Properties

Label 1305.2.c.k.784.6
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 148x^{8} + 502x^{6} + 792x^{4} + 496x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.6
Root \(-0.328889i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.k.784.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.328889i q^{2} +1.89183 q^{4} +(2.20614 + 0.364635i) q^{5} -1.86588i q^{7} -1.27998i q^{8} +(0.119924 - 0.725574i) q^{10} -0.564087 q^{11} +4.95986i q^{13} -0.613668 q^{14} +3.36269 q^{16} +7.06879i q^{17} +3.32971 q^{19} +(4.17364 + 0.689828i) q^{20} +0.185522i q^{22} -2.36471i q^{23} +(4.73408 + 1.60887i) q^{25} +1.63124 q^{26} -3.52994i q^{28} -1.00000 q^{29} +4.87352 q^{31} -3.66591i q^{32} +2.32485 q^{34} +(0.680366 - 4.11639i) q^{35} -8.50474i q^{37} -1.09510i q^{38} +(0.466725 - 2.82381i) q^{40} -7.86030 q^{41} -4.39693i q^{43} -1.06716 q^{44} -0.777727 q^{46} +7.06879i q^{47} +3.51848 q^{49} +(0.529139 - 1.55699i) q^{50} +9.38323i q^{52} -4.18169i q^{53} +(-1.24445 - 0.205686i) q^{55} -2.38829 q^{56} +0.328889i q^{58} -9.01198 q^{59} -1.26059 q^{61} -1.60285i q^{62} +5.51971 q^{64} +(-1.80854 + 10.9421i) q^{65} -6.61254i q^{67} +13.3730i q^{68} +(-1.35384 - 0.223765i) q^{70} +5.46480 q^{71} -5.77659i q^{73} -2.79711 q^{74} +6.29925 q^{76} +1.05252i q^{77} -12.1018 q^{79} +(7.41856 + 1.22616i) q^{80} +2.58516i q^{82} -9.41830i q^{83} +(-2.57753 + 15.5947i) q^{85} -1.44610 q^{86} +0.722020i q^{88} -0.622547 q^{89} +9.25453 q^{91} -4.47364i q^{92} +2.32485 q^{94} +(7.34579 + 1.21413i) q^{95} +19.2638i q^{97} -1.15719i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 10 q^{10} - 12 q^{11} + 16 q^{14} + 16 q^{16} + 20 q^{19} + 14 q^{20} + 8 q^{25} - 56 q^{26} - 12 q^{29} - 16 q^{31} - 4 q^{34} - 16 q^{35} + 16 q^{40} - 32 q^{41} + 68 q^{44} + 20 q^{46}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.328889i 0.232560i −0.993216 0.116280i \(-0.962903\pi\)
0.993216 0.116280i \(-0.0370969\pi\)
\(3\) 0 0
\(4\) 1.89183 0.945916
\(5\) 2.20614 + 0.364635i 0.986615 + 0.163070i
\(6\) 0 0
\(7\) 1.86588i 0.705237i −0.935767 0.352619i \(-0.885291\pi\)
0.935767 0.352619i \(-0.114709\pi\)
\(8\) 1.27998i 0.452541i
\(9\) 0 0
\(10\) 0.119924 0.725574i 0.0379234 0.229447i
\(11\) −0.564087 −0.170079 −0.0850393 0.996378i \(-0.527102\pi\)
−0.0850393 + 0.996378i \(0.527102\pi\)
\(12\) 0 0
\(13\) 4.95986i 1.37562i 0.725891 + 0.687809i \(0.241428\pi\)
−0.725891 + 0.687809i \(0.758572\pi\)
\(14\) −0.613668 −0.164010
\(15\) 0 0
\(16\) 3.36269 0.840673
\(17\) 7.06879i 1.71443i 0.514956 + 0.857217i \(0.327808\pi\)
−0.514956 + 0.857217i \(0.672192\pi\)
\(18\) 0 0
\(19\) 3.32971 0.763887 0.381944 0.924186i \(-0.375255\pi\)
0.381944 + 0.924186i \(0.375255\pi\)
\(20\) 4.17364 + 0.689828i 0.933255 + 0.154250i
\(21\) 0 0
\(22\) 0.185522i 0.0395534i
\(23\) 2.36471i 0.493076i −0.969133 0.246538i \(-0.920707\pi\)
0.969133 0.246538i \(-0.0792931\pi\)
\(24\) 0 0
\(25\) 4.73408 + 1.60887i 0.946817 + 0.321774i
\(26\) 1.63124 0.319913
\(27\) 0 0
\(28\) 3.52994i 0.667095i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 4.87352 0.875310 0.437655 0.899143i \(-0.355809\pi\)
0.437655 + 0.899143i \(0.355809\pi\)
\(32\) 3.66591i 0.648048i
\(33\) 0 0
\(34\) 2.32485 0.398708
\(35\) 0.680366 4.11639i 0.115003 0.695798i
\(36\) 0 0
\(37\) 8.50474i 1.39817i −0.715038 0.699085i \(-0.753591\pi\)
0.715038 0.699085i \(-0.246409\pi\)
\(38\) 1.09510i 0.177649i
\(39\) 0 0
\(40\) 0.466725 2.82381i 0.0737958 0.446484i
\(41\) −7.86030 −1.22757 −0.613786 0.789473i \(-0.710354\pi\)
−0.613786 + 0.789473i \(0.710354\pi\)
\(42\) 0 0
\(43\) 4.39693i 0.670526i −0.942125 0.335263i \(-0.891175\pi\)
0.942125 0.335263i \(-0.108825\pi\)
\(44\) −1.06716 −0.160880
\(45\) 0 0
\(46\) −0.777727 −0.114670
\(47\) 7.06879i 1.03109i 0.856863 + 0.515544i \(0.172410\pi\)
−0.856863 + 0.515544i \(0.827590\pi\)
\(48\) 0 0
\(49\) 3.51848 0.502640
\(50\) 0.529139 1.55699i 0.0748316 0.220191i
\(51\) 0 0
\(52\) 9.38323i 1.30122i
\(53\) 4.18169i 0.574400i −0.957871 0.287200i \(-0.907276\pi\)
0.957871 0.287200i \(-0.0927244\pi\)
\(54\) 0 0
\(55\) −1.24445 0.205686i −0.167802 0.0277346i
\(56\) −2.38829 −0.319149
\(57\) 0 0
\(58\) 0.328889i 0.0431852i
\(59\) −9.01198 −1.17326 −0.586630 0.809855i \(-0.699546\pi\)
−0.586630 + 0.809855i \(0.699546\pi\)
\(60\) 0 0
\(61\) −1.26059 −0.161402 −0.0807009 0.996738i \(-0.525716\pi\)
−0.0807009 + 0.996738i \(0.525716\pi\)
\(62\) 1.60285i 0.203562i
\(63\) 0 0
\(64\) 5.51971 0.689964
\(65\) −1.80854 + 10.9421i −0.224322 + 1.35721i
\(66\) 0 0
\(67\) 6.61254i 0.807851i −0.914792 0.403925i \(-0.867646\pi\)
0.914792 0.403925i \(-0.132354\pi\)
\(68\) 13.3730i 1.62171i
\(69\) 0 0
\(70\) −1.35384 0.223765i −0.161814 0.0267450i
\(71\) 5.46480 0.648552 0.324276 0.945962i \(-0.394879\pi\)
0.324276 + 0.945962i \(0.394879\pi\)
\(72\) 0 0
\(73\) 5.77659i 0.676099i −0.941128 0.338049i \(-0.890233\pi\)
0.941128 0.338049i \(-0.109767\pi\)
\(74\) −2.79711 −0.325158
\(75\) 0 0
\(76\) 6.29925 0.722573
\(77\) 1.05252i 0.119946i
\(78\) 0 0
\(79\) −12.1018 −1.36156 −0.680782 0.732486i \(-0.738360\pi\)
−0.680782 + 0.732486i \(0.738360\pi\)
\(80\) 7.41856 + 1.22616i 0.829420 + 0.137088i
\(81\) 0 0
\(82\) 2.58516i 0.285484i
\(83\) 9.41830i 1.03379i −0.856048 0.516896i \(-0.827087\pi\)
0.856048 0.516896i \(-0.172913\pi\)
\(84\) 0 0
\(85\) −2.57753 + 15.5947i −0.279572 + 1.69148i
\(86\) −1.44610 −0.155937
\(87\) 0 0
\(88\) 0.722020i 0.0769676i
\(89\) −0.622547 −0.0659899 −0.0329949 0.999456i \(-0.510505\pi\)
−0.0329949 + 0.999456i \(0.510505\pi\)
\(90\) 0 0
\(91\) 9.25453 0.970138
\(92\) 4.47364i 0.466409i
\(93\) 0 0
\(94\) 2.32485 0.239790
\(95\) 7.34579 + 1.21413i 0.753662 + 0.124567i
\(96\) 0 0
\(97\) 19.2638i 1.95594i 0.208743 + 0.977970i \(0.433063\pi\)
−0.208743 + 0.977970i \(0.566937\pi\)
\(98\) 1.15719i 0.116894i
\(99\) 0 0
\(100\) 8.95609 + 3.04371i 0.895609 + 0.304371i
\(101\) −9.33018 −0.928387 −0.464194 0.885734i \(-0.653656\pi\)
−0.464194 + 0.885734i \(0.653656\pi\)
\(102\) 0 0
\(103\) 7.79546i 0.768110i −0.923310 0.384055i \(-0.874527\pi\)
0.923310 0.384055i \(-0.125473\pi\)
\(104\) 6.34853 0.622524
\(105\) 0 0
\(106\) −1.37531 −0.133582
\(107\) 15.5446i 1.50276i −0.659873 0.751378i \(-0.729390\pi\)
0.659873 0.751378i \(-0.270610\pi\)
\(108\) 0 0
\(109\) 3.89814 0.373374 0.186687 0.982419i \(-0.440225\pi\)
0.186687 + 0.982419i \(0.440225\pi\)
\(110\) −0.0676477 + 0.409287i −0.00644996 + 0.0390239i
\(111\) 0 0
\(112\) 6.27439i 0.592874i
\(113\) 6.89464i 0.648593i 0.945955 + 0.324297i \(0.105128\pi\)
−0.945955 + 0.324297i \(0.894872\pi\)
\(114\) 0 0
\(115\) 0.862256 5.21688i 0.0804058 0.486476i
\(116\) −1.89183 −0.175652
\(117\) 0 0
\(118\) 2.96394i 0.272853i
\(119\) 13.1895 1.20908
\(120\) 0 0
\(121\) −10.6818 −0.971073
\(122\) 0.414593i 0.0375355i
\(123\) 0 0
\(124\) 9.21989 0.827970
\(125\) 9.85739 + 5.27560i 0.881671 + 0.471864i
\(126\) 0 0
\(127\) 6.04498i 0.536405i −0.963363 0.268203i \(-0.913570\pi\)
0.963363 0.268203i \(-0.0864296\pi\)
\(128\) 9.14720i 0.808506i
\(129\) 0 0
\(130\) 3.59875 + 0.594808i 0.315631 + 0.0521681i
\(131\) −7.99224 −0.698285 −0.349143 0.937070i \(-0.613527\pi\)
−0.349143 + 0.937070i \(0.613527\pi\)
\(132\) 0 0
\(133\) 6.21284i 0.538722i
\(134\) −2.17479 −0.187873
\(135\) 0 0
\(136\) 9.04791 0.775852
\(137\) 14.9670i 1.27872i −0.768907 0.639361i \(-0.779199\pi\)
0.768907 0.639361i \(-0.220801\pi\)
\(138\) 0 0
\(139\) 5.25453 0.445683 0.222842 0.974855i \(-0.428467\pi\)
0.222842 + 0.974855i \(0.428467\pi\)
\(140\) 1.28714 7.78753i 0.108783 0.658166i
\(141\) 0 0
\(142\) 1.79731i 0.150827i
\(143\) 2.79779i 0.233963i
\(144\) 0 0
\(145\) −2.20614 0.364635i −0.183210 0.0302813i
\(146\) −1.89986 −0.157233
\(147\) 0 0
\(148\) 16.0895i 1.32255i
\(149\) −2.97589 −0.243795 −0.121897 0.992543i \(-0.538898\pi\)
−0.121897 + 0.992543i \(0.538898\pi\)
\(150\) 0 0
\(151\) −12.8646 −1.04690 −0.523452 0.852055i \(-0.675356\pi\)
−0.523452 + 0.852055i \(0.675356\pi\)
\(152\) 4.26196i 0.345690i
\(153\) 0 0
\(154\) 0.346162 0.0278945
\(155\) 10.7517 + 1.77706i 0.863594 + 0.142737i
\(156\) 0 0
\(157\) 8.72737i 0.696520i 0.937398 + 0.348260i \(0.113227\pi\)
−0.937398 + 0.348260i \(0.886773\pi\)
\(158\) 3.98016i 0.316645i
\(159\) 0 0
\(160\) 1.33672 8.08751i 0.105677 0.639374i
\(161\) −4.41227 −0.347736
\(162\) 0 0
\(163\) 13.4872i 1.05640i 0.849120 + 0.528199i \(0.177133\pi\)
−0.849120 + 0.528199i \(0.822867\pi\)
\(164\) −14.8704 −1.16118
\(165\) 0 0
\(166\) −3.09757 −0.240418
\(167\) 24.7351i 1.91406i 0.289993 + 0.957029i \(0.406347\pi\)
−0.289993 + 0.957029i \(0.593653\pi\)
\(168\) 0 0
\(169\) −11.6003 −0.892327
\(170\) 5.12893 + 0.847720i 0.393371 + 0.0650171i
\(171\) 0 0
\(172\) 8.31826i 0.634262i
\(173\) 15.4531i 1.17488i 0.809268 + 0.587440i \(0.199864\pi\)
−0.809268 + 0.587440i \(0.800136\pi\)
\(174\) 0 0
\(175\) 3.00196 8.83324i 0.226927 0.667730i
\(176\) −1.89685 −0.142980
\(177\) 0 0
\(178\) 0.204749i 0.0153466i
\(179\) 17.3358 1.29573 0.647867 0.761753i \(-0.275661\pi\)
0.647867 + 0.761753i \(0.275661\pi\)
\(180\) 0 0
\(181\) −2.04972 −0.152355 −0.0761773 0.997094i \(-0.524271\pi\)
−0.0761773 + 0.997094i \(0.524271\pi\)
\(182\) 3.04371i 0.225615i
\(183\) 0 0
\(184\) −3.02678 −0.223137
\(185\) 3.10112 18.7626i 0.227999 1.37946i
\(186\) 0 0
\(187\) 3.98741i 0.291588i
\(188\) 13.3730i 0.975324i
\(189\) 0 0
\(190\) 0.399313 2.41595i 0.0289692 0.175271i
\(191\) −1.76575 −0.127765 −0.0638824 0.997957i \(-0.520348\pi\)
−0.0638824 + 0.997957i \(0.520348\pi\)
\(192\) 0 0
\(193\) 8.81831i 0.634756i 0.948299 + 0.317378i \(0.102802\pi\)
−0.948299 + 0.317378i \(0.897198\pi\)
\(194\) 6.33564 0.454873
\(195\) 0 0
\(196\) 6.65638 0.475455
\(197\) 13.4231i 0.956356i −0.878263 0.478178i \(-0.841297\pi\)
0.878263 0.478178i \(-0.158703\pi\)
\(198\) 0 0
\(199\) 6.08459 0.431325 0.215663 0.976468i \(-0.430809\pi\)
0.215663 + 0.976468i \(0.430809\pi\)
\(200\) 2.05932 6.05953i 0.145616 0.428474i
\(201\) 0 0
\(202\) 3.06859i 0.215905i
\(203\) 1.86588i 0.130959i
\(204\) 0 0
\(205\) −17.3409 2.86614i −1.21114 0.200180i
\(206\) −2.56384 −0.178631
\(207\) 0 0
\(208\) 16.6785i 1.15645i
\(209\) −1.87824 −0.129921
\(210\) 0 0
\(211\) 9.05366 0.623280 0.311640 0.950200i \(-0.399122\pi\)
0.311640 + 0.950200i \(0.399122\pi\)
\(212\) 7.91106i 0.543334i
\(213\) 0 0
\(214\) −5.11245 −0.349480
\(215\) 1.60328 9.70024i 0.109342 0.661551i
\(216\) 0 0
\(217\) 9.09342i 0.617302i
\(218\) 1.28206i 0.0868318i
\(219\) 0 0
\(220\) −2.35430 0.389123i −0.158727 0.0262346i
\(221\) −35.0602 −2.35841
\(222\) 0 0
\(223\) 18.5300i 1.24086i 0.784260 + 0.620432i \(0.213043\pi\)
−0.784260 + 0.620432i \(0.786957\pi\)
\(224\) −6.84016 −0.457028
\(225\) 0 0
\(226\) 2.26757 0.150837
\(227\) 23.6011i 1.56646i 0.621734 + 0.783229i \(0.286429\pi\)
−0.621734 + 0.783229i \(0.713571\pi\)
\(228\) 0 0
\(229\) −10.5987 −0.700384 −0.350192 0.936678i \(-0.613884\pi\)
−0.350192 + 0.936678i \(0.613884\pi\)
\(230\) −1.71577 0.283586i −0.113135 0.0186991i
\(231\) 0 0
\(232\) 1.27998i 0.0840348i
\(233\) 8.62938i 0.565329i −0.959219 0.282665i \(-0.908782\pi\)
0.959219 0.282665i \(-0.0912183\pi\)
\(234\) 0 0
\(235\) −2.57753 + 15.5947i −0.168139 + 1.01729i
\(236\) −17.0492 −1.10981
\(237\) 0 0
\(238\) 4.33789i 0.281184i
\(239\) 24.0914 1.55834 0.779171 0.626811i \(-0.215640\pi\)
0.779171 + 0.626811i \(0.215640\pi\)
\(240\) 0 0
\(241\) −25.6988 −1.65541 −0.827703 0.561166i \(-0.810353\pi\)
−0.827703 + 0.561166i \(0.810353\pi\)
\(242\) 3.51313i 0.225832i
\(243\) 0 0
\(244\) −2.38482 −0.152673
\(245\) 7.76225 + 1.28296i 0.495912 + 0.0819654i
\(246\) 0 0
\(247\) 16.5149i 1.05082i
\(248\) 6.23801i 0.396114i
\(249\) 0 0
\(250\) 1.73509 3.24198i 0.109736 0.205041i
\(251\) −25.0072 −1.57844 −0.789219 0.614112i \(-0.789514\pi\)
−0.789219 + 0.614112i \(0.789514\pi\)
\(252\) 0 0
\(253\) 1.33390i 0.0838617i
\(254\) −1.98813 −0.124746
\(255\) 0 0
\(256\) 8.03101 0.501938
\(257\) 1.73788i 0.108406i 0.998530 + 0.0542030i \(0.0172618\pi\)
−0.998530 + 0.0542030i \(0.982738\pi\)
\(258\) 0 0
\(259\) −15.8688 −0.986042
\(260\) −3.42145 + 20.7007i −0.212189 + 1.28380i
\(261\) 0 0
\(262\) 2.62856i 0.162393i
\(263\) 8.87689i 0.547372i −0.961819 0.273686i \(-0.911757\pi\)
0.961819 0.273686i \(-0.0882430\pi\)
\(264\) 0 0
\(265\) 1.52479 9.22539i 0.0936672 0.566711i
\(266\) −2.04333 −0.125285
\(267\) 0 0
\(268\) 12.5098i 0.764159i
\(269\) 6.55657 0.399761 0.199881 0.979820i \(-0.435945\pi\)
0.199881 + 0.979820i \(0.435945\pi\)
\(270\) 0 0
\(271\) −20.8413 −1.26602 −0.633008 0.774145i \(-0.718180\pi\)
−0.633008 + 0.774145i \(0.718180\pi\)
\(272\) 23.7702i 1.44128i
\(273\) 0 0
\(274\) −4.92250 −0.297379
\(275\) −2.67043 0.907542i −0.161033 0.0547268i
\(276\) 0 0
\(277\) 17.7687i 1.06762i 0.845605 + 0.533810i \(0.179240\pi\)
−0.845605 + 0.533810i \(0.820760\pi\)
\(278\) 1.72815i 0.103648i
\(279\) 0 0
\(280\) −5.26890 0.870855i −0.314877 0.0520435i
\(281\) 14.8520 0.885995 0.442998 0.896523i \(-0.353915\pi\)
0.442998 + 0.896523i \(0.353915\pi\)
\(282\) 0 0
\(283\) 13.8856i 0.825414i −0.910864 0.412707i \(-0.864583\pi\)
0.910864 0.412707i \(-0.135417\pi\)
\(284\) 10.3385 0.613476
\(285\) 0 0
\(286\) −0.920163 −0.0544104
\(287\) 14.6664i 0.865730i
\(288\) 0 0
\(289\) −32.9678 −1.93928
\(290\) −0.119924 + 0.725574i −0.00704220 + 0.0426072i
\(291\) 0 0
\(292\) 10.9283i 0.639533i
\(293\) 7.21254i 0.421361i −0.977555 0.210681i \(-0.932432\pi\)
0.977555 0.210681i \(-0.0675680\pi\)
\(294\) 0 0
\(295\) −19.8817 3.28608i −1.15756 0.191323i
\(296\) −10.8859 −0.632730
\(297\) 0 0
\(298\) 0.978738i 0.0566968i
\(299\) 11.7286 0.678285
\(300\) 0 0
\(301\) −8.20417 −0.472880
\(302\) 4.23101i 0.243467i
\(303\) 0 0
\(304\) 11.1968 0.642179
\(305\) −2.78103 0.459654i −0.159241 0.0263197i
\(306\) 0 0
\(307\) 21.2856i 1.21483i 0.794383 + 0.607417i \(0.207794\pi\)
−0.794383 + 0.607417i \(0.792206\pi\)
\(308\) 1.99119i 0.113459i
\(309\) 0 0
\(310\) 0.584454 3.53610i 0.0331948 0.200837i
\(311\) −29.1250 −1.65153 −0.825764 0.564015i \(-0.809256\pi\)
−0.825764 + 0.564015i \(0.809256\pi\)
\(312\) 0 0
\(313\) 26.1401i 1.47752i −0.673966 0.738762i \(-0.735411\pi\)
0.673966 0.738762i \(-0.264589\pi\)
\(314\) 2.87034 0.161982
\(315\) 0 0
\(316\) −22.8946 −1.28792
\(317\) 7.83033i 0.439795i 0.975523 + 0.219898i \(0.0705723\pi\)
−0.975523 + 0.219898i \(0.929428\pi\)
\(318\) 0 0
\(319\) 0.564087 0.0315828
\(320\) 12.1772 + 2.01268i 0.680728 + 0.112512i
\(321\) 0 0
\(322\) 1.45115i 0.0808693i
\(323\) 23.5370i 1.30963i
\(324\) 0 0
\(325\) −7.97977 + 23.4804i −0.442638 + 1.30246i
\(326\) 4.43579 0.245676
\(327\) 0 0
\(328\) 10.0610i 0.555527i
\(329\) 13.1895 0.727163
\(330\) 0 0
\(331\) −18.8874 −1.03814 −0.519072 0.854731i \(-0.673722\pi\)
−0.519072 + 0.854731i \(0.673722\pi\)
\(332\) 17.8178i 0.977881i
\(333\) 0 0
\(334\) 8.13509 0.445132
\(335\) 2.41116 14.5882i 0.131736 0.797037i
\(336\) 0 0
\(337\) 8.33059i 0.453796i −0.973919 0.226898i \(-0.927142\pi\)
0.973919 0.226898i \(-0.0728584\pi\)
\(338\) 3.81519i 0.207519i
\(339\) 0 0
\(340\) −4.87625 + 29.5026i −0.264452 + 1.60000i
\(341\) −2.74909 −0.148872
\(342\) 0 0
\(343\) 19.6263i 1.05972i
\(344\) −5.62799 −0.303441
\(345\) 0 0
\(346\) 5.08236 0.273230
\(347\) 32.5993i 1.75002i −0.484104 0.875010i \(-0.660854\pi\)
0.484104 0.875010i \(-0.339146\pi\)
\(348\) 0 0
\(349\) −33.6370 −1.80055 −0.900273 0.435326i \(-0.856633\pi\)
−0.900273 + 0.435326i \(0.856633\pi\)
\(350\) −2.90516 0.987312i −0.155287 0.0527740i
\(351\) 0 0
\(352\) 2.06789i 0.110219i
\(353\) 2.85951i 0.152196i −0.997100 0.0760982i \(-0.975754\pi\)
0.997100 0.0760982i \(-0.0242463\pi\)
\(354\) 0 0
\(355\) 12.0561 + 1.99266i 0.639871 + 0.105759i
\(356\) −1.17775 −0.0624209
\(357\) 0 0
\(358\) 5.70154i 0.301335i
\(359\) 33.6883 1.77800 0.889001 0.457905i \(-0.151400\pi\)
0.889001 + 0.457905i \(0.151400\pi\)
\(360\) 0 0
\(361\) −7.91305 −0.416477
\(362\) 0.674130i 0.0354315i
\(363\) 0 0
\(364\) 17.5080 0.917669
\(365\) 2.10635 12.7440i 0.110251 0.667049i
\(366\) 0 0
\(367\) 9.63376i 0.502878i −0.967873 0.251439i \(-0.919096\pi\)
0.967873 0.251439i \(-0.0809038\pi\)
\(368\) 7.95180i 0.414516i
\(369\) 0 0
\(370\) −6.17082 1.01993i −0.320805 0.0530234i
\(371\) −7.80255 −0.405088
\(372\) 0 0
\(373\) 5.28344i 0.273566i 0.990601 + 0.136783i \(0.0436763\pi\)
−0.990601 + 0.136783i \(0.956324\pi\)
\(374\) −1.31141 −0.0678116
\(375\) 0 0
\(376\) 9.04791 0.466610
\(377\) 4.95986i 0.255446i
\(378\) 0 0
\(379\) 2.62792 0.134987 0.0674936 0.997720i \(-0.478500\pi\)
0.0674936 + 0.997720i \(0.478500\pi\)
\(380\) 13.8970 + 2.29692i 0.712901 + 0.117830i
\(381\) 0 0
\(382\) 0.580734i 0.0297129i
\(383\) 0.626829i 0.0320295i 0.999872 + 0.0160147i \(0.00509787\pi\)
−0.999872 + 0.0160147i \(0.994902\pi\)
\(384\) 0 0
\(385\) −0.383785 + 2.32200i −0.0195595 + 0.118340i
\(386\) 2.90024 0.147618
\(387\) 0 0
\(388\) 36.4438i 1.85016i
\(389\) 26.3950 1.33828 0.669140 0.743136i \(-0.266662\pi\)
0.669140 + 0.743136i \(0.266662\pi\)
\(390\) 0 0
\(391\) 16.7156 0.845347
\(392\) 4.50359i 0.227465i
\(393\) 0 0
\(394\) −4.41471 −0.222410
\(395\) −26.6983 4.41275i −1.34334 0.222030i
\(396\) 0 0
\(397\) 27.8333i 1.39691i −0.715652 0.698457i \(-0.753870\pi\)
0.715652 0.698457i \(-0.246130\pi\)
\(398\) 2.00115i 0.100309i
\(399\) 0 0
\(400\) 15.9193 + 5.41013i 0.795963 + 0.270507i
\(401\) −11.0561 −0.552117 −0.276058 0.961141i \(-0.589028\pi\)
−0.276058 + 0.961141i \(0.589028\pi\)
\(402\) 0 0
\(403\) 24.1720i 1.20409i
\(404\) −17.6511 −0.878176
\(405\) 0 0
\(406\) 0.613668 0.0304558
\(407\) 4.79741i 0.237799i
\(408\) 0 0
\(409\) −1.57317 −0.0777882 −0.0388941 0.999243i \(-0.512383\pi\)
−0.0388941 + 0.999243i \(0.512383\pi\)
\(410\) −0.942641 + 5.70323i −0.0465537 + 0.281662i
\(411\) 0 0
\(412\) 14.7477i 0.726567i
\(413\) 16.8153i 0.827427i
\(414\) 0 0
\(415\) 3.43424 20.7781i 0.168580 1.01996i
\(416\) 18.1824 0.891467
\(417\) 0 0
\(418\) 0.617733i 0.0302143i
\(419\) 35.9256 1.75508 0.877540 0.479504i \(-0.159183\pi\)
0.877540 + 0.479504i \(0.159183\pi\)
\(420\) 0 0
\(421\) −15.5075 −0.755788 −0.377894 0.925849i \(-0.623352\pi\)
−0.377894 + 0.925849i \(0.623352\pi\)
\(422\) 2.97765i 0.144950i
\(423\) 0 0
\(424\) −5.35248 −0.259940
\(425\) −11.3728 + 33.4642i −0.551660 + 1.62325i
\(426\) 0 0
\(427\) 2.35211i 0.113827i
\(428\) 29.4078i 1.42148i
\(429\) 0 0
\(430\) −3.19030 0.527300i −0.153850 0.0254286i
\(431\) −16.9390 −0.815924 −0.407962 0.912999i \(-0.633760\pi\)
−0.407962 + 0.912999i \(0.633760\pi\)
\(432\) 0 0
\(433\) 40.5136i 1.94696i −0.228772 0.973480i \(-0.573471\pi\)
0.228772 0.973480i \(-0.426529\pi\)
\(434\) −2.99072 −0.143559
\(435\) 0 0
\(436\) 7.37463 0.353181
\(437\) 7.87380i 0.376655i
\(438\) 0 0
\(439\) 23.4655 1.11995 0.559973 0.828511i \(-0.310812\pi\)
0.559973 + 0.828511i \(0.310812\pi\)
\(440\) −0.263274 + 1.59287i −0.0125511 + 0.0759373i
\(441\) 0 0
\(442\) 11.5309i 0.548470i
\(443\) 16.3994i 0.779161i 0.920992 + 0.389580i \(0.127380\pi\)
−0.920992 + 0.389580i \(0.872620\pi\)
\(444\) 0 0
\(445\) −1.37342 0.227002i −0.0651066 0.0107609i
\(446\) 6.09432 0.288575
\(447\) 0 0
\(448\) 10.2991i 0.486588i
\(449\) −8.92984 −0.421425 −0.210713 0.977548i \(-0.567578\pi\)
−0.210713 + 0.977548i \(0.567578\pi\)
\(450\) 0 0
\(451\) 4.43389 0.208784
\(452\) 13.0435i 0.613515i
\(453\) 0 0
\(454\) 7.76213 0.364295
\(455\) 20.4168 + 3.37452i 0.957152 + 0.158200i
\(456\) 0 0
\(457\) 3.16068i 0.147850i 0.997264 + 0.0739252i \(0.0235526\pi\)
−0.997264 + 0.0739252i \(0.976447\pi\)
\(458\) 3.48580i 0.162881i
\(459\) 0 0
\(460\) 1.63124 9.86946i 0.0760571 0.460166i
\(461\) −3.85936 −0.179748 −0.0898741 0.995953i \(-0.528646\pi\)
−0.0898741 + 0.995953i \(0.528646\pi\)
\(462\) 0 0
\(463\) 24.5493i 1.14090i 0.821331 + 0.570451i \(0.193232\pi\)
−0.821331 + 0.570451i \(0.806768\pi\)
\(464\) −3.36269 −0.156109
\(465\) 0 0
\(466\) −2.83811 −0.131473
\(467\) 16.7566i 0.775405i −0.921785 0.387703i \(-0.873269\pi\)
0.921785 0.387703i \(-0.126731\pi\)
\(468\) 0 0
\(469\) −12.3382 −0.569727
\(470\) 5.12893 + 0.847720i 0.236580 + 0.0391024i
\(471\) 0 0
\(472\) 11.5352i 0.530949i
\(473\) 2.48025i 0.114042i
\(474\) 0 0
\(475\) 15.7631 + 5.35706i 0.723261 + 0.245799i
\(476\) 24.9524 1.14369
\(477\) 0 0
\(478\) 7.92339i 0.362407i
\(479\) −18.4125 −0.841289 −0.420644 0.907226i \(-0.638196\pi\)
−0.420644 + 0.907226i \(0.638196\pi\)
\(480\) 0 0
\(481\) 42.1823 1.92335
\(482\) 8.45205i 0.384981i
\(483\) 0 0
\(484\) −20.2082 −0.918554
\(485\) −7.02425 + 42.4986i −0.318955 + 1.92976i
\(486\) 0 0
\(487\) 18.3658i 0.832232i −0.909311 0.416116i \(-0.863391\pi\)
0.909311 0.416116i \(-0.136609\pi\)
\(488\) 1.61353i 0.0730410i
\(489\) 0 0
\(490\) 0.421952 2.55292i 0.0190618 0.115329i
\(491\) −17.2651 −0.779165 −0.389582 0.920992i \(-0.627381\pi\)
−0.389582 + 0.920992i \(0.627381\pi\)
\(492\) 0 0
\(493\) 7.06879i 0.318362i
\(494\) 5.43156 0.244378
\(495\) 0 0
\(496\) 16.3882 0.735850
\(497\) 10.1967i 0.457383i
\(498\) 0 0
\(499\) 22.2484 0.995976 0.497988 0.867184i \(-0.334072\pi\)
0.497988 + 0.867184i \(0.334072\pi\)
\(500\) 18.6485 + 9.98054i 0.833987 + 0.446344i
\(501\) 0 0
\(502\) 8.22458i 0.367081i
\(503\) 25.4171i 1.13329i −0.823961 0.566646i \(-0.808241\pi\)
0.823961 0.566646i \(-0.191759\pi\)
\(504\) 0 0
\(505\) −20.5836 3.40211i −0.915960 0.151392i
\(506\) 0.438706 0.0195028
\(507\) 0 0
\(508\) 11.4361i 0.507394i
\(509\) 12.5897 0.558028 0.279014 0.960287i \(-0.409992\pi\)
0.279014 + 0.960287i \(0.409992\pi\)
\(510\) 0 0
\(511\) −10.7784 −0.476810
\(512\) 20.9357i 0.925236i
\(513\) 0 0
\(514\) 0.571570 0.0252109
\(515\) 2.84250 17.1979i 0.125255 0.757828i
\(516\) 0 0
\(517\) 3.98741i 0.175366i
\(518\) 5.21909i 0.229313i
\(519\) 0 0
\(520\) 14.0057 + 2.31489i 0.614192 + 0.101515i
\(521\) −25.3294 −1.10970 −0.554851 0.831949i \(-0.687225\pi\)
−0.554851 + 0.831949i \(0.687225\pi\)
\(522\) 0 0
\(523\) 40.2732i 1.76102i 0.474023 + 0.880512i \(0.342801\pi\)
−0.474023 + 0.880512i \(0.657199\pi\)
\(524\) −15.1200 −0.660519
\(525\) 0 0
\(526\) −2.91951 −0.127297
\(527\) 34.4499i 1.50066i
\(528\) 0 0
\(529\) 17.4081 0.756876
\(530\) −3.03413 0.501487i −0.131794 0.0217832i
\(531\) 0 0
\(532\) 11.7537i 0.509586i
\(533\) 38.9860i 1.68867i
\(534\) 0 0
\(535\) 5.66811 34.2936i 0.245054 1.48264i
\(536\) −8.46393 −0.365586
\(537\) 0 0
\(538\) 2.15638i 0.0929683i
\(539\) −1.98473 −0.0854883
\(540\) 0 0
\(541\) 10.5720 0.454527 0.227263 0.973833i \(-0.427022\pi\)
0.227263 + 0.973833i \(0.427022\pi\)
\(542\) 6.85446i 0.294424i
\(543\) 0 0
\(544\) 25.9136 1.11103
\(545\) 8.59984 + 1.42140i 0.368377 + 0.0608860i
\(546\) 0 0
\(547\) 28.0175i 1.19794i −0.800770 0.598971i \(-0.795576\pi\)
0.800770 0.598971i \(-0.204424\pi\)
\(548\) 28.3151i 1.20956i
\(549\) 0 0
\(550\) −0.298480 + 0.878276i −0.0127272 + 0.0374498i
\(551\) −3.32971 −0.141850
\(552\) 0 0
\(553\) 22.5806i 0.960225i
\(554\) 5.84394 0.248285
\(555\) 0 0
\(556\) 9.94068 0.421579
\(557\) 38.8895i 1.64780i 0.566734 + 0.823901i \(0.308207\pi\)
−0.566734 + 0.823901i \(0.691793\pi\)
\(558\) 0 0
\(559\) 21.8082 0.922389
\(560\) 2.28786 13.8422i 0.0966798 0.584938i
\(561\) 0 0
\(562\) 4.88465i 0.206047i
\(563\) 30.3735i 1.28009i 0.768337 + 0.640045i \(0.221084\pi\)
−0.768337 + 0.640045i \(0.778916\pi\)
\(564\) 0 0
\(565\) −2.51403 + 15.2105i −0.105766 + 0.639912i
\(566\) −4.56683 −0.191958
\(567\) 0 0
\(568\) 6.99483i 0.293497i
\(569\) −46.3254 −1.94206 −0.971031 0.238953i \(-0.923196\pi\)
−0.971031 + 0.238953i \(0.923196\pi\)
\(570\) 0 0
\(571\) 38.9012 1.62796 0.813982 0.580890i \(-0.197295\pi\)
0.813982 + 0.580890i \(0.197295\pi\)
\(572\) 5.29295i 0.221310i
\(573\) 0 0
\(574\) 4.82361 0.201334
\(575\) 3.80451 11.1947i 0.158659 0.466853i
\(576\) 0 0
\(577\) 24.5426i 1.02172i 0.859663 + 0.510861i \(0.170673\pi\)
−0.859663 + 0.510861i \(0.829327\pi\)
\(578\) 10.8427i 0.450998i
\(579\) 0 0
\(580\) −4.17364 0.689828i −0.173301 0.0286435i
\(581\) −17.5734 −0.729069
\(582\) 0 0
\(583\) 2.35884i 0.0976931i
\(584\) −7.39392 −0.305963
\(585\) 0 0
\(586\) −2.37212 −0.0979915
\(587\) 42.3399i 1.74755i −0.486328 0.873777i \(-0.661664\pi\)
0.486328 0.873777i \(-0.338336\pi\)
\(588\) 0 0
\(589\) 16.2274 0.668638
\(590\) −1.08076 + 6.53886i −0.0444940 + 0.269201i
\(591\) 0 0
\(592\) 28.5988i 1.17540i
\(593\) 4.17650i 0.171508i 0.996316 + 0.0857541i \(0.0273299\pi\)
−0.996316 + 0.0857541i \(0.972670\pi\)
\(594\) 0 0
\(595\) 29.0979 + 4.80936i 1.19290 + 0.197165i
\(596\) −5.62989 −0.230609
\(597\) 0 0
\(598\) 3.85742i 0.157742i
\(599\) −11.9559 −0.488505 −0.244252 0.969712i \(-0.578543\pi\)
−0.244252 + 0.969712i \(0.578543\pi\)
\(600\) 0 0
\(601\) −25.1790 −1.02707 −0.513537 0.858068i \(-0.671665\pi\)
−0.513537 + 0.858068i \(0.671665\pi\)
\(602\) 2.69826i 0.109973i
\(603\) 0 0
\(604\) −24.3376 −0.990282
\(605\) −23.5655 3.89496i −0.958075 0.158353i
\(606\) 0 0
\(607\) 19.4870i 0.790953i 0.918476 + 0.395476i \(0.129420\pi\)
−0.918476 + 0.395476i \(0.870580\pi\)
\(608\) 12.2064i 0.495035i
\(609\) 0 0
\(610\) −0.151175 + 0.914650i −0.00612091 + 0.0370331i
\(611\) −35.0602 −1.41839
\(612\) 0 0
\(613\) 27.7763i 1.12187i 0.827859 + 0.560937i \(0.189559\pi\)
−0.827859 + 0.560937i \(0.810441\pi\)
\(614\) 7.00060 0.282521
\(615\) 0 0
\(616\) 1.34720 0.0542804
\(617\) 12.7828i 0.514616i −0.966329 0.257308i \(-0.917164\pi\)
0.966329 0.257308i \(-0.0828355\pi\)
\(618\) 0 0
\(619\) 5.83385 0.234482 0.117241 0.993103i \(-0.462595\pi\)
0.117241 + 0.993103i \(0.462595\pi\)
\(620\) 20.3403 + 3.36189i 0.816887 + 0.135017i
\(621\) 0 0
\(622\) 9.57890i 0.384079i
\(623\) 1.16160i 0.0465385i
\(624\) 0 0
\(625\) 19.8231 + 15.2330i 0.792923 + 0.609322i
\(626\) −8.59718 −0.343612
\(627\) 0 0
\(628\) 16.5107i 0.658850i
\(629\) 60.1182 2.39707
\(630\) 0 0
\(631\) −9.97085 −0.396933 −0.198467 0.980108i \(-0.563596\pi\)
−0.198467 + 0.980108i \(0.563596\pi\)
\(632\) 15.4901i 0.616164i
\(633\) 0 0
\(634\) 2.57531 0.102279
\(635\) 2.20421 13.3361i 0.0874714 0.529225i
\(636\) 0 0
\(637\) 17.4512i 0.691441i
\(638\) 0.185522i 0.00734488i
\(639\) 0 0
\(640\) 3.33539 20.1800i 0.131843 0.797683i
\(641\) 47.6315 1.88133 0.940667 0.339332i \(-0.110201\pi\)
0.940667 + 0.339332i \(0.110201\pi\)
\(642\) 0 0
\(643\) 7.26701i 0.286583i 0.989681 + 0.143291i \(0.0457686\pi\)
−0.989681 + 0.143291i \(0.954231\pi\)
\(644\) −8.34728 −0.328929
\(645\) 0 0
\(646\) 7.74106 0.304568
\(647\) 17.7415i 0.697488i −0.937218 0.348744i \(-0.886608\pi\)
0.937218 0.348744i \(-0.113392\pi\)
\(648\) 0 0
\(649\) 5.08354 0.199546
\(650\) 7.72244 + 2.62446i 0.302899 + 0.102940i
\(651\) 0 0
\(652\) 25.5155i 0.999264i
\(653\) 23.4342i 0.917050i −0.888682 0.458525i \(-0.848378\pi\)
0.888682 0.458525i \(-0.151622\pi\)
\(654\) 0 0
\(655\) −17.6320 2.91425i −0.688939 0.113869i
\(656\) −26.4318 −1.03199
\(657\) 0 0
\(658\) 4.33789i 0.169109i
\(659\) −30.4650 −1.18675 −0.593373 0.804928i \(-0.702204\pi\)
−0.593373 + 0.804928i \(0.702204\pi\)
\(660\) 0 0
\(661\) 1.35516 0.0527095 0.0263547 0.999653i \(-0.491610\pi\)
0.0263547 + 0.999653i \(0.491610\pi\)
\(662\) 6.21184i 0.241430i
\(663\) 0 0
\(664\) −12.0552 −0.467834
\(665\) 2.26542 13.7064i 0.0878492 0.531511i
\(666\) 0 0
\(667\) 2.36471i 0.0915620i
\(668\) 46.7946i 1.81054i
\(669\) 0 0
\(670\) −4.79789 0.793005i −0.185359 0.0306365i
\(671\) 0.711081 0.0274510
\(672\) 0 0
\(673\) 6.26746i 0.241593i 0.992677 + 0.120796i \(0.0385448\pi\)
−0.992677 + 0.120796i \(0.961455\pi\)
\(674\) −2.73984 −0.105535
\(675\) 0 0
\(676\) −21.9457 −0.844066
\(677\) 32.3653i 1.24390i −0.783057 0.621950i \(-0.786341\pi\)
0.783057 0.621950i \(-0.213659\pi\)
\(678\) 0 0
\(679\) 35.9440 1.37940
\(680\) 19.9609 + 3.29918i 0.765467 + 0.126518i
\(681\) 0 0
\(682\) 0.904145i 0.0346215i
\(683\) 29.0003i 1.10967i 0.831962 + 0.554833i \(0.187218\pi\)
−0.831962 + 0.554833i \(0.812782\pi\)
\(684\) 0 0
\(685\) 5.45751 33.0194i 0.208521 1.26161i
\(686\) −6.45486 −0.246448
\(687\) 0 0
\(688\) 14.7855i 0.563694i
\(689\) 20.7406 0.790155
\(690\) 0 0
\(691\) 39.6602 1.50875 0.754373 0.656446i \(-0.227941\pi\)
0.754373 + 0.656446i \(0.227941\pi\)
\(692\) 29.2347i 1.11134i
\(693\) 0 0
\(694\) −10.7215 −0.406984
\(695\) 11.5922 + 1.91598i 0.439717 + 0.0726774i
\(696\) 0 0
\(697\) 55.5628i 2.10459i
\(698\) 11.0628i 0.418734i
\(699\) 0 0
\(700\) 5.67921 16.7110i 0.214654 0.631617i
\(701\) 1.21005 0.0457029 0.0228514 0.999739i \(-0.492726\pi\)
0.0228514 + 0.999739i \(0.492726\pi\)
\(702\) 0 0
\(703\) 28.3183i 1.06804i
\(704\) −3.11359 −0.117348
\(705\) 0 0
\(706\) −0.940462 −0.0353947
\(707\) 17.4090i 0.654733i
\(708\) 0 0
\(709\) 2.37420 0.0891651 0.0445826 0.999006i \(-0.485804\pi\)
0.0445826 + 0.999006i \(0.485804\pi\)
\(710\) 0.655362 3.96511i 0.0245953 0.148808i
\(711\) 0 0
\(712\) 0.796848i 0.0298631i
\(713\) 11.5245i 0.431595i
\(714\) 0 0
\(715\) 1.02017 6.17232i 0.0381523 0.230832i
\(716\) 32.7963 1.22566
\(717\) 0 0
\(718\) 11.0797i 0.413491i
\(719\) 3.46098 0.129073 0.0645364 0.997915i \(-0.479443\pi\)
0.0645364 + 0.997915i \(0.479443\pi\)
\(720\) 0 0
\(721\) −14.5454 −0.541700
\(722\) 2.60252i 0.0968556i
\(723\) 0 0
\(724\) −3.87773 −0.144115
\(725\) −4.73408 1.60887i −0.175819 0.0597519i
\(726\) 0 0
\(727\) 0.967841i 0.0358952i −0.999839 0.0179476i \(-0.994287\pi\)
0.999839 0.0179476i \(-0.00571321\pi\)
\(728\) 11.8456i 0.439027i
\(729\) 0 0
\(730\) −4.19134 0.692754i −0.155129 0.0256400i
\(731\) 31.0810 1.14957
\(732\) 0 0
\(733\) 4.61626i 0.170506i −0.996359 0.0852528i \(-0.972830\pi\)
0.996359 0.0852528i \(-0.0271698\pi\)
\(734\) −3.16844 −0.116949
\(735\) 0 0
\(736\) −8.66883 −0.319537
\(737\) 3.73005i 0.137398i
\(738\) 0 0
\(739\) 5.94453 0.218673 0.109336 0.994005i \(-0.465127\pi\)
0.109336 + 0.994005i \(0.465127\pi\)
\(740\) 5.86681 35.4957i 0.215668 1.30485i
\(741\) 0 0
\(742\) 2.56617i 0.0942071i
\(743\) 11.0789i 0.406444i −0.979133 0.203222i \(-0.934859\pi\)
0.979133 0.203222i \(-0.0651414\pi\)
\(744\) 0 0
\(745\) −6.56523 1.08511i −0.240531 0.0397555i
\(746\) 1.73766 0.0636204
\(747\) 0 0
\(748\) 7.54351i 0.275818i
\(749\) −29.0044 −1.05980
\(750\) 0 0
\(751\) 16.3810 0.597750 0.298875 0.954292i \(-0.403389\pi\)
0.298875 + 0.954292i \(0.403389\pi\)
\(752\) 23.7702i 0.866809i
\(753\) 0 0
\(754\) −1.63124 −0.0594064
\(755\) −28.3810 4.69087i −1.03289 0.170718i
\(756\) 0 0
\(757\) 27.9468i 1.01575i 0.861432 + 0.507873i \(0.169568\pi\)
−0.861432 + 0.507873i \(0.830432\pi\)
\(758\) 0.864293i 0.0313925i
\(759\) 0 0
\(760\) 1.55406 9.40247i 0.0563716 0.341063i
\(761\) 16.1657 0.586006 0.293003 0.956112i \(-0.405345\pi\)
0.293003 + 0.956112i \(0.405345\pi\)
\(762\) 0 0
\(763\) 7.27348i 0.263318i
\(764\) −3.34049 −0.120855
\(765\) 0 0
\(766\) 0.206157 0.00744876
\(767\) 44.6982i 1.61396i
\(768\) 0 0
\(769\) 17.8664 0.644279 0.322139 0.946692i \(-0.395598\pi\)
0.322139 + 0.946692i \(0.395598\pi\)
\(770\) 0.763681 + 0.126223i 0.0275211 + 0.00454875i
\(771\) 0 0
\(772\) 16.6828i 0.600426i
\(773\) 16.7961i 0.604114i −0.953290 0.302057i \(-0.902327\pi\)
0.953290 0.302057i \(-0.0976733\pi\)
\(774\) 0 0
\(775\) 23.0717 + 7.84086i 0.828758 + 0.281652i
\(776\) 24.6573 0.885144
\(777\) 0 0
\(778\) 8.68103i 0.311230i
\(779\) −26.1725 −0.937726
\(780\) 0 0
\(781\) −3.08262 −0.110305
\(782\) 5.49759i 0.196593i
\(783\) 0 0
\(784\) 11.8316 0.422556
\(785\) −3.18230 + 19.2538i −0.113581 + 0.687197i
\(786\) 0 0
\(787\) 43.1607i 1.53851i −0.638941 0.769256i \(-0.720627\pi\)
0.638941 0.769256i \(-0.279373\pi\)
\(788\) 25.3942i 0.904632i
\(789\) 0 0
\(790\) −1.45131 + 8.78078i −0.0516351 + 0.312406i
\(791\) 12.8646 0.457412
\(792\) 0 0
\(793\) 6.25235i 0.222027i
\(794\) −9.15407 −0.324866
\(795\) 0 0
\(796\) 11.5110 0.407998
\(797\) 19.7554i 0.699772i 0.936792 + 0.349886i \(0.113780\pi\)
−0.936792 + 0.349886i \(0.886220\pi\)
\(798\) 0 0
\(799\) −49.9678 −1.76773
\(800\) 5.89797 17.3547i 0.208525 0.613583i
\(801\) 0 0
\(802\) 3.63624i 0.128400i
\(803\) 3.25850i 0.114990i
\(804\) 0 0
\(805\) −9.73408 1.60887i −0.343081 0.0567052i
\(806\) 7.94990 0.280023
\(807\) 0 0
\(808\) 11.9424i 0.420134i
\(809\) 23.6721 0.832268 0.416134 0.909303i \(-0.363385\pi\)
0.416134 + 0.909303i \(0.363385\pi\)
\(810\) 0 0
\(811\) 18.5443 0.651178 0.325589 0.945511i \(-0.394437\pi\)
0.325589 + 0.945511i \(0.394437\pi\)
\(812\) 3.52994i 0.123877i
\(813\) 0 0
\(814\) 1.57781 0.0553024
\(815\) −4.91790 + 29.7546i −0.172267 + 1.04226i
\(816\) 0 0
\(817\) 14.6405i 0.512206i
\(818\) 0.517398i 0.0180904i
\(819\) 0 0
\(820\) −32.8061 5.42225i −1.14564 0.189353i
\(821\) 41.5778 1.45108 0.725538 0.688182i \(-0.241591\pi\)
0.725538 + 0.688182i \(0.241591\pi\)
\(822\) 0 0
\(823\) 31.1276i 1.08504i −0.840043 0.542519i \(-0.817471\pi\)
0.840043 0.542519i \(-0.182529\pi\)
\(824\) −9.97804 −0.347601
\(825\) 0 0
\(826\) 5.53037 0.192426
\(827\) 42.5406i 1.47928i 0.673001 + 0.739641i \(0.265005\pi\)
−0.673001 + 0.739641i \(0.734995\pi\)
\(828\) 0 0
\(829\) −2.61307 −0.0907558 −0.0453779 0.998970i \(-0.514449\pi\)
−0.0453779 + 0.998970i \(0.514449\pi\)
\(830\) −6.83367 1.12948i −0.237200 0.0392049i
\(831\) 0 0
\(832\) 27.3770i 0.949127i
\(833\) 24.8714i 0.861743i
\(834\) 0 0
\(835\) −9.01927 + 54.5690i −0.312125 + 1.88844i
\(836\) −3.55332 −0.122894
\(837\) 0 0
\(838\) 11.8155i 0.408161i
\(839\) 30.9618 1.06892 0.534461 0.845193i \(-0.320515\pi\)
0.534461 + 0.845193i \(0.320515\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 5.10024i 0.175766i
\(843\) 0 0
\(844\) 17.1280 0.589571
\(845\) −25.5917 4.22986i −0.880383 0.145511i
\(846\) 0 0
\(847\) 19.9310i 0.684837i
\(848\) 14.0617i 0.482882i
\(849\) 0 0
\(850\) 11.0060 + 3.74037i 0.377503 + 0.128294i
\(851\) −20.1113 −0.689405
\(852\) 0 0
\(853\) 26.3048i 0.900659i 0.892863 + 0.450329i \(0.148693\pi\)
−0.892863 + 0.450329i \(0.851307\pi\)
\(854\) 0.773583 0.0264715
\(855\) 0 0
\(856\) −19.8968 −0.680059
\(857\) 5.37241i 0.183518i 0.995781 + 0.0917590i \(0.0292489\pi\)
−0.995781 + 0.0917590i \(0.970751\pi\)
\(858\) 0 0
\(859\) 37.9952 1.29638 0.648189 0.761479i \(-0.275527\pi\)
0.648189 + 0.761479i \(0.275527\pi\)
\(860\) 3.03313 18.3512i 0.103429 0.625772i
\(861\) 0 0
\(862\) 5.57105i 0.189751i
\(863\) 13.5782i 0.462206i −0.972929 0.231103i \(-0.925767\pi\)
0.972929 0.231103i \(-0.0742334\pi\)
\(864\) 0 0
\(865\) −5.63475 + 34.0917i −0.191587 + 1.15915i
\(866\) −13.3245 −0.452784
\(867\) 0 0
\(868\) 17.2032i 0.583916i
\(869\) 6.82649 0.231573
\(870\) 0 0
\(871\) 32.7973 1.11129
\(872\) 4.98954i 0.168967i
\(873\) 0 0
\(874\) −2.58960 −0.0875946
\(875\) 9.84365 18.3927i 0.332776 0.621788i
\(876\) 0 0
\(877\) 32.1671i 1.08621i −0.839666 0.543104i \(-0.817249\pi\)
0.839666 0.543104i \(-0.182751\pi\)
\(878\) 7.71753i 0.260454i
\(879\) 0 0
\(880\) −4.18471 0.691658i −0.141067 0.0233158i
\(881\) 47.6183 1.60430 0.802151 0.597121i \(-0.203689\pi\)
0.802151 + 0.597121i \(0.203689\pi\)
\(882\) 0 0
\(883\) 17.9986i 0.605701i 0.953038 + 0.302851i \(0.0979384\pi\)
−0.953038 + 0.302851i \(0.902062\pi\)
\(884\) −66.3281 −2.23085
\(885\) 0 0
\(886\) 5.39359 0.181201
\(887\) 28.7126i 0.964076i −0.876150 0.482038i \(-0.839897\pi\)
0.876150 0.482038i \(-0.160103\pi\)
\(888\) 0 0
\(889\) −11.2792 −0.378293
\(890\) −0.0746586 + 0.451704i −0.00250256 + 0.0151412i
\(891\) 0 0
\(892\) 35.0557i 1.17375i
\(893\) 23.5370i 0.787636i
\(894\) 0 0
\(895\) 38.2450 + 6.32122i 1.27839 + 0.211295i
\(896\) −17.0676 −0.570188
\(897\) 0 0
\(898\) 2.93693i 0.0980065i
\(899\) −4.87352 −0.162541
\(900\) 0 0
\(901\) 29.5595 0.984770
\(902\) 1.45826i 0.0485546i
\(903\) 0 0
\(904\) 8.82500 0.293515
\(905\) −4.52197 0.747400i −0.150315 0.0248444i
\(906\) 0 0
\(907\) 29.4971i 0.979434i −0.871881 0.489717i \(-0.837100\pi\)
0.871881 0.489717i \(-0.162900\pi\)
\(908\) 44.6492i 1.48174i
\(909\) 0 0
\(910\) 1.10984 6.71484i 0.0367909 0.222595i
\(911\) 33.9486 1.12477 0.562384 0.826876i \(-0.309884\pi\)
0.562384 + 0.826876i \(0.309884\pi\)
\(912\) 0 0
\(913\) 5.31274i 0.175826i
\(914\) 1.03951 0.0343840
\(915\) 0 0
\(916\) −20.0510 −0.662504
\(917\) 14.9126i 0.492457i
\(918\) 0 0
\(919\) 17.6898 0.583531 0.291766 0.956490i \(-0.405757\pi\)
0.291766 + 0.956490i \(0.405757\pi\)
\(920\) −6.67750 1.10367i −0.220151 0.0363870i
\(921\) 0 0
\(922\) 1.26930i 0.0418022i
\(923\) 27.1047i 0.892161i
\(924\) 0 0
\(925\) 13.6830 40.2621i 0.449895 1.32381i
\(926\) 8.07399 0.265328
\(927\) 0 0
\(928\) 3.66591i 0.120339i
\(929\) −3.74299 −0.122804 −0.0614018 0.998113i \(-0.519557\pi\)
−0.0614018 + 0.998113i \(0.519557\pi\)
\(930\) 0 0
\(931\) 11.7155 0.383960
\(932\) 16.3253i 0.534754i
\(933\) 0 0
\(934\) −5.51107 −0.180328
\(935\) 1.45395 8.79677i 0.0475492 0.287685i
\(936\) 0 0
\(937\) 2.12550i 0.0694369i 0.999397 + 0.0347185i \(0.0110535\pi\)
−0.999397 + 0.0347185i \(0.988947\pi\)
\(938\) 4.05791i 0.132495i
\(939\) 0 0
\(940\) −4.87625 + 29.5026i −0.159046 + 0.962268i
\(941\) 54.9017 1.78974 0.894871 0.446324i \(-0.147267\pi\)
0.894871 + 0.446324i \(0.147267\pi\)
\(942\) 0 0
\(943\) 18.5873i 0.605287i
\(944\) −30.3045 −0.986328
\(945\) 0 0
\(946\) 0.815727 0.0265216
\(947\) 32.5730i 1.05848i 0.848472 + 0.529240i \(0.177523\pi\)
−0.848472 + 0.529240i \(0.822477\pi\)
\(948\) 0 0
\(949\) 28.6511 0.930054
\(950\) 1.76188 5.18431i 0.0571629 0.168201i
\(951\) 0 0
\(952\) 16.8823i 0.547160i
\(953\) 8.68090i 0.281202i 0.990066 + 0.140601i \(0.0449035\pi\)
−0.990066 + 0.140601i \(0.955097\pi\)
\(954\) 0 0
\(955\) −3.89548 0.643853i −0.126055 0.0208346i
\(956\) 45.5769 1.47406
\(957\) 0 0
\(958\) 6.05567i 0.195650i
\(959\) −27.9268 −0.901802
\(960\) 0 0
\(961\) −7.24878 −0.233832
\(962\) 13.8733i 0.447293i
\(963\) 0 0
\(964\) −48.6179 −1.56588
\(965\) −3.21546 + 19.4544i −0.103509 + 0.626259i
\(966\) 0 0
\(967\) 53.2460i 1.71228i 0.516747 + 0.856138i \(0.327143\pi\)
−0.516747 + 0.856138i \(0.672857\pi\)
\(968\) 13.6725i 0.439451i
\(969\) 0 0
\(970\) 13.9773 + 2.31020i 0.448784 + 0.0741759i
\(971\) −53.7614 −1.72529 −0.862643 0.505814i \(-0.831192\pi\)
−0.862643 + 0.505814i \(0.831192\pi\)
\(972\) 0 0
\(973\) 9.80433i 0.314312i
\(974\) −6.04030 −0.193544
\(975\) 0 0
\(976\) −4.23897 −0.135686
\(977\) 13.2134i 0.422735i 0.977407 + 0.211367i \(0.0677916\pi\)
−0.977407 + 0.211367i \(0.932208\pi\)
\(978\) 0 0
\(979\) 0.351171 0.0112235
\(980\) 14.6849 + 2.42715i 0.469091 + 0.0775324i
\(981\) 0 0
\(982\) 5.67831i 0.181202i
\(983\) 31.7530i 1.01276i 0.862310 + 0.506381i \(0.169017\pi\)
−0.862310 + 0.506381i \(0.830983\pi\)
\(984\) 0 0
\(985\) 4.89453 29.6132i 0.155953 0.943554i
\(986\) −2.32485 −0.0740382
\(987\) 0 0
\(988\) 31.2434i 0.993985i
\(989\) −10.3975 −0.330621
\(990\) 0 0
\(991\) 12.5237 0.397830 0.198915 0.980017i \(-0.436258\pi\)
0.198915 + 0.980017i \(0.436258\pi\)
\(992\) 17.8659i 0.567243i
\(993\) 0 0
\(994\) −3.35357 −0.106369
\(995\) 13.4234 + 2.21865i 0.425552 + 0.0703361i
\(996\) 0 0
\(997\) 28.9494i 0.916837i 0.888736 + 0.458418i \(0.151584\pi\)
−0.888736 + 0.458418i \(0.848416\pi\)
\(998\) 7.31725i 0.231624i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.k.784.6 12
3.2 odd 2 1305.2.c.l.784.7 yes 12
5.2 odd 4 6525.2.a.ce.1.7 12
5.3 odd 4 6525.2.a.ce.1.6 12
5.4 even 2 inner 1305.2.c.k.784.7 yes 12
15.2 even 4 6525.2.a.cf.1.6 12
15.8 even 4 6525.2.a.cf.1.7 12
15.14 odd 2 1305.2.c.l.784.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.c.k.784.6 12 1.1 even 1 trivial
1305.2.c.k.784.7 yes 12 5.4 even 2 inner
1305.2.c.l.784.6 yes 12 15.14 odd 2
1305.2.c.l.784.7 yes 12 3.2 odd 2
6525.2.a.ce.1.6 12 5.3 odd 4
6525.2.a.ce.1.7 12 5.2 odd 4
6525.2.a.cf.1.6 12 15.2 even 4
6525.2.a.cf.1.7 12 15.8 even 4