Properties

Label 1305.2.c.k.784.2
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 148x^{8} + 502x^{6} + 792x^{4} + 496x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.2
Root \(-2.51930i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.k.784.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.51930i q^{2} -4.34685 q^{4} +(-2.08236 + 0.814730i) q^{5} +4.08323i q^{7} +5.91241i q^{8} +(2.05255 + 5.24608i) q^{10} -1.07928 q^{11} -1.43381i q^{13} +10.2869 q^{14} +6.20142 q^{16} -6.88737i q^{17} +7.42874 q^{19} +(9.05170 - 3.54151i) q^{20} +2.71902i q^{22} -1.01996i q^{23} +(3.67243 - 3.39312i) q^{25} -3.61219 q^{26} -17.7492i q^{28} -1.00000 q^{29} -7.37006 q^{31} -3.79838i q^{32} -17.3513 q^{34} +(-3.32673 - 8.50274i) q^{35} +10.8961i q^{37} -18.7152i q^{38} +(-4.81702 - 12.3118i) q^{40} +3.02388 q^{41} -10.6232i q^{43} +4.69147 q^{44} -2.56957 q^{46} -6.88737i q^{47} -9.67273 q^{49} +(-8.54827 - 9.25194i) q^{50} +6.23256i q^{52} -7.61354i q^{53} +(2.24745 - 0.879321i) q^{55} -24.1417 q^{56} +2.51930i q^{58} +9.45393 q^{59} -0.265337 q^{61} +18.5674i q^{62} +2.83360 q^{64} +(1.16817 + 2.98570i) q^{65} -11.1316i q^{67} +29.9384i q^{68} +(-21.4209 + 8.38101i) q^{70} +12.1375 q^{71} -3.54019i q^{73} +27.4506 q^{74} -32.2916 q^{76} -4.40694i q^{77} +6.13029 q^{79} +(-12.9136 + 5.05248i) q^{80} -7.61805i q^{82} -0.615986i q^{83} +(5.61135 + 14.3420i) q^{85} -26.7630 q^{86} -6.38115i q^{88} -2.11822 q^{89} +5.85457 q^{91} +4.43360i q^{92} -17.3513 q^{94} +(-15.4693 + 6.05242i) q^{95} -1.52207i q^{97} +24.3685i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 10 q^{10} - 12 q^{11} + 16 q^{14} + 16 q^{16} + 20 q^{19} + 14 q^{20} + 8 q^{25} - 56 q^{26} - 12 q^{29} - 16 q^{31} - 4 q^{34} - 16 q^{35} + 16 q^{40} - 32 q^{41} + 68 q^{44} + 20 q^{46}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.51930i 1.78141i −0.454581 0.890706i \(-0.650211\pi\)
0.454581 0.890706i \(-0.349789\pi\)
\(3\) 0 0
\(4\) −4.34685 −2.17343
\(5\) −2.08236 + 0.814730i −0.931259 + 0.364358i
\(6\) 0 0
\(7\) 4.08323i 1.54331i 0.636039 + 0.771657i \(0.280572\pi\)
−0.636039 + 0.771657i \(0.719428\pi\)
\(8\) 5.91241i 2.09035i
\(9\) 0 0
\(10\) 2.05255 + 5.24608i 0.649072 + 1.65895i
\(11\) −1.07928 −0.325415 −0.162708 0.986674i \(-0.552023\pi\)
−0.162708 + 0.986674i \(0.552023\pi\)
\(12\) 0 0
\(13\) 1.43381i 0.397667i −0.980033 0.198834i \(-0.936285\pi\)
0.980033 0.198834i \(-0.0637153\pi\)
\(14\) 10.2869 2.74928
\(15\) 0 0
\(16\) 6.20142 1.55035
\(17\) 6.88737i 1.67043i −0.549922 0.835216i \(-0.685342\pi\)
0.549922 0.835216i \(-0.314658\pi\)
\(18\) 0 0
\(19\) 7.42874 1.70427 0.852135 0.523322i \(-0.175308\pi\)
0.852135 + 0.523322i \(0.175308\pi\)
\(20\) 9.05170 3.54151i 2.02402 0.791906i
\(21\) 0 0
\(22\) 2.71902i 0.579698i
\(23\) 1.01996i 0.212676i −0.994330 0.106338i \(-0.966087\pi\)
0.994330 0.106338i \(-0.0339125\pi\)
\(24\) 0 0
\(25\) 3.67243 3.39312i 0.734486 0.678624i
\(26\) −3.61219 −0.708409
\(27\) 0 0
\(28\) 17.7492i 3.35428i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −7.37006 −1.32370 −0.661851 0.749636i \(-0.730229\pi\)
−0.661851 + 0.749636i \(0.730229\pi\)
\(32\) 3.79838i 0.671465i
\(33\) 0 0
\(34\) −17.3513 −2.97573
\(35\) −3.32673 8.50274i −0.562319 1.43723i
\(36\) 0 0
\(37\) 10.8961i 1.79131i 0.444748 + 0.895656i \(0.353293\pi\)
−0.444748 + 0.895656i \(0.646707\pi\)
\(38\) 18.7152i 3.03601i
\(39\) 0 0
\(40\) −4.81702 12.3118i −0.761638 1.94666i
\(41\) 3.02388 0.472251 0.236125 0.971723i \(-0.424122\pi\)
0.236125 + 0.971723i \(0.424122\pi\)
\(42\) 0 0
\(43\) 10.6232i 1.62002i −0.586413 0.810012i \(-0.699460\pi\)
0.586413 0.810012i \(-0.300540\pi\)
\(44\) 4.69147 0.707266
\(45\) 0 0
\(46\) −2.56957 −0.378863
\(47\) 6.88737i 1.00463i −0.864686 0.502313i \(-0.832483\pi\)
0.864686 0.502313i \(-0.167517\pi\)
\(48\) 0 0
\(49\) −9.67273 −1.38182
\(50\) −8.54827 9.25194i −1.20891 1.30842i
\(51\) 0 0
\(52\) 6.23256i 0.864300i
\(53\) 7.61354i 1.04580i −0.852394 0.522900i \(-0.824850\pi\)
0.852394 0.522900i \(-0.175150\pi\)
\(54\) 0 0
\(55\) 2.24745 0.879321i 0.303046 0.118568i
\(56\) −24.1417 −3.22607
\(57\) 0 0
\(58\) 2.51930i 0.330800i
\(59\) 9.45393 1.23080 0.615399 0.788216i \(-0.288995\pi\)
0.615399 + 0.788216i \(0.288995\pi\)
\(60\) 0 0
\(61\) −0.265337 −0.0339729 −0.0169865 0.999856i \(-0.505407\pi\)
−0.0169865 + 0.999856i \(0.505407\pi\)
\(62\) 18.5674i 2.35806i
\(63\) 0 0
\(64\) 2.83360 0.354200
\(65\) 1.16817 + 2.98570i 0.144893 + 0.370331i
\(66\) 0 0
\(67\) 11.1316i 1.35994i −0.733240 0.679970i \(-0.761993\pi\)
0.733240 0.679970i \(-0.238007\pi\)
\(68\) 29.9384i 3.63056i
\(69\) 0 0
\(70\) −21.4209 + 8.38101i −2.56029 + 1.00172i
\(71\) 12.1375 1.44046 0.720228 0.693737i \(-0.244037\pi\)
0.720228 + 0.693737i \(0.244037\pi\)
\(72\) 0 0
\(73\) 3.54019i 0.414348i −0.978304 0.207174i \(-0.933573\pi\)
0.978304 0.207174i \(-0.0664266\pi\)
\(74\) 27.4506 3.19106
\(75\) 0 0
\(76\) −32.2916 −3.70410
\(77\) 4.40694i 0.502218i
\(78\) 0 0
\(79\) 6.13029 0.689711 0.344856 0.938656i \(-0.387928\pi\)
0.344856 + 0.938656i \(0.387928\pi\)
\(80\) −12.9136 + 5.05248i −1.44378 + 0.564885i
\(81\) 0 0
\(82\) 7.61805i 0.841273i
\(83\) 0.615986i 0.0676132i −0.999428 0.0338066i \(-0.989237\pi\)
0.999428 0.0338066i \(-0.0107630\pi\)
\(84\) 0 0
\(85\) 5.61135 + 14.3420i 0.608636 + 1.55561i
\(86\) −26.7630 −2.88593
\(87\) 0 0
\(88\) 6.38115i 0.680233i
\(89\) −2.11822 −0.224531 −0.112265 0.993678i \(-0.535811\pi\)
−0.112265 + 0.993678i \(0.535811\pi\)
\(90\) 0 0
\(91\) 5.85457 0.613725
\(92\) 4.43360i 0.462235i
\(93\) 0 0
\(94\) −17.3513 −1.78965
\(95\) −15.4693 + 6.05242i −1.58712 + 0.620965i
\(96\) 0 0
\(97\) 1.52207i 0.154543i −0.997010 0.0772713i \(-0.975379\pi\)
0.997010 0.0772713i \(-0.0246208\pi\)
\(98\) 24.3685i 2.46159i
\(99\) 0 0
\(100\) −15.9635 + 14.7494i −1.59635 + 1.47494i
\(101\) 8.28909 0.824795 0.412398 0.911004i \(-0.364691\pi\)
0.412398 + 0.911004i \(0.364691\pi\)
\(102\) 0 0
\(103\) 3.32888i 0.328004i −0.986460 0.164002i \(-0.947560\pi\)
0.986460 0.164002i \(-0.0524404\pi\)
\(104\) 8.47727 0.831265
\(105\) 0 0
\(106\) −19.1808 −1.86300
\(107\) 8.74777i 0.845679i −0.906205 0.422840i \(-0.861033\pi\)
0.906205 0.422840i \(-0.138967\pi\)
\(108\) 0 0
\(109\) 15.5289 1.48739 0.743697 0.668516i \(-0.233070\pi\)
0.743697 + 0.668516i \(0.233070\pi\)
\(110\) −2.21527 5.66198i −0.211218 0.539849i
\(111\) 0 0
\(112\) 25.3218i 2.39268i
\(113\) 0.339380i 0.0319262i −0.999873 0.0159631i \(-0.994919\pi\)
0.999873 0.0159631i \(-0.00508143\pi\)
\(114\) 0 0
\(115\) 0.830990 + 2.12392i 0.0774902 + 0.198056i
\(116\) 4.34685 0.403595
\(117\) 0 0
\(118\) 23.8173i 2.19256i
\(119\) 28.1227 2.57800
\(120\) 0 0
\(121\) −9.83516 −0.894105
\(122\) 0.668463i 0.0605198i
\(123\) 0 0
\(124\) 32.0365 2.87697
\(125\) −4.88284 + 10.0577i −0.436734 + 0.899590i
\(126\) 0 0
\(127\) 12.1171i 1.07522i −0.843194 0.537609i \(-0.819328\pi\)
0.843194 0.537609i \(-0.180672\pi\)
\(128\) 14.7354i 1.30244i
\(129\) 0 0
\(130\) 7.52187 2.94296i 0.659712 0.258115i
\(131\) −16.8007 −1.46789 −0.733943 0.679211i \(-0.762322\pi\)
−0.733943 + 0.679211i \(0.762322\pi\)
\(132\) 0 0
\(133\) 30.3332i 2.63022i
\(134\) −28.0437 −2.42261
\(135\) 0 0
\(136\) 40.7210 3.49180
\(137\) 0.956886i 0.0817523i 0.999164 + 0.0408762i \(0.0130149\pi\)
−0.999164 + 0.0408762i \(0.986985\pi\)
\(138\) 0 0
\(139\) 1.85457 0.157302 0.0786511 0.996902i \(-0.474939\pi\)
0.0786511 + 0.996902i \(0.474939\pi\)
\(140\) 14.4608 + 36.9601i 1.22216 + 3.12370i
\(141\) 0 0
\(142\) 30.5780i 2.56604i
\(143\) 1.54748i 0.129407i
\(144\) 0 0
\(145\) 2.08236 0.814730i 0.172930 0.0676596i
\(146\) −8.91879 −0.738124
\(147\) 0 0
\(148\) 47.3638i 3.89328i
\(149\) −16.6324 −1.36258 −0.681289 0.732014i \(-0.738580\pi\)
−0.681289 + 0.732014i \(0.738580\pi\)
\(150\) 0 0
\(151\) 14.7060 1.19676 0.598379 0.801213i \(-0.295812\pi\)
0.598379 + 0.801213i \(0.295812\pi\)
\(152\) 43.9218i 3.56253i
\(153\) 0 0
\(154\) −11.1024 −0.894656
\(155\) 15.3471 6.00460i 1.23271 0.482301i
\(156\) 0 0
\(157\) 5.86462i 0.468048i 0.972231 + 0.234024i \(0.0751894\pi\)
−0.972231 + 0.234024i \(0.924811\pi\)
\(158\) 15.4440i 1.22866i
\(159\) 0 0
\(160\) 3.09465 + 7.90958i 0.244654 + 0.625308i
\(161\) 4.16472 0.328226
\(162\) 0 0
\(163\) 5.06226i 0.396507i −0.980151 0.198253i \(-0.936473\pi\)
0.980151 0.198253i \(-0.0635269\pi\)
\(164\) −13.1444 −1.02640
\(165\) 0 0
\(166\) −1.55185 −0.120447
\(167\) 4.25070i 0.328929i 0.986383 + 0.164464i \(0.0525895\pi\)
−0.986383 + 0.164464i \(0.947410\pi\)
\(168\) 0 0
\(169\) 10.9442 0.841861
\(170\) 36.1317 14.1366i 2.77117 1.08423i
\(171\) 0 0
\(172\) 46.1775i 3.52100i
\(173\) 3.69756i 0.281120i −0.990072 0.140560i \(-0.955110\pi\)
0.990072 0.140560i \(-0.0448903\pi\)
\(174\) 0 0
\(175\) 13.8549 + 14.9954i 1.04733 + 1.13354i
\(176\) −6.69306 −0.504509
\(177\) 0 0
\(178\) 5.33642i 0.399981i
\(179\) 17.2381 1.28843 0.644217 0.764842i \(-0.277183\pi\)
0.644217 + 0.764842i \(0.277183\pi\)
\(180\) 0 0
\(181\) 3.97382 0.295371 0.147686 0.989034i \(-0.452818\pi\)
0.147686 + 0.989034i \(0.452818\pi\)
\(182\) 14.7494i 1.09330i
\(183\) 0 0
\(184\) 6.03041 0.444568
\(185\) −8.87740 22.6896i −0.652679 1.66817i
\(186\) 0 0
\(187\) 7.43340i 0.543584i
\(188\) 29.9384i 2.18348i
\(189\) 0 0
\(190\) 15.2478 + 38.9717i 1.10619 + 2.82731i
\(191\) −22.0235 −1.59357 −0.796783 0.604266i \(-0.793466\pi\)
−0.796783 + 0.604266i \(0.793466\pi\)
\(192\) 0 0
\(193\) 12.2161i 0.879336i 0.898160 + 0.439668i \(0.144904\pi\)
−0.898160 + 0.439668i \(0.855096\pi\)
\(194\) −3.83454 −0.275304
\(195\) 0 0
\(196\) 42.0459 3.00328
\(197\) 12.0979i 0.861943i −0.902366 0.430971i \(-0.858171\pi\)
0.902366 0.430971i \(-0.141829\pi\)
\(198\) 0 0
\(199\) 0.590878 0.0418863 0.0209431 0.999781i \(-0.493333\pi\)
0.0209431 + 0.999781i \(0.493333\pi\)
\(200\) 20.0615 + 21.7129i 1.41856 + 1.53534i
\(201\) 0 0
\(202\) 20.8827i 1.46930i
\(203\) 4.08323i 0.286586i
\(204\) 0 0
\(205\) −6.29680 + 2.46365i −0.439788 + 0.172069i
\(206\) −8.38643 −0.584310
\(207\) 0 0
\(208\) 8.89165i 0.616525i
\(209\) −8.01769 −0.554595
\(210\) 0 0
\(211\) −17.4117 −1.19867 −0.599334 0.800499i \(-0.704568\pi\)
−0.599334 + 0.800499i \(0.704568\pi\)
\(212\) 33.0949i 2.27297i
\(213\) 0 0
\(214\) −22.0382 −1.50650
\(215\) 8.65505 + 22.1213i 0.590269 + 1.50866i
\(216\) 0 0
\(217\) 30.0936i 2.04289i
\(218\) 39.1218i 2.64966i
\(219\) 0 0
\(220\) −9.76932 + 3.82228i −0.658647 + 0.257698i
\(221\) −9.87517 −0.664276
\(222\) 0 0
\(223\) 14.3494i 0.960910i 0.877019 + 0.480455i \(0.159528\pi\)
−0.877019 + 0.480455i \(0.840472\pi\)
\(224\) 15.5096 1.03628
\(225\) 0 0
\(226\) −0.854999 −0.0568737
\(227\) 1.37659i 0.0913678i 0.998956 + 0.0456839i \(0.0145467\pi\)
−0.998956 + 0.0456839i \(0.985453\pi\)
\(228\) 0 0
\(229\) 15.1027 0.998014 0.499007 0.866598i \(-0.333698\pi\)
0.499007 + 0.866598i \(0.333698\pi\)
\(230\) 5.35077 2.09351i 0.352820 0.138042i
\(231\) 0 0
\(232\) 5.91241i 0.388169i
\(233\) 8.73802i 0.572447i 0.958163 + 0.286223i \(0.0924000\pi\)
−0.958163 + 0.286223i \(0.907600\pi\)
\(234\) 0 0
\(235\) 5.61135 + 14.3420i 0.366044 + 0.935567i
\(236\) −41.0949 −2.67505
\(237\) 0 0
\(238\) 70.8494i 4.59248i
\(239\) 3.46703 0.224264 0.112132 0.993693i \(-0.464232\pi\)
0.112132 + 0.993693i \(0.464232\pi\)
\(240\) 0 0
\(241\) 14.6327 0.942574 0.471287 0.881980i \(-0.343790\pi\)
0.471287 + 0.881980i \(0.343790\pi\)
\(242\) 24.7777i 1.59277i
\(243\) 0 0
\(244\) 1.15338 0.0738377
\(245\) 20.1421 7.88067i 1.28683 0.503477i
\(246\) 0 0
\(247\) 10.6514i 0.677732i
\(248\) 43.5748i 2.76700i
\(249\) 0 0
\(250\) 25.3384 + 12.3013i 1.60254 + 0.778004i
\(251\) −21.2431 −1.34085 −0.670425 0.741977i \(-0.733888\pi\)
−0.670425 + 0.741977i \(0.733888\pi\)
\(252\) 0 0
\(253\) 1.10082i 0.0692079i
\(254\) −30.5266 −1.91541
\(255\) 0 0
\(256\) −31.4557 −1.96598
\(257\) 10.8916i 0.679400i −0.940534 0.339700i \(-0.889674\pi\)
0.940534 0.339700i \(-0.110326\pi\)
\(258\) 0 0
\(259\) −44.4913 −2.76456
\(260\) −5.07785 12.9784i −0.314915 0.804887i
\(261\) 0 0
\(262\) 42.3260i 2.61491i
\(263\) 27.6093i 1.70246i 0.524789 + 0.851232i \(0.324144\pi\)
−0.524789 + 0.851232i \(0.675856\pi\)
\(264\) 0 0
\(265\) 6.20298 + 15.8541i 0.381046 + 0.973910i
\(266\) 76.4184 4.68551
\(267\) 0 0
\(268\) 48.3873i 2.95573i
\(269\) 10.5729 0.644639 0.322319 0.946631i \(-0.395538\pi\)
0.322319 + 0.946631i \(0.395538\pi\)
\(270\) 0 0
\(271\) −3.60438 −0.218950 −0.109475 0.993990i \(-0.534917\pi\)
−0.109475 + 0.993990i \(0.534917\pi\)
\(272\) 42.7115i 2.58976i
\(273\) 0 0
\(274\) 2.41068 0.145635
\(275\) −3.96358 + 3.66212i −0.239013 + 0.220834i
\(276\) 0 0
\(277\) 0.855958i 0.0514295i 0.999669 + 0.0257148i \(0.00818616\pi\)
−0.999669 + 0.0257148i \(0.991814\pi\)
\(278\) 4.67220i 0.280220i
\(279\) 0 0
\(280\) 50.2717 19.6690i 3.00431 1.17545i
\(281\) 10.7917 0.643779 0.321889 0.946777i \(-0.395682\pi\)
0.321889 + 0.946777i \(0.395682\pi\)
\(282\) 0 0
\(283\) 29.9813i 1.78220i −0.453802 0.891102i \(-0.649933\pi\)
0.453802 0.891102i \(-0.350067\pi\)
\(284\) −52.7599 −3.13072
\(285\) 0 0
\(286\) 3.89856 0.230527
\(287\) 12.3472i 0.728832i
\(288\) 0 0
\(289\) −30.4359 −1.79034
\(290\) −2.05255 5.24608i −0.120530 0.308060i
\(291\) 0 0
\(292\) 15.3887i 0.900555i
\(293\) 0.468563i 0.0273738i 0.999906 + 0.0136869i \(0.00435680\pi\)
−0.999906 + 0.0136869i \(0.995643\pi\)
\(294\) 0 0
\(295\) −19.6865 + 7.70240i −1.14619 + 0.448451i
\(296\) −64.4224 −3.74448
\(297\) 0 0
\(298\) 41.9019i 2.42731i
\(299\) −1.46242 −0.0845742
\(300\) 0 0
\(301\) 43.3770 2.50021
\(302\) 37.0488i 2.13192i
\(303\) 0 0
\(304\) 46.0687 2.64222
\(305\) 0.552527 0.216178i 0.0316376 0.0123783i
\(306\) 0 0
\(307\) 2.56354i 0.146309i 0.997321 + 0.0731546i \(0.0233067\pi\)
−0.997321 + 0.0731546i \(0.976693\pi\)
\(308\) 19.1563i 1.09153i
\(309\) 0 0
\(310\) −15.1274 38.6639i −0.859177 2.19596i
\(311\) 16.1147 0.913782 0.456891 0.889523i \(-0.348963\pi\)
0.456891 + 0.889523i \(0.348963\pi\)
\(312\) 0 0
\(313\) 7.11492i 0.402159i −0.979575 0.201079i \(-0.935555\pi\)
0.979575 0.201079i \(-0.0644449\pi\)
\(314\) 14.7747 0.833786
\(315\) 0 0
\(316\) −26.6474 −1.49904
\(317\) 27.1389i 1.52427i −0.647417 0.762136i \(-0.724151\pi\)
0.647417 0.762136i \(-0.275849\pi\)
\(318\) 0 0
\(319\) 1.07928 0.0604281
\(320\) −5.90056 + 2.30862i −0.329852 + 0.129056i
\(321\) 0 0
\(322\) 10.4922i 0.584705i
\(323\) 51.1645i 2.84687i
\(324\) 0 0
\(325\) −4.86508 5.26556i −0.269866 0.292081i
\(326\) −12.7533 −0.706342
\(327\) 0 0
\(328\) 17.8784i 0.987172i
\(329\) 28.1227 1.55045
\(330\) 0 0
\(331\) −9.73035 −0.534828 −0.267414 0.963582i \(-0.586169\pi\)
−0.267414 + 0.963582i \(0.586169\pi\)
\(332\) 2.67760i 0.146952i
\(333\) 0 0
\(334\) 10.7088 0.585957
\(335\) 9.06923 + 23.1799i 0.495505 + 1.26646i
\(336\) 0 0
\(337\) 4.34813i 0.236858i 0.992963 + 0.118429i \(0.0377858\pi\)
−0.992963 + 0.118429i \(0.962214\pi\)
\(338\) 27.5717i 1.49970i
\(339\) 0 0
\(340\) −24.3917 62.3424i −1.32283 3.38099i
\(341\) 7.95435 0.430752
\(342\) 0 0
\(343\) 10.9134i 0.589267i
\(344\) 62.8088 3.38643
\(345\) 0 0
\(346\) −9.31524 −0.500790
\(347\) 1.49087i 0.0800343i −0.999199 0.0400171i \(-0.987259\pi\)
0.999199 0.0400171i \(-0.0127413\pi\)
\(348\) 0 0
\(349\) 5.48041 0.293359 0.146680 0.989184i \(-0.453141\pi\)
0.146680 + 0.989184i \(0.453141\pi\)
\(350\) 37.7778 34.9045i 2.01931 1.86573i
\(351\) 0 0
\(352\) 4.09951i 0.218505i
\(353\) 2.97765i 0.158484i 0.996855 + 0.0792421i \(0.0252500\pi\)
−0.996855 + 0.0792421i \(0.974750\pi\)
\(354\) 0 0
\(355\) −25.2746 + 9.88878i −1.34144 + 0.524842i
\(356\) 9.20758 0.488001
\(357\) 0 0
\(358\) 43.4278i 2.29523i
\(359\) −25.1271 −1.32616 −0.663080 0.748548i \(-0.730751\pi\)
−0.663080 + 0.748548i \(0.730751\pi\)
\(360\) 0 0
\(361\) 36.1862 1.90454
\(362\) 10.0112i 0.526178i
\(363\) 0 0
\(364\) −25.4489 −1.33389
\(365\) 2.88430 + 7.37195i 0.150971 + 0.385865i
\(366\) 0 0
\(367\) 10.7689i 0.562133i −0.959688 0.281066i \(-0.909312\pi\)
0.959688 0.281066i \(-0.0906881\pi\)
\(368\) 6.32518i 0.329723i
\(369\) 0 0
\(370\) −57.1619 + 22.3648i −2.97171 + 1.16269i
\(371\) 31.0878 1.61400
\(372\) 0 0
\(373\) 32.3686i 1.67598i 0.545683 + 0.837992i \(0.316270\pi\)
−0.545683 + 0.837992i \(0.683730\pi\)
\(374\) 18.7269 0.968346
\(375\) 0 0
\(376\) 40.7210 2.10002
\(377\) 1.43381i 0.0738449i
\(378\) 0 0
\(379\) 19.9236 1.02341 0.511704 0.859162i \(-0.329015\pi\)
0.511704 + 0.859162i \(0.329015\pi\)
\(380\) 67.2427 26.3090i 3.44948 1.34962i
\(381\) 0 0
\(382\) 55.4837i 2.83879i
\(383\) 11.9116i 0.608653i 0.952568 + 0.304326i \(0.0984313\pi\)
−0.952568 + 0.304326i \(0.901569\pi\)
\(384\) 0 0
\(385\) 3.59047 + 9.17683i 0.182987 + 0.467695i
\(386\) 30.7760 1.56646
\(387\) 0 0
\(388\) 6.61620i 0.335887i
\(389\) −32.8327 −1.66468 −0.832342 0.554263i \(-0.813000\pi\)
−0.832342 + 0.554263i \(0.813000\pi\)
\(390\) 0 0
\(391\) −7.02482 −0.355261
\(392\) 57.1892i 2.88849i
\(393\) 0 0
\(394\) −30.4783 −1.53547
\(395\) −12.7655 + 4.99453i −0.642300 + 0.251302i
\(396\) 0 0
\(397\) 30.5279i 1.53215i −0.642749 0.766076i \(-0.722206\pi\)
0.642749 0.766076i \(-0.277794\pi\)
\(398\) 1.48860i 0.0746166i
\(399\) 0 0
\(400\) 22.7743 21.0421i 1.13871 1.05211i
\(401\) 30.9549 1.54582 0.772908 0.634519i \(-0.218802\pi\)
0.772908 + 0.634519i \(0.218802\pi\)
\(402\) 0 0
\(403\) 10.5673i 0.526392i
\(404\) −36.0314 −1.79263
\(405\) 0 0
\(406\) −10.2869 −0.510528
\(407\) 11.7600i 0.582920i
\(408\) 0 0
\(409\) 29.2998 1.44878 0.724392 0.689388i \(-0.242121\pi\)
0.724392 + 0.689388i \(0.242121\pi\)
\(410\) 6.20665 + 15.8635i 0.306525 + 0.783443i
\(411\) 0 0
\(412\) 14.4701i 0.712892i
\(413\) 38.6026i 1.89951i
\(414\) 0 0
\(415\) 0.501862 + 1.28270i 0.0246354 + 0.0629654i
\(416\) −5.44615 −0.267019
\(417\) 0 0
\(418\) 20.1989i 0.987962i
\(419\) 3.86228 0.188685 0.0943424 0.995540i \(-0.469925\pi\)
0.0943424 + 0.995540i \(0.469925\pi\)
\(420\) 0 0
\(421\) 2.06057 0.100426 0.0502129 0.998739i \(-0.484010\pi\)
0.0502129 + 0.998739i \(0.484010\pi\)
\(422\) 43.8651i 2.13532i
\(423\) 0 0
\(424\) 45.0144 2.18609
\(425\) −23.3697 25.2934i −1.13360 1.22691i
\(426\) 0 0
\(427\) 1.08343i 0.0524309i
\(428\) 38.0253i 1.83802i
\(429\) 0 0
\(430\) 55.7302 21.8046i 2.68755 1.05151i
\(431\) 19.2642 0.927925 0.463962 0.885855i \(-0.346427\pi\)
0.463962 + 0.885855i \(0.346427\pi\)
\(432\) 0 0
\(433\) 12.5317i 0.602236i −0.953587 0.301118i \(-0.902640\pi\)
0.953587 0.301118i \(-0.0973598\pi\)
\(434\) −75.8147 −3.63922
\(435\) 0 0
\(436\) −67.5017 −3.23274
\(437\) 7.57700i 0.362457i
\(438\) 0 0
\(439\) 10.1415 0.484025 0.242013 0.970273i \(-0.422192\pi\)
0.242013 + 0.970273i \(0.422192\pi\)
\(440\) 5.19891 + 13.2878i 0.247848 + 0.633473i
\(441\) 0 0
\(442\) 24.8785i 1.18335i
\(443\) 31.5129i 1.49722i 0.663010 + 0.748611i \(0.269279\pi\)
−0.663010 + 0.748611i \(0.730721\pi\)
\(444\) 0 0
\(445\) 4.41089 1.72577i 0.209096 0.0818096i
\(446\) 36.1505 1.71178
\(447\) 0 0
\(448\) 11.5702i 0.546641i
\(449\) −16.9679 −0.800762 −0.400381 0.916349i \(-0.631122\pi\)
−0.400381 + 0.916349i \(0.631122\pi\)
\(450\) 0 0
\(451\) −3.26361 −0.153678
\(452\) 1.47524i 0.0693892i
\(453\) 0 0
\(454\) 3.46805 0.162764
\(455\) −12.1913 + 4.76989i −0.571537 + 0.223616i
\(456\) 0 0
\(457\) 23.0976i 1.08046i −0.841518 0.540229i \(-0.818337\pi\)
0.841518 0.540229i \(-0.181663\pi\)
\(458\) 38.0482i 1.77787i
\(459\) 0 0
\(460\) −3.61219 9.23235i −0.168419 0.430461i
\(461\) −36.4118 −1.69587 −0.847933 0.530104i \(-0.822153\pi\)
−0.847933 + 0.530104i \(0.822153\pi\)
\(462\) 0 0
\(463\) 19.1964i 0.892134i −0.895000 0.446067i \(-0.852824\pi\)
0.895000 0.446067i \(-0.147176\pi\)
\(464\) −6.20142 −0.287894
\(465\) 0 0
\(466\) 22.0137 1.01976
\(467\) 23.9688i 1.10915i 0.832135 + 0.554573i \(0.187118\pi\)
−0.832135 + 0.554573i \(0.812882\pi\)
\(468\) 0 0
\(469\) 45.4528 2.09881
\(470\) 36.1317 14.1366i 1.66663 0.652075i
\(471\) 0 0
\(472\) 55.8956i 2.57280i
\(473\) 11.4654i 0.527180i
\(474\) 0 0
\(475\) 27.2815 25.2066i 1.25176 1.15656i
\(476\) −122.245 −5.60310
\(477\) 0 0
\(478\) 8.73447i 0.399506i
\(479\) 2.07329 0.0947310 0.0473655 0.998878i \(-0.484917\pi\)
0.0473655 + 0.998878i \(0.484917\pi\)
\(480\) 0 0
\(481\) 15.6230 0.712346
\(482\) 36.8641i 1.67911i
\(483\) 0 0
\(484\) 42.7520 1.94327
\(485\) 1.24007 + 3.16949i 0.0563089 + 0.143919i
\(486\) 0 0
\(487\) 27.7050i 1.25544i −0.778441 0.627718i \(-0.783989\pi\)
0.778441 0.627718i \(-0.216011\pi\)
\(488\) 1.56878i 0.0710155i
\(489\) 0 0
\(490\) −19.8537 50.7439i −0.896900 2.29238i
\(491\) −25.0080 −1.12859 −0.564297 0.825572i \(-0.690853\pi\)
−0.564297 + 0.825572i \(0.690853\pi\)
\(492\) 0 0
\(493\) 6.88737i 0.310192i
\(494\) −26.8340 −1.20732
\(495\) 0 0
\(496\) −45.7048 −2.05221
\(497\) 49.5602i 2.22308i
\(498\) 0 0
\(499\) 8.83260 0.395402 0.197701 0.980262i \(-0.436653\pi\)
0.197701 + 0.980262i \(0.436653\pi\)
\(500\) 21.2250 43.7195i 0.949210 1.95519i
\(501\) 0 0
\(502\) 53.5175i 2.38860i
\(503\) 41.3878i 1.84539i −0.385530 0.922695i \(-0.625982\pi\)
0.385530 0.922695i \(-0.374018\pi\)
\(504\) 0 0
\(505\) −17.2609 + 6.75337i −0.768098 + 0.300521i
\(506\) 2.77329 0.123288
\(507\) 0 0
\(508\) 52.6712i 2.33691i
\(509\) −37.5015 −1.66223 −0.831113 0.556104i \(-0.812296\pi\)
−0.831113 + 0.556104i \(0.812296\pi\)
\(510\) 0 0
\(511\) 14.4554 0.639469
\(512\) 49.7754i 2.19978i
\(513\) 0 0
\(514\) −27.4392 −1.21029
\(515\) 2.71214 + 6.93191i 0.119511 + 0.305457i
\(516\) 0 0
\(517\) 7.43340i 0.326920i
\(518\) 112.087i 4.92481i
\(519\) 0 0
\(520\) −17.6527 + 6.90669i −0.774123 + 0.302878i
\(521\) −28.1345 −1.23259 −0.616297 0.787514i \(-0.711368\pi\)
−0.616297 + 0.787514i \(0.711368\pi\)
\(522\) 0 0
\(523\) 18.2249i 0.796921i 0.917186 + 0.398460i \(0.130455\pi\)
−0.917186 + 0.398460i \(0.869545\pi\)
\(524\) 73.0303 3.19034
\(525\) 0 0
\(526\) 69.5561 3.03279
\(527\) 50.7603i 2.21115i
\(528\) 0 0
\(529\) 21.9597 0.954769
\(530\) 39.9412 15.6271i 1.73493 0.678799i
\(531\) 0 0
\(532\) 131.854i 5.71660i
\(533\) 4.33567i 0.187799i
\(534\) 0 0
\(535\) 7.12707 + 18.2160i 0.308130 + 0.787546i
\(536\) 65.8145 2.84275
\(537\) 0 0
\(538\) 26.6362i 1.14837i
\(539\) 10.4396 0.449665
\(540\) 0 0
\(541\) −45.7584 −1.96731 −0.983655 0.180066i \(-0.942369\pi\)
−0.983655 + 0.180066i \(0.942369\pi\)
\(542\) 9.08049i 0.390040i
\(543\) 0 0
\(544\) −26.1608 −1.12164
\(545\) −32.3366 + 12.6518i −1.38515 + 0.541945i
\(546\) 0 0
\(547\) 17.7250i 0.757868i 0.925424 + 0.378934i \(0.123709\pi\)
−0.925424 + 0.378934i \(0.876291\pi\)
\(548\) 4.15944i 0.177683i
\(549\) 0 0
\(550\) 9.22597 + 9.98543i 0.393397 + 0.425780i
\(551\) −7.42874 −0.316475
\(552\) 0 0
\(553\) 25.0313i 1.06444i
\(554\) 2.15641 0.0916171
\(555\) 0 0
\(556\) −8.06152 −0.341885
\(557\) 16.2072i 0.686720i 0.939204 + 0.343360i \(0.111565\pi\)
−0.939204 + 0.343360i \(0.888435\pi\)
\(558\) 0 0
\(559\) −15.2317 −0.644230
\(560\) −20.6304 52.7290i −0.871794 2.22821i
\(561\) 0 0
\(562\) 27.1875i 1.14683i
\(563\) 38.2802i 1.61332i −0.591018 0.806658i \(-0.701274\pi\)
0.591018 0.806658i \(-0.298726\pi\)
\(564\) 0 0
\(565\) 0.276503 + 0.706711i 0.0116326 + 0.0297316i
\(566\) −75.5318 −3.17484
\(567\) 0 0
\(568\) 71.7619i 3.01106i
\(569\) 21.3031 0.893075 0.446537 0.894765i \(-0.352657\pi\)
0.446537 + 0.894765i \(0.352657\pi\)
\(570\) 0 0
\(571\) 0.776929 0.0325135 0.0162567 0.999868i \(-0.494825\pi\)
0.0162567 + 0.999868i \(0.494825\pi\)
\(572\) 6.72667i 0.281256i
\(573\) 0 0
\(574\) 31.1062 1.29835
\(575\) −3.46084 3.74572i −0.144327 0.156207i
\(576\) 0 0
\(577\) 32.6201i 1.35799i −0.734142 0.678996i \(-0.762415\pi\)
0.734142 0.678996i \(-0.237585\pi\)
\(578\) 76.6769i 3.18934i
\(579\) 0 0
\(580\) −9.05170 + 3.54151i −0.375851 + 0.147053i
\(581\) 2.51521 0.104348
\(582\) 0 0
\(583\) 8.21714i 0.340319i
\(584\) 20.9311 0.866134
\(585\) 0 0
\(586\) 1.18045 0.0487639
\(587\) 23.9622i 0.989025i −0.869171 0.494512i \(-0.835347\pi\)
0.869171 0.494512i \(-0.164653\pi\)
\(588\) 0 0
\(589\) −54.7502 −2.25594
\(590\) 19.4046 + 49.5961i 0.798876 + 2.04184i
\(591\) 0 0
\(592\) 67.5714i 2.77717i
\(593\) 24.7871i 1.01788i 0.860801 + 0.508942i \(0.169963\pi\)
−0.860801 + 0.508942i \(0.830037\pi\)
\(594\) 0 0
\(595\) −58.5615 + 22.9124i −2.40079 + 0.939317i
\(596\) 72.2985 2.96146
\(597\) 0 0
\(598\) 3.68428i 0.150661i
\(599\) −19.5390 −0.798340 −0.399170 0.916877i \(-0.630702\pi\)
−0.399170 + 0.916877i \(0.630702\pi\)
\(600\) 0 0
\(601\) 28.1306 1.14747 0.573735 0.819041i \(-0.305494\pi\)
0.573735 + 0.819041i \(0.305494\pi\)
\(602\) 109.279i 4.45390i
\(603\) 0 0
\(604\) −63.9249 −2.60107
\(605\) 20.4803 8.01300i 0.832643 0.325775i
\(606\) 0 0
\(607\) 7.48051i 0.303624i −0.988409 0.151812i \(-0.951489\pi\)
0.988409 0.151812i \(-0.0485109\pi\)
\(608\) 28.2172i 1.14436i
\(609\) 0 0
\(610\) −0.544617 1.39198i −0.0220509 0.0563596i
\(611\) −9.87517 −0.399507
\(612\) 0 0
\(613\) 14.2166i 0.574203i 0.957900 + 0.287101i \(0.0926917\pi\)
−0.957900 + 0.287101i \(0.907308\pi\)
\(614\) 6.45833 0.260637
\(615\) 0 0
\(616\) 26.0557 1.04981
\(617\) 42.3238i 1.70389i 0.523630 + 0.851945i \(0.324577\pi\)
−0.523630 + 0.851945i \(0.675423\pi\)
\(618\) 0 0
\(619\) −34.3853 −1.38206 −0.691032 0.722824i \(-0.742844\pi\)
−0.691032 + 0.722824i \(0.742844\pi\)
\(620\) −66.7116 + 26.1011i −2.67920 + 1.04825i
\(621\) 0 0
\(622\) 40.5978i 1.62782i
\(623\) 8.64916i 0.346521i
\(624\) 0 0
\(625\) 1.97349 24.9220i 0.0789396 0.996879i
\(626\) −17.9246 −0.716410
\(627\) 0 0
\(628\) 25.4926i 1.01727i
\(629\) 75.0456 2.99227
\(630\) 0 0
\(631\) −1.48894 −0.0592738 −0.0296369 0.999561i \(-0.509435\pi\)
−0.0296369 + 0.999561i \(0.509435\pi\)
\(632\) 36.2448i 1.44174i
\(633\) 0 0
\(634\) −68.3709 −2.71536
\(635\) 9.87216 + 25.2321i 0.391765 + 1.00131i
\(636\) 0 0
\(637\) 13.8689i 0.549504i
\(638\) 2.71902i 0.107647i
\(639\) 0 0
\(640\) 12.0054 + 30.6844i 0.474555 + 1.21291i
\(641\) −29.9790 −1.18410 −0.592050 0.805901i \(-0.701681\pi\)
−0.592050 + 0.805901i \(0.701681\pi\)
\(642\) 0 0
\(643\) 9.90934i 0.390786i −0.980725 0.195393i \(-0.937402\pi\)
0.980725 0.195393i \(-0.0625983\pi\)
\(644\) −18.1034 −0.713374
\(645\) 0 0
\(646\) −128.898 −5.07144
\(647\) 46.6922i 1.83566i −0.396976 0.917829i \(-0.629940\pi\)
0.396976 0.917829i \(-0.370060\pi\)
\(648\) 0 0
\(649\) −10.2034 −0.400520
\(650\) −13.2655 + 12.2566i −0.520316 + 0.480743i
\(651\) 0 0
\(652\) 22.0049i 0.861778i
\(653\) 18.4037i 0.720193i 0.932915 + 0.360096i \(0.117256\pi\)
−0.932915 + 0.360096i \(0.882744\pi\)
\(654\) 0 0
\(655\) 34.9851 13.6881i 1.36698 0.534837i
\(656\) 18.7524 0.732156
\(657\) 0 0
\(658\) 70.8494i 2.76200i
\(659\) −31.2481 −1.21725 −0.608626 0.793457i \(-0.708279\pi\)
−0.608626 + 0.793457i \(0.708279\pi\)
\(660\) 0 0
\(661\) −24.1806 −0.940517 −0.470259 0.882529i \(-0.655839\pi\)
−0.470259 + 0.882529i \(0.655839\pi\)
\(662\) 24.5136i 0.952749i
\(663\) 0 0
\(664\) 3.64196 0.141336
\(665\) −24.7134 63.1646i −0.958344 2.44942i
\(666\) 0 0
\(667\) 1.01996i 0.0394929i
\(668\) 18.4771i 0.714902i
\(669\) 0 0
\(670\) 58.3971 22.8481i 2.25608 0.882698i
\(671\) 0.286373 0.0110553
\(672\) 0 0
\(673\) 17.6115i 0.678873i 0.940629 + 0.339437i \(0.110236\pi\)
−0.940629 + 0.339437i \(0.889764\pi\)
\(674\) 10.9542 0.421941
\(675\) 0 0
\(676\) −47.5728 −1.82972
\(677\) 28.2582i 1.08605i 0.839717 + 0.543025i \(0.182721\pi\)
−0.839717 + 0.543025i \(0.817279\pi\)
\(678\) 0 0
\(679\) 6.21495 0.238508
\(680\) −84.7957 + 33.1766i −3.25177 + 1.27226i
\(681\) 0 0
\(682\) 20.0394i 0.767347i
\(683\) 36.4236i 1.39371i −0.717212 0.696855i \(-0.754582\pi\)
0.717212 0.696855i \(-0.245418\pi\)
\(684\) 0 0
\(685\) −0.779604 1.99258i −0.0297871 0.0761326i
\(686\) −27.4940 −1.04973
\(687\) 0 0
\(688\) 65.8790i 2.51161i
\(689\) −10.9164 −0.415880
\(690\) 0 0
\(691\) −2.76187 −0.105067 −0.0525333 0.998619i \(-0.516730\pi\)
−0.0525333 + 0.998619i \(0.516730\pi\)
\(692\) 16.0727i 0.610993i
\(693\) 0 0
\(694\) −3.75595 −0.142574
\(695\) −3.86187 + 1.51097i −0.146489 + 0.0573144i
\(696\) 0 0
\(697\) 20.8266i 0.788863i
\(698\) 13.8068i 0.522594i
\(699\) 0 0
\(700\) −60.2251 65.1826i −2.27629 2.46367i
\(701\) −0.823616 −0.0311076 −0.0155538 0.999879i \(-0.504951\pi\)
−0.0155538 + 0.999879i \(0.504951\pi\)
\(702\) 0 0
\(703\) 80.9445i 3.05288i
\(704\) −3.05824 −0.115262
\(705\) 0 0
\(706\) 7.50158 0.282326
\(707\) 33.8462i 1.27292i
\(708\) 0 0
\(709\) −37.0407 −1.39109 −0.695546 0.718482i \(-0.744837\pi\)
−0.695546 + 0.718482i \(0.744837\pi\)
\(710\) 24.9128 + 63.6742i 0.934960 + 2.38965i
\(711\) 0 0
\(712\) 12.5238i 0.469348i
\(713\) 7.51714i 0.281519i
\(714\) 0 0
\(715\) −1.26078 3.22241i −0.0471505 0.120511i
\(716\) −74.9314 −2.80032
\(717\) 0 0
\(718\) 63.3027i 2.36244i
\(719\) 47.2494 1.76211 0.881053 0.473018i \(-0.156836\pi\)
0.881053 + 0.473018i \(0.156836\pi\)
\(720\) 0 0
\(721\) 13.5926 0.506213
\(722\) 91.1637i 3.39276i
\(723\) 0 0
\(724\) −17.2736 −0.641968
\(725\) −3.67243 + 3.39312i −0.136391 + 0.126017i
\(726\) 0 0
\(727\) 17.7601i 0.658686i −0.944210 0.329343i \(-0.893173\pi\)
0.944210 0.329343i \(-0.106827\pi\)
\(728\) 34.6146i 1.28290i
\(729\) 0 0
\(730\) 18.5721 7.26640i 0.687385 0.268942i
\(731\) −73.1660 −2.70614
\(732\) 0 0
\(733\) 18.6106i 0.687397i −0.939080 0.343699i \(-0.888320\pi\)
0.939080 0.343699i \(-0.111680\pi\)
\(734\) −27.1301 −1.00139
\(735\) 0 0
\(736\) −3.87418 −0.142804
\(737\) 12.0141i 0.442545i
\(738\) 0 0
\(739\) −29.8386 −1.09763 −0.548815 0.835944i \(-0.684921\pi\)
−0.548815 + 0.835944i \(0.684921\pi\)
\(740\) 38.5887 + 98.6285i 1.41855 + 3.62565i
\(741\) 0 0
\(742\) 78.3194i 2.87519i
\(743\) 2.81047i 0.103106i −0.998670 0.0515532i \(-0.983583\pi\)
0.998670 0.0515532i \(-0.0164172\pi\)
\(744\) 0 0
\(745\) 34.6346 13.5509i 1.26891 0.496467i
\(746\) 81.5461 2.98562
\(747\) 0 0
\(748\) 32.3119i 1.18144i
\(749\) 35.7191 1.30515
\(750\) 0 0
\(751\) 0.199733 0.00728835 0.00364417 0.999993i \(-0.498840\pi\)
0.00364417 + 0.999993i \(0.498840\pi\)
\(752\) 42.7115i 1.55753i
\(753\) 0 0
\(754\) 3.61219 0.131548
\(755\) −30.6232 + 11.9814i −1.11449 + 0.436049i
\(756\) 0 0
\(757\) 4.12493i 0.149923i −0.997186 0.0749616i \(-0.976117\pi\)
0.997186 0.0749616i \(-0.0238834\pi\)
\(758\) 50.1935i 1.82311i
\(759\) 0 0
\(760\) −35.7844 91.4609i −1.29804 3.31764i
\(761\) 21.3155 0.772685 0.386343 0.922355i \(-0.373738\pi\)
0.386343 + 0.922355i \(0.373738\pi\)
\(762\) 0 0
\(763\) 63.4078i 2.29552i
\(764\) 95.7329 3.46350
\(765\) 0 0
\(766\) 30.0088 1.08426
\(767\) 13.5551i 0.489448i
\(768\) 0 0
\(769\) 29.9808 1.08113 0.540567 0.841301i \(-0.318210\pi\)
0.540567 + 0.841301i \(0.318210\pi\)
\(770\) 23.1192 9.04545i 0.833157 0.325975i
\(771\) 0 0
\(772\) 53.1017i 1.91117i
\(773\) 33.7161i 1.21268i 0.795204 + 0.606342i \(0.207364\pi\)
−0.795204 + 0.606342i \(0.792636\pi\)
\(774\) 0 0
\(775\) −27.0660 + 25.0075i −0.972240 + 0.898295i
\(776\) 8.99910 0.323049
\(777\) 0 0
\(778\) 82.7153i 2.96549i
\(779\) 22.4636 0.804843
\(780\) 0 0
\(781\) −13.0998 −0.468746
\(782\) 17.6976i 0.632865i
\(783\) 0 0
\(784\) −59.9847 −2.14231
\(785\) −4.77808 12.2122i −0.170537 0.435874i
\(786\) 0 0
\(787\) 31.6643i 1.12871i 0.825532 + 0.564355i \(0.190875\pi\)
−0.825532 + 0.564355i \(0.809125\pi\)
\(788\) 52.5880i 1.87337i
\(789\) 0 0
\(790\) 12.5827 + 32.1600i 0.447672 + 1.14420i
\(791\) 1.38577 0.0492722
\(792\) 0 0
\(793\) 0.380443i 0.0135099i
\(794\) −76.9089 −2.72939
\(795\) 0 0
\(796\) −2.56846 −0.0910367
\(797\) 18.4025i 0.651851i 0.945395 + 0.325925i \(0.105676\pi\)
−0.945395 + 0.325925i \(0.894324\pi\)
\(798\) 0 0
\(799\) −47.4359 −1.67816
\(800\) −12.8883 13.9493i −0.455672 0.493182i
\(801\) 0 0
\(802\) 77.9846i 2.75373i
\(803\) 3.82086i 0.134835i
\(804\) 0 0
\(805\) −8.67243 + 3.39312i −0.305663 + 0.119592i
\(806\) 26.6220 0.937721
\(807\) 0 0
\(808\) 49.0085i 1.72411i
\(809\) 34.5242 1.21381 0.606903 0.794776i \(-0.292412\pi\)
0.606903 + 0.794776i \(0.292412\pi\)
\(810\) 0 0
\(811\) −34.1567 −1.19941 −0.599703 0.800223i \(-0.704715\pi\)
−0.599703 + 0.800223i \(0.704715\pi\)
\(812\) 17.7492i 0.622874i
\(813\) 0 0
\(814\) −29.6268 −1.03842
\(815\) 4.12437 + 10.5414i 0.144471 + 0.369250i
\(816\) 0 0
\(817\) 78.9171i 2.76096i
\(818\) 73.8150i 2.58088i
\(819\) 0 0
\(820\) 27.3713 10.7091i 0.955846 0.373978i
\(821\) 14.8753 0.519151 0.259575 0.965723i \(-0.416417\pi\)
0.259575 + 0.965723i \(0.416417\pi\)
\(822\) 0 0
\(823\) 1.54163i 0.0537378i −0.999639 0.0268689i \(-0.991446\pi\)
0.999639 0.0268689i \(-0.00855366\pi\)
\(824\) 19.6817 0.685645
\(825\) 0 0
\(826\) 97.2513 3.38380
\(827\) 33.7827i 1.17474i 0.809319 + 0.587369i \(0.199836\pi\)
−0.809319 + 0.587369i \(0.800164\pi\)
\(828\) 0 0
\(829\) 48.7491 1.69312 0.846562 0.532290i \(-0.178668\pi\)
0.846562 + 0.532290i \(0.178668\pi\)
\(830\) 3.23151 1.26434i 0.112167 0.0438858i
\(831\) 0 0
\(832\) 4.06284i 0.140854i
\(833\) 66.6197i 2.30824i
\(834\) 0 0
\(835\) −3.46317 8.85147i −0.119848 0.306318i
\(836\) 34.8517 1.20537
\(837\) 0 0
\(838\) 9.73023i 0.336125i
\(839\) 42.6991 1.47414 0.737069 0.675818i \(-0.236209\pi\)
0.737069 + 0.675818i \(0.236209\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 5.19118i 0.178900i
\(843\) 0 0
\(844\) 75.6859 2.60522
\(845\) −22.7897 + 8.91656i −0.783990 + 0.306739i
\(846\) 0 0
\(847\) 40.1592i 1.37989i
\(848\) 47.2147i 1.62136i
\(849\) 0 0
\(850\) −63.7215 + 58.8751i −2.18563 + 2.01940i
\(851\) 11.1136 0.380969
\(852\) 0 0
\(853\) 1.49646i 0.0512379i 0.999672 + 0.0256189i \(0.00815566\pi\)
−0.999672 + 0.0256189i \(0.991844\pi\)
\(854\) −2.72949 −0.0934011
\(855\) 0 0
\(856\) 51.7205 1.76777
\(857\) 13.9153i 0.475336i 0.971346 + 0.237668i \(0.0763831\pi\)
−0.971346 + 0.237668i \(0.923617\pi\)
\(858\) 0 0
\(859\) 14.0417 0.479098 0.239549 0.970884i \(-0.423000\pi\)
0.239549 + 0.970884i \(0.423000\pi\)
\(860\) −37.6222 96.1582i −1.28291 3.27897i
\(861\) 0 0
\(862\) 48.5323i 1.65302i
\(863\) 34.0731i 1.15986i 0.814665 + 0.579931i \(0.196921\pi\)
−0.814665 + 0.579931i \(0.803079\pi\)
\(864\) 0 0
\(865\) 3.01251 + 7.69963i 0.102428 + 0.261795i
\(866\) −31.5711 −1.07283
\(867\) 0 0
\(868\) 130.812i 4.44006i
\(869\) −6.61629 −0.224442
\(870\) 0 0
\(871\) −15.9606 −0.540803
\(872\) 91.8131i 3.10918i
\(873\) 0 0
\(874\) −19.0887 −0.645685
\(875\) −41.0680 19.9377i −1.38835 0.674019i
\(876\) 0 0
\(877\) 29.3593i 0.991393i 0.868496 + 0.495697i \(0.165087\pi\)
−0.868496 + 0.495697i \(0.834913\pi\)
\(878\) 25.5493i 0.862248i
\(879\) 0 0
\(880\) 13.9374 5.45304i 0.469828 0.183822i
\(881\) 43.2369 1.45669 0.728344 0.685212i \(-0.240290\pi\)
0.728344 + 0.685212i \(0.240290\pi\)
\(882\) 0 0
\(883\) 26.0177i 0.875566i −0.899081 0.437783i \(-0.855764\pi\)
0.899081 0.437783i \(-0.144236\pi\)
\(884\) 42.9259 1.44375
\(885\) 0 0
\(886\) 79.3902 2.66717
\(887\) 8.13241i 0.273060i 0.990636 + 0.136530i \(0.0435950\pi\)
−0.990636 + 0.136530i \(0.956405\pi\)
\(888\) 0 0
\(889\) 49.4769 1.65940
\(890\) −4.34774 11.1123i −0.145736 0.372486i
\(891\) 0 0
\(892\) 62.3749i 2.08847i
\(893\) 51.1645i 1.71215i
\(894\) 0 0
\(895\) −35.8959 + 14.0444i −1.19987 + 0.469452i
\(896\) 60.1681 2.01007
\(897\) 0 0
\(898\) 42.7470i 1.42649i
\(899\) 7.37006 0.245805
\(900\) 0 0
\(901\) −52.4372 −1.74694
\(902\) 8.22201i 0.273763i
\(903\) 0 0
\(904\) 2.00656 0.0667371
\(905\) −8.27491 + 3.23759i −0.275067 + 0.107621i
\(906\) 0 0
\(907\) 18.7226i 0.621673i −0.950463 0.310836i \(-0.899391\pi\)
0.950463 0.310836i \(-0.100609\pi\)
\(908\) 5.98385i 0.198581i
\(909\) 0 0
\(910\) 12.0168 + 30.7135i 0.398352 + 1.01814i
\(911\) 14.9915 0.496690 0.248345 0.968672i \(-0.420113\pi\)
0.248345 + 0.968672i \(0.420113\pi\)
\(912\) 0 0
\(913\) 0.664821i 0.0220024i
\(914\) −58.1896 −1.92474
\(915\) 0 0
\(916\) −65.6492 −2.16911
\(917\) 68.6012i 2.26541i
\(918\) 0 0
\(919\) −33.4011 −1.10180 −0.550901 0.834571i \(-0.685716\pi\)
−0.550901 + 0.834571i \(0.685716\pi\)
\(920\) −12.5575 + 4.91316i −0.414008 + 0.161982i
\(921\) 0 0
\(922\) 91.7320i 3.02103i
\(923\) 17.4029i 0.572822i
\(924\) 0 0
\(925\) 36.9718 + 40.0153i 1.21563 + 1.31569i
\(926\) −48.3615 −1.58926
\(927\) 0 0
\(928\) 3.79838i 0.124688i
\(929\) 35.1088 1.15188 0.575941 0.817491i \(-0.304636\pi\)
0.575941 + 0.817491i \(0.304636\pi\)
\(930\) 0 0
\(931\) −71.8562 −2.35499
\(932\) 37.9829i 1.24417i
\(933\) 0 0
\(934\) 60.3846 1.97584
\(935\) −6.05621 15.4790i −0.198059 0.506217i
\(936\) 0 0
\(937\) 52.6199i 1.71902i 0.511122 + 0.859508i \(0.329230\pi\)
−0.511122 + 0.859508i \(0.670770\pi\)
\(938\) 114.509i 3.73885i
\(939\) 0 0
\(940\) −24.3917 62.3424i −0.795569 2.03339i
\(941\) −11.5423 −0.376269 −0.188135 0.982143i \(-0.560244\pi\)
−0.188135 + 0.982143i \(0.560244\pi\)
\(942\) 0 0
\(943\) 3.08423i 0.100436i
\(944\) 58.6278 1.90817
\(945\) 0 0
\(946\) 28.8848 0.939125
\(947\) 32.3450i 1.05107i 0.850771 + 0.525536i \(0.176135\pi\)
−0.850771 + 0.525536i \(0.823865\pi\)
\(948\) 0 0
\(949\) −5.07596 −0.164773
\(950\) −63.5029 68.7302i −2.06031 2.22990i
\(951\) 0 0
\(952\) 166.273i 5.38894i
\(953\) 5.16960i 0.167460i −0.996488 0.0837299i \(-0.973317\pi\)
0.996488 0.0837299i \(-0.0266833\pi\)
\(954\) 0 0
\(955\) 45.8608 17.9432i 1.48402 0.580629i
\(956\) −15.0707 −0.487420
\(957\) 0 0
\(958\) 5.22323i 0.168755i
\(959\) −3.90718 −0.126170
\(960\) 0 0
\(961\) 23.3177 0.752185
\(962\) 39.3589i 1.26898i
\(963\) 0 0
\(964\) −63.6061 −2.04861
\(965\) −9.95285 25.4384i −0.320393 0.818890i
\(966\) 0 0
\(967\) 38.2056i 1.22861i −0.789069 0.614305i \(-0.789436\pi\)
0.789069 0.614305i \(-0.210564\pi\)
\(968\) 58.1495i 1.86900i
\(969\) 0 0
\(970\) 7.98488 3.12411i 0.256379 0.100309i
\(971\) −13.1039 −0.420524 −0.210262 0.977645i \(-0.567432\pi\)
−0.210262 + 0.977645i \(0.567432\pi\)
\(972\) 0 0
\(973\) 7.57261i 0.242767i
\(974\) −69.7972 −2.23645
\(975\) 0 0
\(976\) −1.64547 −0.0526701
\(977\) 32.4219i 1.03727i −0.854997 0.518633i \(-0.826441\pi\)
0.854997 0.518633i \(-0.173559\pi\)
\(978\) 0 0
\(979\) 2.28615 0.0730656
\(980\) −87.5547 + 34.2561i −2.79683 + 1.09427i
\(981\) 0 0
\(982\) 63.0024i 2.01049i
\(983\) 18.5976i 0.593172i 0.955006 + 0.296586i \(0.0958482\pi\)
−0.955006 + 0.296586i \(0.904152\pi\)
\(984\) 0 0
\(985\) 9.85656 + 25.1923i 0.314056 + 0.802692i
\(986\) 17.3513 0.552579
\(987\) 0 0
\(988\) 46.3000i 1.47300i
\(989\) −10.8352 −0.344540
\(990\) 0 0
\(991\) −18.9551 −0.602128 −0.301064 0.953604i \(-0.597342\pi\)
−0.301064 + 0.953604i \(0.597342\pi\)
\(992\) 27.9943i 0.888819i
\(993\) 0 0
\(994\) 124.857 3.96021
\(995\) −1.23042 + 0.481406i −0.0390069 + 0.0152616i
\(996\) 0 0
\(997\) 22.5731i 0.714896i −0.933933 0.357448i \(-0.883647\pi\)
0.933933 0.357448i \(-0.116353\pi\)
\(998\) 22.2519i 0.704373i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.k.784.2 12
3.2 odd 2 1305.2.c.l.784.11 yes 12
5.2 odd 4 6525.2.a.ce.1.11 12
5.3 odd 4 6525.2.a.ce.1.2 12
5.4 even 2 inner 1305.2.c.k.784.11 yes 12
15.2 even 4 6525.2.a.cf.1.2 12
15.8 even 4 6525.2.a.cf.1.11 12
15.14 odd 2 1305.2.c.l.784.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.c.k.784.2 12 1.1 even 1 trivial
1305.2.c.k.784.11 yes 12 5.4 even 2 inner
1305.2.c.l.784.2 yes 12 15.14 odd 2
1305.2.c.l.784.11 yes 12 3.2 odd 2
6525.2.a.ce.1.2 12 5.3 odd 4
6525.2.a.ce.1.11 12 5.2 odd 4
6525.2.a.cf.1.2 12 15.2 even 4
6525.2.a.cf.1.11 12 15.8 even 4