 −0.0151918
\(117\) 0 0
\(118\) 6.04241i 0.556249i
\(119\) 3.77265 0.345839
\(120\) 0 0
\(121\) −10.7746 −0.979507
\(122\) 2.32552i 0.210543i
\(123\) 0 0
\(124\) −0.735000 −0.0660050
\(125\) −0.284311 + 11.1767i −0.0254295 + 0.999677i
\(126\) 0 0
\(127\) 11.5508i 1.02497i 0.858696 + 0.512486i \(0.171275\pi\)
−0.858696 + 0.512486i \(0.828725\pi\)
\(128\) 9.73053i 0.860065i
\(129\) 0 0
\(130\) 1.07504 0.608585i 0.0942876 0.0533764i
\(131\) −10.2432 −0.894954 −0.447477 0.894296i \(-0.647677\pi\)
−0.447477 + 0.894296i \(0.647677\pi\)
\(132\) 0 0
\(133\) 7.37043i 0.639097i
\(134\) 21.3777 1.84676
\(135\) 0 0
\(136\) −8.71188 −0.747038
\(137\) 2.06577i 0.176491i 0.996099 + 0.0882455i \(0.0281260\pi\)
−0.996099 + 0.0882455i \(0.971874\pi\)
\(138\) 0 0
\(139\) −3.48237 −0.295370 −0.147685 0.989034i \(-0.547182\pi\)
−0.147685 + 0.989034i \(0.547182\pi\)
\(140\) 0.228850 + 0.404255i 0.0193413 + 0.0341658i
\(141\) 0 0
\(142\) 12.2071i 1.02440i
\(143\) 0.193562i 0.0161864i
\(144\) 0 0
\(145\) 1.94590 1.10158i 0.161598 0.0914810i
\(146\) −0.918765 −0.0760375
\(147\) 0 0
\(148\) 1.17860i 0.0968802i
\(149\) 10.8558 0.889343 0.444672 0.895694i \(-0.353320\pi\)
0.444672 + 0.895694i \(0.353320\pi\)
\(150\) 0 0
\(151\) 11.3555 0.924097 0.462048 0.886855i \(-0.347115\pi\)
0.462048 + 0.886855i \(0.347115\pi\)
\(152\) 17.0199i 1.38050i
\(153\) 0 0
\(154\) 0.816908 0.0658283
\(155\) 8.74118 4.94840i 0.702109 0.397465i
\(156\) 0 0
\(157\) 16.9813i 1.35526i −0.735405 0.677628i \(-0.763008\pi\)
0.735405 0.677628i \(-0.236992\pi\)
\(158\) 2.22183i 0.176759i
\(159\) 0 0
\(160\) −1.01696 1.79643i −0.0803980 0.142020i
\(161\) 3.89180 0.306717
\(162\) 0 0
\(163\) 7.78532i 0.609793i 0.952385 + 0.304897i \(0.0986219\pi\)
−0.952385 + 0.304897i \(0.901378\pi\)
\(164\) −1.97438 −0.154173
\(165\) 0 0
\(166\) −21.0619 −1.63472
\(167\) 2.06389i 0.159709i −0.996807 0.0798544i \(-0.974554\pi\)
0.996807 0.0798544i \(-0.0254455\pi\)
\(168\) 0 0
\(169\) 12.8338 0.987215
\(170\) 7.83522 4.43553i 0.600934 0.340190i
\(171\) 0 0
\(172\) 0.169915i 0.0129559i
\(173\) 0.522120i 0.0396960i 0.999803 + 0.0198480i \(0.00631823\pi\)
−0.999803 + 0.0198480i \(0.993682\pi\)
\(174\) 0 0
\(175\) −5.44331 3.26698i −0.411476 0.246960i
\(176\) −1.73105 −0.130483
\(177\) 0 0
\(178\) 18.1825i 1.36283i
\(179\) 10.4805 0.783346 0.391673 0.920104i \(-0.371896\pi\)
0.391673 + 0.920104i \(0.371896\pi\)
\(180\) 0 0
\(181\) 12.2724 0.912197 0.456099 0.889929i \(-0.349246\pi\)
0.456099 + 0.889929i \(0.349246\pi\)
\(182\) 0.701461i 0.0519957i
\(183\) 0 0
\(184\) −8.98701 −0.662531
\(185\) −7.93494 14.0168i −0.583388 1.03054i
\(186\) 0 0
\(187\) 1.41073i 0.103163i
\(188\) 0.486169i 0.0354575i
\(189\) 0 0
\(190\) 8.66546 + 15.3072i 0.628658 + 1.11050i
\(191\) −9.69478 −0.701490 −0.350745 0.936471i \(-0.614072\pi\)
−0.350745 + 0.936471i \(0.614072\pi\)
\(192\) 0 0
\(193\) 11.0857i 0.797963i 0.916959 + 0.398982i \(0.130636\pi\)
−0.916959 + 0.398982i \(0.869364\pi\)
\(194\) −9.63136 −0.691491
\(195\) 0 0
\(196\) 0.881569 0.0629692
\(197\) 2.00431i 0.142801i −0.997448 0.0714007i \(-0.977253\pi\)
0.997448 0.0714007i \(-0.0227469\pi\)
\(198\) 0 0
\(199\) 18.1170 1.28428 0.642140 0.766588i \(-0.278047\pi\)
0.642140 + 0.766588i \(0.278047\pi\)
\(200\) 12.5698 + 7.54416i 0.888818 + 0.533453i
\(201\) 0 0
\(202\) 6.34788i 0.446635i
\(203\) 1.26969i 0.0891147i
\(204\) 0 0
\(205\) 23.4808 13.2925i 1.63997 0.928390i
\(206\) −21.0290 −1.46516
\(207\) 0 0
\(208\) 1.48641i 0.103064i
\(209\) −2.75607 −0.190641
\(210\) 0 0
\(211\) 18.4829 1.27241 0.636206 0.771519i \(-0.280503\pi\)
0.636206 + 0.771519i \(0.280503\pi\)
\(212\) 1.28802i 0.0884615i
\(213\) 0 0
\(214\) −0.916215 −0.0626312
\(215\) −1.14396 2.02076i −0.0780172 0.137815i
\(216\) 0 0
\(217\) 5.70357i 0.387184i
\(218\) 10.0921i 0.683525i
\(219\) 0 0
\(220\) −0.151166 + 0.0855751i −0.0101916 + 0.00576947i
\(221\) −1.21136 −0.0814851
\(222\) 0 0
\(223\) 21.6226i 1.44796i 0.689823 + 0.723978i \(0.257688\pi\)
−0.689823 + 0.723978i \(0.742312\pi\)
\(224\) 1.17216 0.0783184
\(225\) 0 0
\(226\) 19.1097 1.27116
\(227\) 19.5621i 1.29838i 0.760625 + 0.649191i \(0.224892\pi\)
−0.760625 + 0.649191i \(0.775108\pi\)
\(228\) 0 0
\(229\) −10.7779 −0.712220 −0.356110 0.934444i \(-0.615897\pi\)
−0.356110 + 0.934444i \(0.615897\pi\)
\(230\) 8.08267 4.57561i 0.532955 0.301707i
\(231\) 0 0
\(232\) 2.93199i 0.192494i
\(233\) 4.25222i 0.278572i 0.990252 + 0.139286i \(0.0444808\pi\)
−0.990252 + 0.139286i \(0.955519\pi\)
\(234\) 0 0
\(235\) −3.27314 5.78189i −0.213516 0.377169i
\(236\) −0.729569 −0.0474909
\(237\) 0 0
\(238\) 5.11244i 0.331390i
\(239\) 16.8385 1.08919 0.544596 0.838699i \(-0.316683\pi\)
0.544596 + 0.838699i \(0.316683\pi\)
\(240\) 0 0
\(241\) 21.8396 1.40681 0.703405 0.710789i \(-0.251662\pi\)
0.703405 + 0.710789i \(0.251662\pi\)
\(242\) 14.6010i 0.938586i
\(243\) 0 0
\(244\) −0.280787 −0.0179755
\(245\) −10.4843 + 5.93518i −0.669817 + 0.379185i
\(246\) 0 0
\(247\) 2.36657i 0.150581i
\(248\) 13.1708i 0.836346i
\(249\) 0 0
\(250\) −15.1459 0.385278i −0.957912 0.0243671i
\(251\) −2.24264 −0.141554 −0.0707772 0.997492i \(-0.522548\pi\)
−0.0707772 + 0.997492i \(0.522548\pi\)
\(252\) 0 0
\(253\) 1.45528i 0.0914929i
\(254\) −15.6529 −0.982150
\(255\) 0 0
\(256\) −3.89989 −0.243743
\(257\) 1.27685i 0.0796479i 0.999207 + 0.0398239i \(0.0126797\pi\)
−0.999207 + 0.0398239i \(0.987320\pi\)
\(258\) 0 0
\(259\) 9.14589 0.568298
\(260\) −0.0734814 0.129802i −0.00455712 0.00805001i
\(261\) 0 0
\(262\) 13.8809i 0.857564i
\(263\) 19.6767i 1.21332i 0.794963 + 0.606658i \(0.207490\pi\)
−0.794963 + 0.606658i \(0.792510\pi\)
\(264\) 0 0
\(265\) 8.67161 + 15.3181i 0.532693 + 0.940984i
\(266\) −9.98789 −0.612397
\(267\) 0 0
\(268\) 2.58118i 0.157671i
\(269\) −11.7353 −0.715516 −0.357758 0.933814i \(-0.616459\pi\)
−0.357758 + 0.933814i \(0.616459\pi\)
\(270\) 0 0
\(271\) −9.92348 −0.602809 −0.301404 0.953496i \(-0.597455\pi\)
−0.301404 + 0.953496i \(0.597455\pi\)
\(272\) 10.8334i 0.656871i
\(273\) 0 0
\(274\) −2.79940 −0.169118
\(275\) 1.22164 2.03545i 0.0736677 0.122742i
\(276\) 0 0
\(277\) 1.50995i 0.0907242i 0.998971 + 0.0453621i \(0.0144442\pi\)
−0.998971 + 0.0453621i \(0.985556\pi\)
\(278\) 4.71906i 0.283031i
\(279\) 0 0
\(280\) −7.24403 + 4.10086i −0.432914 + 0.245073i
\(281\) −25.3285 −1.51097 −0.755487 0.655164i \(-0.772600\pi\)
−0.755487 + 0.655164i \(0.772600\pi\)
\(282\) 0 0
\(283\) 2.09287i 0.124408i −0.998063 0.0622041i \(-0.980187\pi\)
0.998063 0.0622041i \(-0.0198130\pi\)
\(284\) −1.47390 −0.0874601
\(285\) 0 0
\(286\) −0.262301 −0.0155102
\(287\) 15.3211i 0.904375i
\(288\) 0 0
\(289\) 8.17125 0.480662
\(290\) 1.49278 + 2.63695i 0.0876592 + 0.154847i
\(291\) 0 0
\(292\) 0.110933i 0.00649186i
\(293\) 10.8526i 0.634013i 0.948423 + 0.317007i \(0.102678\pi\)
−0.948423 + 0.317007i \(0.897322\pi\)
\(294\) 0 0
\(295\) 8.67660 4.91184i 0.505171 0.285978i
\(296\) −21.1198 −1.22757
\(297\) 0 0
\(298\) 14.7111i 0.852189i
\(299\) −1.24962 −0.0722674
\(300\) 0 0
\(301\) 1.31854 0.0759991
\(302\) 15.3882i 0.885490i
\(303\) 0 0
\(304\) 21.1646 1.21387
\(305\) 3.33933 1.89040i 0.191210 0.108244i
\(306\) 0 0
\(307\) 16.8956i 0.964281i 0.876094 + 0.482141i \(0.160141\pi\)
−0.876094 + 0.482141i \(0.839859\pi\)
\(308\) 0.0986347i 0.00562023i
\(309\) 0 0
\(310\) 6.70573 + 11.8454i 0.380860 + 0.672776i
\(311\) 10.6643 0.604717 0.302359 0.953194i \(-0.402226\pi\)
0.302359 + 0.953194i \(0.402226\pi\)
\(312\) 0 0
\(313\) 13.8702i 0.783991i 0.919967 + 0.391995i \(0.128215\pi\)
−0.919967 + 0.391995i \(0.871785\pi\)
\(314\) 23.0119 1.29864
\(315\) 0 0
\(316\) −0.268267 −0.0150912
\(317\) 1.33953i 0.0752355i −0.999292 0.0376178i \(-0.988023\pi\)
0.999292 0.0376178i \(-0.0119769\pi\)
\(318\) 0 0
\(319\) −0.474782 −0.0265827
\(320\) 16.6239 9.41079i 0.929302 0.526079i
\(321\) 0 0
\(322\) 5.27390i 0.293903i
\(323\) 17.2482i 0.959718i
\(324\) 0 0
\(325\) 1.74779 + 1.04900i 0.0969502 + 0.0581878i
\(326\) −10.5501 −0.584317
\(327\) 0 0
\(328\) 35.3797i 1.95352i
\(329\) 3.77265 0.207993
\(330\) 0 0
\(331\) −3.00072 −0.164934 −0.0824672 0.996594i \(-0.526280\pi\)
−0.0824672 + 0.996594i \(0.526280\pi\)
\(332\) 2.54304i 0.139567i
\(333\) 0 0
\(334\) 2.79685 0.153037
\(335\) 17.3778 + 30.6974i 0.949452 + 1.67718i
\(336\) 0 0
\(337\) 24.2763i 1.32241i 0.750203 + 0.661207i \(0.229956\pi\)
−0.750203 + 0.661207i \(0.770044\pi\)
\(338\) 17.3915i 0.945971i
\(339\) 0 0
\(340\) −0.535553 0.946037i −0.0290444 0.0513060i
\(341\) −2.13277 −0.115496
\(342\) 0 0
\(343\) 15.7288i 0.849274i
\(344\) −3.04479 −0.164164
\(345\) 0 0
\(346\) −0.707540 −0.0380376
\(347\) 14.0792i 0.755809i −0.925845 0.377904i \(-0.876645\pi\)
0.925845 0.377904i \(-0.123355\pi\)
\(348\) 0 0
\(349\) 17.9641 0.961597 0.480798 0.876831i \(-0.340347\pi\)
0.480798 + 0.876831i \(0.340347\pi\)
\(350\) 4.42718 7.37640i 0.236643 0.394285i
\(351\) 0 0
\(352\) 0.438313i 0.0233622i
\(353\) 9.49061i 0.505134i 0.967579 + 0.252567i \(0.0812748\pi\)
−0.967579 + 0.252567i \(0.918725\pi\)
\(354\) 0 0
\(355\) 17.5288 9.92308i 0.930331 0.526662i
\(356\) 2.19538 0.116355
\(357\) 0 0
\(358\) 14.2024i 0.750620i
\(359\) −4.09130 −0.215931 −0.107965 0.994155i \(-0.534434\pi\)
−0.107965 + 0.994155i \(0.534434\pi\)
\(360\) 0 0
\(361\) 14.6969 0.773523
\(362\) 16.6307i 0.874088i
\(363\) 0 0
\(364\) 0.0846954 0.00443925
\(365\) −0.746858 1.31930i −0.0390923 0.0690553i
\(366\) 0 0
\(367\) 18.8383i 0.983351i 0.870778 + 0.491676i \(0.163615\pi\)
−0.870778 + 0.491676i \(0.836385\pi\)
\(368\) 11.1755i 0.582565i
\(369\) 0 0
\(370\) 18.9946 10.7529i 0.987482 0.559015i
\(371\) −9.99498 −0.518914
\(372\) 0 0
\(373\) 7.23999i 0.374872i −0.982277 0.187436i \(-0.939982\pi\)
0.982277 0.187436i \(-0.0600178\pi\)
\(374\) −1.91172 −0.0988529
\(375\) 0 0
\(376\) −8.71188 −0.449281
\(377\) 0.407685i 0.0209968i
\(378\) 0 0
\(379\) −20.2420 −1.03976 −0.519881 0.854239i \(-0.674024\pi\)
−0.519881 + 0.854239i \(0.674024\pi\)
\(380\) 1.84822 1.04628i 0.0948117 0.0536731i
\(381\) 0 0
\(382\) 13.1377i 0.672183i
\(383\) 4.34201i 0.221866i −0.993828 0.110933i \(-0.964616\pi\)
0.993828 0.110933i \(-0.0353840\pi\)
\(384\) 0 0
\(385\) 0.664060 + 1.17304i 0.0338436 + 0.0597836i
\(386\) −15.0225 −0.764626
\(387\) 0 0
\(388\) 1.16290i 0.0590375i
\(389\) −0.508687 −0.0257915 −0.0128957 0.999917i \(-0.504105\pi\)
−0.0128957 + 0.999917i \(0.504105\pi\)
\(390\) 0 0
\(391\) −9.10757 −0.460590
\(392\) 15.7972i 0.797881i
\(393\) 0 0
\(394\) 2.71611 0.136835
\(395\) 3.19044 1.80611i 0.160528 0.0908753i
\(396\) 0 0
\(397\) 31.2135i 1.56656i 0.621669 + 0.783280i \(0.286455\pi\)
−0.621669 + 0.783280i \(0.713545\pi\)
\(398\) 24.5509i 1.23063i
\(399\) 0 0
\(400\) −9.38132 + 15.6308i −0.469066 + 0.781539i
\(401\) 5.60957 0.280129 0.140064 0.990142i \(-0.455269\pi\)
0.140064 + 0.990142i \(0.455269\pi\)
\(402\) 0 0
\(403\) 1.83136i 0.0912267i
\(404\) −0.766452 −0.0381324
\(405\) 0 0
\(406\) −1.72060 −0.0853917
\(407\) 3.41997i 0.169522i
\(408\) 0 0
\(409\) 9.68080 0.478685 0.239342 0.970935i \(-0.423068\pi\)
0.239342 + 0.970935i \(0.423068\pi\)
\(410\) 18.0131 + 31.8195i 0.889603 + 1.57145i
\(411\) 0 0
\(412\) 2.53907i 0.125091i
\(413\) 5.66143i 0.278581i
\(414\) 0 0
\(415\) −17.1211 30.2438i −0.840439 1.48461i
\(416\) −0.376370 −0.0184530
\(417\) 0 0
\(418\) 3.73483i 0.182677i
\(419\) −18.2788 −0.892979 −0.446489 0.894789i \(-0.647326\pi\)
−0.446489 + 0.894789i \(0.647326\pi\)
\(420\) 0 0
\(421\) 26.0517 1.26968 0.634842 0.772642i \(-0.281065\pi\)
0.634842 + 0.772642i \(0.281065\pi\)
\(422\) 25.0467i 1.21925i
\(423\) 0 0
\(424\) 23.0806 1.12089
\(425\) 12.7384 + 7.64537i 0.617904 + 0.370855i
\(426\) 0 0
\(427\) 2.17890i 0.105444i
\(428\) 0.110625i 0.00534727i
\(429\) 0 0
\(430\) 2.73839 1.55021i 0.132057 0.0747578i
\(431\) −6.19278 −0.298296 −0.149148 0.988815i \(-0.547653\pi\)
−0.149148 + 0.988815i \(0.547653\pi\)
\(432\) 0 0
\(433\) 35.1538i 1.68938i −0.535253 0.844692i \(-0.679784\pi\)
0.535253 0.844692i \(-0.320216\pi\)
\(434\) −7.72909 −0.371008
\(435\) 0 0
\(436\) 1.21854 0.0583574
\(437\) 17.7930i 0.851153i
\(438\) 0 0
\(439\) 20.1018 0.959408 0.479704 0.877430i \(-0.340744\pi\)
0.479704 + 0.877430i \(0.340744\pi\)
\(440\) −1.53346 2.70880i −0.0731047 0.129137i
\(441\) 0 0
\(442\) 1.64156i 0.0780808i
\(443\) 20.8513i 0.990676i −0.868700 0.495338i \(-0.835044\pi\)
0.868700 0.495338i \(-0.164956\pi\)
\(444\) 0 0
\(445\) −26.1091 + 14.7804i −1.23769 + 0.700659i
\(446\) −29.3014 −1.38746
\(447\) 0 0
\(448\) 10.8470i 0.512471i
\(449\) 39.5199 1.86506 0.932529 0.361094i \(-0.117597\pi\)
0.932529 + 0.361094i \(0.117597\pi\)
\(450\) 0 0
\(451\) −5.72910 −0.269773
\(452\) 2.30733i 0.108528i
\(453\) 0 0
\(454\) −26.5092 −1.24414
\(455\) −1.00726 + 0.570213i −0.0472212 + 0.0267320i
\(456\) 0 0
\(457\) 25.6115i 1.19806i 0.800728 + 0.599028i \(0.204446\pi\)
−0.800728 + 0.599028i \(0.795554\pi\)
\(458\) 14.6054i 0.682465i
\(459\) 0 0
\(460\) −0.552466 0.975914i −0.0257589 0.0455022i
\(461\) 0.911675 0.0424609 0.0212305 0.999775i \(-0.493242\pi\)
0.0212305 + 0.999775i \(0.493242\pi\)
\(462\) 0 0
\(463\) 25.9744i 1.20713i −0.797312 0.603567i \(-0.793746\pi\)
0.797312 0.603567i \(-0.206254\pi\)
\(464\) 3.64599 0.169261
\(465\) 0 0
\(466\) −5.76231 −0.266934
\(467\) 15.8506i 0.733479i −0.930324 0.366739i \(-0.880474\pi\)
0.930324 0.366739i \(-0.119526\pi\)
\(468\) 0 0
\(469\) −20.0299 −0.924893
\(470\) 7.83522 4.43553i 0.361412 0.204596i
\(471\) 0 0
\(472\) 13.0735i 0.601756i
\(473\) 0.493048i 0.0226704i
\(474\) 0 0
\(475\) −14.9363 + 24.8863i −0.685326 + 1.14186i
\(476\) 0.617284 0.0282932
\(477\) 0 0
\(478\) 22.8184i 1.04369i
\(479\) 16.3087 0.745162 0.372581 0.928000i \(-0.378473\pi\)
0.372581 + 0.928000i \(0.378473\pi\)
\(480\) 0 0
\(481\) −2.93666 −0.133900
\(482\) 29.5955i 1.34804i
\(483\) 0 0
\(484\) −1.76294 −0.0801338
\(485\) −7.82927 13.8301i −0.355509 0.627995i
\(486\) 0 0
\(487\) 9.93950i 0.450402i 0.974312 + 0.225201i \(0.0723039\pi\)
−0.974312 + 0.225201i \(0.927696\pi\)
\(488\) 5.03155i 0.227767i
\(489\) 0 0
\(490\) −8.04294 14.2076i −0.363343 0.641833i
\(491\) −38.0638 −1.71779 −0.858897 0.512149i \(-0.828850\pi\)
−0.858897 + 0.512149i \(0.828850\pi\)
\(492\) 0 0
\(493\) 2.97132i 0.133822i
\(494\) 3.20702 0.144290
\(495\) 0 0
\(496\) 16.3781 0.735401
\(497\) 11.4374i 0.513039i
\(498\) 0 0
\(499\) −44.3795 −1.98670 −0.993349 0.115143i \(-0.963267\pi\)
−0.993349 + 0.115143i \(0.963267\pi\)
\(500\) −0.0465190 + 1.82874i −0.00208039 + 0.0817838i
\(501\) 0 0
\(502\) 3.03908i 0.135641i
\(503\) 3.18073i 0.141822i 0.997483 + 0.0709108i \(0.0225906\pi\)
−0.997483 + 0.0709108i \(0.977409\pi\)
\(504\) 0 0
\(505\) 9.11524 5.16015i 0.405623 0.229624i
\(506\) −1.97210 −0.0876705
\(507\) 0 0
\(508\) 1.88995i 0.0838532i
\(509\) 30.5882 1.35580 0.677899 0.735155i \(-0.262891\pi\)
0.677899 + 0.735155i \(0.262891\pi\)
\(510\) 0 0
\(511\) 0.860836 0.0380811
\(512\) 24.7459i 1.09363i
\(513\) 0 0
\(514\) −1.73030 −0.0763203
\(515\) −17.0943 30.1966i −0.753266 1.33062i
\(516\) 0 0
\(517\) 1.41073i 0.0620439i
\(518\) 12.3939i 0.544555i
\(519\) 0 0
\(520\) 2.32599 1.31675i 0.102001 0.0577431i
\(521\) −28.7858 −1.26113 −0.630564 0.776138i \(-0.717176\pi\)
−0.630564 + 0.776138i \(0.717176\pi\)
\(522\) 0 0
\(523\) 27.2018i 1.18945i −0.803928 0.594726i \(-0.797261\pi\)
0.803928 0.594726i \(-0.202739\pi\)
\(524\) −1.67600 −0.0732164
\(525\) 0 0
\(526\) −26.6645 −1.16263
\(527\) 13.3475i 0.581425i
\(528\) 0 0
\(529\) 13.6048 0.591513
\(530\) −20.7580 + 11.7512i −0.901672 + 0.510438i
\(531\) 0 0
\(532\) 1.20595i 0.0522847i
\(533\) 4.91945i 0.213085i
\(534\) 0 0
\(535\) −0.744785 1.31564i −0.0321999 0.0568800i
\(536\) 46.2533 1.99784
\(537\) 0 0
\(538\) 15.9029i 0.685623i
\(539\) 2.55807 0.110184
\(540\) 0 0
\(541\) 5.84584 0.251332 0.125666 0.992073i \(-0.459893\pi\)
0.125666 + 0.992073i \(0.459893\pi\)
\(542\) 13.4476i 0.577625i
\(543\) 0 0
\(544\) −2.74309 −0.117609
\(545\) −14.4918 + 8.20382i −0.620760 + 0.351413i
\(546\) 0 0
\(547\) 18.9324i 0.809489i −0.914430 0.404745i \(-0.867360\pi\)
0.914430 0.404745i \(-0.132640\pi\)
\(548\) 0.338003i 0.0144388i
\(549\) 0 0
\(550\) 2.75830 + 1.65548i 0.117614 + 0.0705900i
\(551\) 5.80491 0.247297
\(552\) 0 0
\(553\) 2.08174i 0.0885247i
\(554\) −2.04618 −0.0869340
\(555\) 0 0
\(556\) −0.569787 −0.0241643
\(557\) 29.6529i 1.25643i −0.778038 0.628217i \(-0.783785\pi\)
0.778038 0.628217i \(-0.216215\pi\)
\(558\) 0 0
\(559\) −0.423369 −0.0179066
\(560\) −5.09950 9.00810i −0.215493 0.380662i
\(561\) 0 0
\(562\) 34.3235i 1.44785i
\(563\) 19.3966i 0.817471i −0.912653 0.408736i \(-0.865970\pi\)
0.912653 0.408736i \(-0.134030\pi\)
\(564\) 0 0
\(565\) 15.5342 + 27.4406i 0.653527 + 1.15443i
\(566\) 2.83611 0.119211
\(567\) 0 0
\(568\) 26.4115i 1.10820i
\(569\) −6.00700 −0.251826 −0.125913 0.992041i \(-0.540186\pi\)
−0.125913 + 0.992041i \(0.540186\pi\)
\(570\) 0 0
\(571\) −28.1469 −1.17791 −0.588957 0.808165i \(-0.700461\pi\)
−0.588957 + 0.808165i \(0.700461\pi\)
\(572\) 0.0316706i 0.00132422i
\(573\) 0 0
\(574\) −20.7621 −0.866592
\(575\) 13.1407 + 7.88682i 0.548005 + 0.328903i
\(576\) 0 0
\(577\) 32.9966i 1.37367i 0.726815 + 0.686834i \(0.241000\pi\)
−0.726815 + 0.686834i \(0.759000\pi\)
\(578\) 11.0731i 0.460581i
\(579\) 0 0
\(580\) 0.318389 0.180241i 0.0132204 0.00748409i
\(581\) 19.7339 0.818700
\(582\) 0 0
\(583\) 3.73748i 0.154791i
\(584\) −1.98786 −0.0822581
\(585\) 0 0
\(586\) −14.7066 −0.607526
\(587\) 7.81241i 0.322453i −0.986917 0.161226i \(-0.948455\pi\)
0.986917 0.161226i \(-0.0515449\pi\)
\(588\) 0 0
\(589\) 26.0762 1.07445
\(590\) 6.65618 + 11.7579i 0.274031 + 0.484066i
\(591\) 0 0
\(592\) 26.2629i 1.07940i
\(593\) 33.5131i 1.37622i −0.725608 0.688108i \(-0.758441\pi\)
0.725608 0.688108i \(-0.241559\pi\)
\(594\) 0 0
\(595\) −7.34121 + 4.15587i −0.300960 + 0.170374i
\(596\) 1.77623 0.0727574
\(597\) 0 0
\(598\) 1.69340i 0.0692482i
\(599\) 27.1213 1.10815 0.554074 0.832468i \(-0.313073\pi\)
0.554074 + 0.832468i \(0.313073\pi\)
\(600\) 0 0
\(601\) −17.4641 −0.712376 −0.356188 0.934414i \(-0.615924\pi\)
−0.356188 + 0.934414i \(0.615924\pi\)
\(602\) 1.78679i 0.0728240i
\(603\) 0 0
\(604\) 1.85799 0.0756006
\(605\) 20.9663 11.8690i 0.852400 0.482545i
\(606\) 0 0
\(607\) 32.9273i 1.33648i −0.743947 0.668239i \(-0.767049\pi\)
0.743947 0.668239i \(-0.232951\pi\)
\(608\) 5.35902i 0.217337i
\(609\) 0 0
\(610\) 2.56174 + 4.52523i 0.103722 + 0.183221i
\(611\) −1.21136 −0.0490065
\(612\) 0 0
\(613\) 2.97228i 0.120049i 0.998197 + 0.0600245i \(0.0191179\pi\)
−0.998197 + 0.0600245i \(0.980882\pi\)
\(614\) −22.8957 −0.923996
\(615\) 0 0
\(616\) 1.76748 0.0712138
\(617\) 0.0642578i 0.00258692i 0.999999 + 0.00129346i \(0.000411722\pi\)
−0.999999 + 0.00129346i \(0.999588\pi\)
\(618\) 0 0
\(619\) −7.45588 −0.299677 −0.149839 0.988710i \(-0.547875\pi\)
−0.149839 + 0.988710i \(0.547875\pi\)
\(620\) 1.43024 0.809660i 0.0574397 0.0325167i
\(621\) 0 0
\(622\) 14.4515i 0.579454i
\(623\) 17.0360i 0.682535i
\(624\) 0 0
\(625\) −11.7588 22.0620i −0.470352 0.882479i
\(626\) −18.7960 −0.751237
\(627\) 0 0
\(628\) 2.77849i 0.110874i
\(629\) −21.4032 −0.853400
\(630\) 0 0
\(631\) −38.0735 −1.51568 −0.757841 0.652439i \(-0.773746\pi\)
−0.757841 + 0.652439i \(0.773746\pi\)
\(632\) 4.80720i 0.191220i
\(633\) 0 0
\(634\) 1.81524 0.0720924
\(635\) −12.7241 22.4768i −0.504942 0.891964i
\(636\) 0 0
\(637\) 2.19656i 0.0870309i
\(638\) 0.643392i 0.0254721i
\(639\) 0 0
\(640\) 10.7189 + 18.9346i 0.423703 + 0.748457i
\(641\) 4.49665 0.177607 0.0888035 0.996049i \(-0.471696\pi\)
0.0888035 + 0.996049i \(0.471696\pi\)
\(642\) 0 0
\(643\) 20.9607i 0.826610i −0.910593 0.413305i \(-0.864374\pi\)
0.910593 0.413305i \(-0.135626\pi\)
\(644\) 0.636778 0.0250926
\(645\) 0 0
\(646\) 23.3736 0.919623
\(647\) 37.8398i 1.48764i −0.668381 0.743819i \(-0.733013\pi\)
0.668381 0.743819i \(-0.266987\pi\)
\(648\) 0 0
\(649\) −2.11701 −0.0831000
\(650\) −1.42153 + 2.36849i −0.0557568 + 0.0928998i
\(651\) 0 0
\(652\) 1.27384i 0.0498873i
\(653\) 48.0703i 1.88114i −0.339606 0.940568i \(-0.610294\pi\)
0.339606 0.940568i \(-0.389706\pi\)
\(654\) 0 0
\(655\) 19.9323 11.2837i 0.778818 0.440890i
\(656\) 43.9954 1.71773
\(657\) 0 0
\(658\) 5.11244i 0.199304i
\(659\) 26.0861 1.01617 0.508084 0.861307i \(-0.330354\pi\)
0.508084 + 0.861307i \(0.330354\pi\)
\(660\) 0 0
\(661\) 5.00120 0.194524 0.0972620 0.995259i \(-0.468992\pi\)
0.0972620 + 0.995259i \(0.468992\pi\)
\(662\) 4.06636i 0.158044i
\(663\) 0 0
\(664\) −45.5699 −1.76845
\(665\) −8.11910 14.3421i −0.314845 0.556163i
\(666\) 0 0
\(667\) 3.06516i 0.118683i
\(668\) 0.337695i 0.0130658i
\(669\) 0 0
\(670\) −41.5989 + 23.5492i −1.60711 + 0.909786i
\(671\) −0.814768 −0.0314538
\(672\) 0 0
\(673\) 26.1113i 1.00652i 0.864136 + 0.503258i \(0.167866\pi\)
−0.864136 + 0.503258i \(0.832134\pi\)
\(674\) −32.8976 −1.26717
\(675\) 0 0
\(676\) 2.09987 0.0807643
\(677\) 32.0992i 1.23367i 0.787092 + 0.616836i \(0.211586\pi\)
−0.787092 + 0.616836i \(0.788414\pi\)
\(678\) 0 0
\(679\) 9.02410 0.346313
\(680\) 16.9524 9.59681i 0.650097 0.368021i
\(681\) 0 0
\(682\) 2.89018i 0.110671i
\(683\) 4.70468i 0.180020i 0.995941 + 0.0900098i \(0.0286898\pi\)
−0.995941 + 0.0900098i \(0.971310\pi\)
\(684\) 0 0
\(685\) −2.27561 4.01979i −0.0869466 0.153588i
\(686\) 21.3145 0.813793
\(687\) 0 0
\(688\) 3.78625i 0.144349i
\(689\) 3.20929 0.122264
\(690\) 0 0
\(691\) 0.881335 0.0335276 0.0167638 0.999859i \(-0.494664\pi\)
0.0167638 + 0.999859i \(0.494664\pi\)
\(692\) 0.0854295i 0.00324754i
\(693\) 0 0
\(694\) 19.0791 0.724233
\(695\) 6.77634 3.83610i 0.257041 0.145511i
\(696\) 0 0
\(697\) 35.8543i 1.35808i
\(698\) 24.3437i 0.921423i
\(699\) 0 0
\(700\) −0.890637 0.534545i −0.0336629 0.0202039i
\(701\) 45.1606 1.70569 0.852847 0.522161i \(-0.174874\pi\)
0.852847 + 0.522161i \(0.174874\pi\)
\(702\) 0 0
\(703\) 41.8142i 1.57705i
\(704\) −4.05607 −0.152869
\(705\) 0 0
\(706\) −12.8610 −0.484031
\(707\) 5.94764i 0.223684i
\(708\) 0 0
\(709\) −18.8061 −0.706277 −0.353139 0.935571i \(-0.614886\pi\)
−0.353139 + 0.935571i \(0.614886\pi\)
\(710\) 13.4471 + 23.7538i 0.504660 + 0.891464i
\(711\) 0 0
\(712\) 39.3399i 1.47433i
\(713\) 13.7690i 0.515653i
\(714\) 0 0
\(715\) −0.213223 0.376652i −0.00797409 0.0140860i
\(716\) 1.71482 0.0640857
\(717\) 0 0
\(718\) 5.54425i 0.206910i
\(719\) −18.7384 −0.698824 −0.349412 0.936969i \(-0.613619\pi\)
−0.349412 + 0.936969i \(0.613619\pi\)
\(720\) 0 0
\(721\) 19.7031 0.733782
\(722\) 19.9163i 0.741207i
\(723\) 0 0
\(724\) 2.00801 0.0746271
\(725\) −2.57305 + 4.28712i −0.0955608 + 0.159220i
\(726\) 0 0
\(727\) 20.2155i 0.749752i −0.927075 0.374876i \(-0.877685\pi\)
0.927075 0.374876i \(-0.122315\pi\)
\(728\) 1.51769i 0.0562495i
\(729\) 0 0
\(730\) 1.78782 1.01209i 0.0661703 0.0374591i
\(731\) −3.08563 −0.114126
\(732\) 0 0
\(733\) 45.1963i 1.66936i −0.550732 0.834682i \(-0.685651\pi\)
0.550732 0.834682i \(-0.314349\pi\)
\(734\) −25.5284 −0.942269
\(735\) 0 0
\(736\) −2.82972 −0.104305
\(737\) 7.48988i 0.275893i
\(738\) 0 0
\(739\) −42.2473 −1.55409 −0.777046 0.629443i \(-0.783283\pi\)
−0.777046 + 0.629443i \(0.783283\pi\)
\(740\) −1.29832 2.29344i −0.0477271 0.0843084i
\(741\) 0 0
\(742\) 13.5445i 0.497235i
\(743\) 38.5919i 1.41580i 0.706313 + 0.707900i \(0.250357\pi\)
−0.706313 + 0.707900i \(0.749643\pi\)
\(744\) 0 0
\(745\) −21.1243 + 11.9585i −0.773936 + 0.438127i
\(746\) 9.81113 0.359211
\(747\) 0 0
\(748\) 0.230825i 0.00843978i
\(749\) 0.858447 0.0313670
\(750\) 0 0
\(751\) −1.50634 −0.0549670 −0.0274835 0.999622i \(-0.508749\pi\)
−0.0274835 + 0.999622i \(0.508749\pi\)
\(752\) 10.8334i 0.395053i
\(753\) 0 0
\(754\) 0.552466 0.0201196
\(755\) −22.0966 + 12.5090i −0.804179 + 0.455247i
\(756\) 0 0
\(757\) 17.3890i 0.632016i 0.948757 + 0.316008i \(0.102343\pi\)
−0.948757 + 0.316008i \(0.897657\pi\)
\(758\) 27.4306i 0.996324i
\(759\) 0 0
\(760\) 18.7488 + 33.1191i 0.680089 + 1.20135i
\(761\) −9.21457 −0.334028 −0.167014 0.985955i \(-0.553413\pi\)
−0.167014 + 0.985955i \(0.553413\pi\)
\(762\) 0 0
\(763\) 9.45581i 0.342323i
\(764\) −1.58626 −0.0573890
\(765\) 0 0
\(766\) 5.88399 0.212597
\(767\) 1.81783i 0.0656381i
\(768\) 0 0
\(769\) −25.6939 −0.926547 −0.463273 0.886215i \(-0.653325\pi\)
−0.463273 + 0.886215i \(0.653325\pi\)
\(770\) −1.58962 + 0.899888i −0.0572860 + 0.0324297i
\(771\) 0 0
\(772\) 1.81384i 0.0652816i
\(773\) 42.9070i 1.54326i 0.636074 + 0.771628i \(0.280557\pi\)
−0.636074 + 0.771628i \(0.719443\pi\)
\(774\) 0 0
\(775\) −11.5584 + 19.2582i −0.415191 + 0.691774i
\(776\) −20.8386 −0.748062
\(777\) 0 0
\(778\) 0.689338i 0.0247140i
\(779\) 70.0466 2.50968
\(780\) 0 0
\(781\) −4.27687 −0.153038
\(782\) 12.3420i 0.441347i
\(783\) 0 0
\(784\) −19.6442 −0.701578
\(785\) 18.7062 + 33.0439i 0.667653 + 1.17939i
\(786\) 0 0
\(787\) 22.2120i 0.791772i 0.918300 + 0.395886i \(0.129562\pi\)
−0.918300 + 0.395886i \(0.870438\pi\)
\(788\) 0.327947i 0.0116826i
\(789\) 0 0
\(790\) 2.44752 + 4.32346i 0.0870788 + 0.153822i
\(791\) −17.9048 −0.636622
\(792\) 0 0
\(793\) 0.699623i 0.0248443i
\(794\) −42.2984 −1.50111
\(795\) 0 0
\(796\) 2.96431 0.105067
\(797\) 46.2386i 1.63785i 0.573897 + 0.818927i \(0.305431\pi\)
−0.573897 + 0.818927i \(0.694569\pi\)
\(798\) 0 0
\(799\) −8.82875 −0.312339
\(800\) 3.95782 + 2.37541i 0.139930 + 0.0839835i
\(801\) 0 0
\(802\) 7.60171i 0.268426i
\(803\) 0.321897i 0.0113595i
\(804\) 0 0
\(805\) −7.57305 + 4.28712i −0.266915 + 0.151101i
\(806\) 2.48174 0.0874154
\(807\) 0 0
\(808\) 13.7344i 0.483175i
\(809\) 23.9257 0.841184 0.420592 0.907250i \(-0.361822\pi\)
0.420592 + 0.907250i \(0.361822\pi\)
\(810\) 0 0
\(811\) −52.0210 −1.82670 −0.913352 0.407170i \(-0.866516\pi\)
−0.913352 + 0.407170i \(0.866516\pi\)
\(812\) 0.207747i 0.00729050i
\(813\) 0 0
\(814\) −4.63451 −0.162440
\(815\) −8.57613 15.1494i −0.300409 0.530662i
\(816\) 0 0
\(817\) 6.02823i 0.210901i
\(818\) 13.1188i 0.458686i
\(819\) 0 0
\(820\) 3.84194 2.17493i 0.134166 0.0759518i
\(821\) −15.0444 −0.525052 −0.262526 0.964925i \(-0.584556\pi\)
−0.262526 + 0.964925i \(0.584556\pi\)
\(822\) 0 0
\(823\) 44.8652i 1.56390i 0.623339 + 0.781952i \(0.285776\pi\)
−0.623339 + 0.781952i \(0.714224\pi\)
\(824\) −45.4987 −1.58502
\(825\) 0 0
\(826\) −7.67198 −0.266942
\(827\) 41.5569i 1.44508i 0.691331 + 0.722538i \(0.257025\pi\)
−0.691331 + 0.722538i \(0.742975\pi\)
\(828\) 0 0
\(829\) 25.3645 0.880946 0.440473 0.897766i \(-0.354811\pi\)
0.440473 + 0.897766i \(0.354811\pi\)
\(830\) 40.9843 23.2013i 1.42258 0.805328i
\(831\) 0 0
\(832\) 3.48286i 0.120746i
\(833\) 16.0092i 0.554684i
\(834\) 0 0
\(835\) 2.27354 + 4.01613i 0.0786790 + 0.138984i
\(836\) −0.450949 −0.0155964
\(837\) 0 0
\(838\) 24.7702i 0.855672i
\(839\) −3.34480 −0.115475 −0.0577376 0.998332i \(-0.518389\pi\)
−0.0577376 + 0.998332i \(0.518389\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 35.3035i 1.21664i
\(843\) 0 0
\(844\) 3.02417 0.104096
\(845\) −24.9733 + 14.1374i −0.859107 + 0.486342i
\(846\) 0 0
\(847\) 13.6804i 0.470063i
\(848\) 28.7012i 0.985603i
\(849\) 0 0
\(850\) −10.3605 + 17.2622i −0.355361 + 0.592089i
\(851\) −22.0791 −0.756862
\(852\) 0 0
\(853\) 45.8873i 1.57115i −0.618766 0.785575i \(-0.712367\pi\)
0.618766 0.785575i \(-0.287633\pi\)
\(854\) −2.95269 −0.101039
\(855\) 0 0
\(856\) −1.98234 −0.0677550
\(857\) 51.8755i 1.77203i −0.463652 0.886017i \(-0.653461\pi\)
0.463652 0.886017i \(-0.346539\pi\)
\(858\) 0 0
\(859\) −31.7698 −1.08397 −0.541987 0.840387i \(-0.682328\pi\)
−0.541987 + 0.840387i \(0.682328\pi\)
\(860\) −0.187175 0.330638i −0.00638260 0.0112747i
\(861\) 0 0
\(862\) 8.39203i 0.285834i
\(863\) 39.9472i 1.35982i 0.733296 + 0.679909i \(0.237981\pi\)
−0.733296 + 0.679909i \(0.762019\pi\)
\(864\) 0 0
\(865\) −0.575155 1.01599i −0.0195559 0.0345448i
\(866\) 47.6380 1.61880
\(867\) 0 0
\(868\) 0.933222i 0.0316756i
\(869\) −0.778438 −0.0264067
\(870\) 0 0
\(871\) 6.43139 0.217920
\(872\) 21.8355i 0.739444i
\(873\) 0 0
\(874\) 24.1118 0.815594
\(875\) 14.1910 + 0.360986i 0.479742 + 0.0122036i
\(876\) 0 0
\(877\) 44.8875i 1.51574i −0.652403 0.757872i \(-0.726239\pi\)
0.652403 0.757872i \(-0.273761\pi\)
\(878\) 27.2406i 0.919326i
\(879\) 0 0
\(880\) 3.36845 1.90689i 0.113550 0.0642811i
\(881\) 3.90189 0.131458 0.0657290 0.997838i \(-0.479063\pi\)
0.0657290 + 0.997838i \(0.479063\pi\)
\(882\) 0 0
\(883\) 52.7256i 1.77436i −0.461427 0.887178i \(-0.652662\pi\)
0.461427 0.887178i \(-0.347338\pi\)
\(884\) −0.198204 −0.00666632
\(885\) 0 0
\(886\) 28.2563 0.949288
\(887\) 20.7833i 0.697834i −0.937154 0.348917i \(-0.886550\pi\)
0.937154 0.348917i \(-0.113450\pi\)
\(888\) 0 0
\(889\) 14.6660 0.491881
\(890\) −20.0294 35.3813i −0.671387 1.18598i
\(891\) 0 0
\(892\) 3.53790i 0.118458i
\(893\) 17.2482i 0.577190i
\(894\) 0 0
\(895\) −20.3939 + 11.5450i −0.681694 + 0.385908i
\(896\) −12.3547 −0.412743
\(897\) 0 0
\(898\) 53.5546i 1.78714i
\(899\) 4.49210 0.149820
\(900\) 0 0
\(901\) 23.3902 0.779241
\(902\) 7.76368i 0.258502i
\(903\) 0 0
\(904\) 41.3461 1.37515
\(905\) −23.8808 + 13.5190i −0.793824 + 0.449385i
\(906\) 0 0
\(907\) 26.2116i 0.870342i −0.900348 0.435171i \(-0.856688\pi\)
0.900348 0.435171i \(-0.143312\pi\)
\(908\) 3.20076i 0.106221i
\(909\) 0 0
\(910\) −0.772713 1.36497i −0.0256152 0.0452484i
\(911\) −31.4264 −1.04120 −0.520601 0.853800i \(-0.674292\pi\)
−0.520601 + 0.853800i \(0.674292\pi\)
\(912\) 0 0
\(913\) 7.37921i 0.244216i
\(914\) −34.7070 −1.14800
\(915\) 0 0
\(916\) −1.76348 −0.0582669
\(917\) 13.0057i 0.429486i
\(918\) 0 0
\(919\) 21.0083 0.693000 0.346500 0.938050i \(-0.387370\pi\)
0.346500 + 0.938050i \(0.387370\pi\)
\(920\) 17.4878 9.89989i 0.576557 0.326390i
\(921\) 0 0
\(922\) 1.23544i 0.0406870i
\(923\) 3.67245i 0.120880i
\(924\) 0 0
\(925\) 30.8812 + 18.5343i 1.01537 + 0.609405i
\(926\) 35.1988 1.15670
\(927\) 0 0
\(928\) 0.923188i 0.0303051i
\(929\) 37.3920 1.22679 0.613395 0.789776i \(-0.289803\pi\)
0.613395 + 0.789776i \(0.289803\pi\)
\(930\) 0 0
\(931\) −31.2762 −1.02504
\(932\) 0.695750i 0.0227901i
\(933\) 0 0
\(934\) 21.4796 0.702836
\(935\) −1.55403 2.74514i −0.0508222 0.0897757i
\(936\) 0 0
\(937\) 13.8377i 0.452057i −0.974121 0.226029i \(-0.927426\pi\)
0.974121 0.226029i \(-0.0725743\pi\)
\(938\) 27.1431i 0.886253i
\(939\) 0 0
\(940\) −0.535553 0.946037i −0.0174678 0.0308563i
\(941\) −14.5708 −0.474995 −0.237497 0.971388i \(-0.576327\pi\)
−0.237497 + 0.971388i \(0.576327\pi\)
\(942\) 0 0
\(943\) 36.9867i 1.20445i
\(944\) 16.2571 0.529125
\(945\) 0 0
\(946\) −0.668144 −0.0217232
\(947\) 43.4267i 1.41118i −0.708622 0.705589i \(-0.750683\pi\)
0.708622 0.705589i \(-0.249317\pi\)
\(948\) 0 0
\(949\) −0.276406 −0.00897252
\(950\) −33.7242 20.2407i −1.09416 0.656695i
\(951\) 0 0
\(952\) 11.0614i 0.358501i
\(953\) 51.0500i 1.65367i 0.562442 + 0.826836i \(0.309862\pi\)
−0.562442 + 0.826836i \(0.690138\pi\)
\(954\) 0 0
\(955\) 18.8651 10.6796i 0.610459 0.345582i
\(956\) 2.75512 0.0891071
\(957\) 0 0
\(958\) 22.1004i 0.714030i
\(959\) 2.62289 0.0846976
\(960\) 0 0
\(961\) −10.8210 −0.349065
\(962\) 3.97955i 0.128306i
\(963\) 0 0
\(964\) 3.57340 0.115091
\(965\) −12.2117 21.5716i −0.393109 0.694414i
\(966\) 0 0
\(967\) 56.0658i 1.80295i 0.432828 + 0.901477i \(0.357516\pi\)
−0.432828 + 0.901477i \(0.642484\pi\)
\(968\) 31.5910i 1.01537i
\(969\) 0 0
\(970\) 18.7417 10.6097i 0.601758 0.340657i
\(971\) 6.58898 0.211450 0.105725 0.994395i \(-0.466284\pi\)
0.105725 + 0.994395i \(0.466284\pi\)
\(972\) 0 0
\(973\) 4.42152i 0.141748i
\(974\) −13.4693 −0.431585
\(975\) 0 0
\(976\) 6.25683 0.200276
\(977\) 29.3327i 0.938437i −0.883082 0.469218i \(-0.844536\pi\)
0.883082 0.469218i \(-0.155464\pi\)
\(978\) 0 0
\(979\) 6.37039 0.203599
\(980\) −1.71545 + 0.971117i −0.0547979 + 0.0310212i
\(981\) 0 0
\(982\) 51.5814i 1.64603i
\(983\) 13.6719i 0.436064i 0.975942 + 0.218032i \(0.0699638\pi\)
−0.975942 + 0.218032i \(0.930036\pi\)
\(984\) 0 0
\(985\) 2.20791 + 3.90019i 0.0703497 + 0.124270i
\(986\) 4.02653 0.128231
\(987\) 0 0
\(988\) 0.387220i 0.0123191i
\(989\) −3.18308 −0.101216
\(990\) 0 0
\(991\) 19.7210 0.626459 0.313230 0.949677i \(-0.398589\pi\)
0.313230 + 0.949677i \(0.398589\pi\)
\(992\) 4.14705i 0.131669i
\(993\) 0 0
\(994\) −15.4992 −0.491606
\(995\) −35.2539 + 19.9573i −1.11762 + 0.632688i
\(996\) 0 0
\(997\) 53.4618i 1.69315i 0.532268 + 0.846576i \(0.321340\pi\)
−0.532268 + 0.846576i \(0.678660\pi\)
\(998\) 60.1400i 1.90370i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.k.784.9 yes 12
3.2 odd 2 1305.2.c.l.784.4 yes 12
5.2 odd 4 6525.2.a.ce.1.4 12
5.3 odd 4 6525.2.a.ce.1.9 12
5.4 even 2 inner 1305.2.c.k.784.4 12
15.2 even 4 6525.2.a.cf.1.9 12
15.8 even 4 6525.2.a.cf.1.4 12
15.14 odd 2 1305.2.c.l.784.9 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.c.k.784.4 12 5.4 even 2 inner
1305.2.c.k.784.9 yes 12 1.1 even 1 trivial
1305.2.c.l.784.4 yes 12 3.2 odd 2
1305.2.c.l.784.9 yes 12 15.14 odd 2
6525.2.a.ce.1.4 12 5.2 odd 4
6525.2.a.ce.1.9 12 5.3 odd 4
6525.2.a.cf.1.4 12 15.8 even 4
6525.2.a.cf.1.9 12 15.2 even 4