Properties

Label 1305.2.c.k.784.12
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 148x^{8} + 502x^{6} + 792x^{4} + 496x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.12
Root \(2.62500i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.k.784.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.62500i q^{2} -4.89062 q^{4} +(1.48188 + 1.67452i) q^{5} -1.33988i q^{7} -7.58789i q^{8} +(-4.39562 + 3.88994i) q^{10} -4.65602 q^{11} +6.90089i q^{13} +3.51717 q^{14} +10.1370 q^{16} -6.12899i q^{17} -3.89699 q^{19} +(-7.24733 - 8.18946i) q^{20} -12.2221i q^{22} -2.21197i q^{23} +(-0.608053 + 4.96289i) q^{25} -18.1148 q^{26} +6.55283i q^{28} -1.00000 q^{29} -6.88700 q^{31} +11.4337i q^{32} +16.0886 q^{34} +(2.24365 - 1.98554i) q^{35} +5.79075i q^{37} -10.2296i q^{38} +(12.7061 - 11.2444i) q^{40} -7.05434 q^{41} -11.9077i q^{43} +22.7709 q^{44} +5.80642 q^{46} -6.12899i q^{47} +5.20473 q^{49} +(-13.0276 - 1.59614i) q^{50} -33.7497i q^{52} -1.31265i q^{53} +(-6.89968 - 7.79662i) q^{55} -10.1668 q^{56} -2.62500i q^{58} +6.20611 q^{59} -14.2242 q^{61} -18.0784i q^{62} -9.73965 q^{64} +(-11.5557 + 10.2263i) q^{65} +3.00997i q^{67} +29.9746i q^{68} +(5.21204 + 5.88959i) q^{70} +6.04971 q^{71} +4.47120i q^{73} -15.2007 q^{74} +19.0587 q^{76} +6.23849i q^{77} +1.31186 q^{79} +(15.0218 + 16.9746i) q^{80} -18.5176i q^{82} -4.20110i q^{83} +(10.2631 - 9.08244i) q^{85} +31.2578 q^{86} +35.3294i q^{88} +0.232864 q^{89} +9.24634 q^{91} +10.8179i q^{92} +16.0886 q^{94} +(-5.77488 - 6.52560i) q^{95} +2.99879i q^{97} +13.6624i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 10 q^{10} - 12 q^{11} + 16 q^{14} + 16 q^{16} + 20 q^{19} + 14 q^{20} + 8 q^{25} - 56 q^{26} - 12 q^{29} - 16 q^{31} - 4 q^{34} - 16 q^{35} + 16 q^{40} - 32 q^{41} + 68 q^{44} + 20 q^{46}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.62500i 1.85616i 0.372387 + 0.928078i \(0.378539\pi\)
−0.372387 + 0.928078i \(0.621461\pi\)
\(3\) 0 0
\(4\) −4.89062 −2.44531
\(5\) 1.48188 + 1.67452i 0.662718 + 0.748869i
\(6\) 0 0
\(7\) 1.33988i 0.506425i −0.967411 0.253213i \(-0.918513\pi\)
0.967411 0.253213i \(-0.0814873\pi\)
\(8\) 7.58789i 2.68272i
\(9\) 0 0
\(10\) −4.39562 + 3.88994i −1.39002 + 1.23011i
\(11\) −4.65602 −1.40384 −0.701922 0.712254i \(-0.747674\pi\)
−0.701922 + 0.712254i \(0.747674\pi\)
\(12\) 0 0
\(13\) 6.90089i 1.91396i 0.290150 + 0.956981i \(0.406295\pi\)
−0.290150 + 0.956981i \(0.593705\pi\)
\(14\) 3.51717 0.940004
\(15\) 0 0
\(16\) 10.1370 2.53424
\(17\) 6.12899i 1.48650i −0.669015 0.743249i \(-0.733284\pi\)
0.669015 0.743249i \(-0.266716\pi\)
\(18\) 0 0
\(19\) −3.89699 −0.894031 −0.447016 0.894526i \(-0.647513\pi\)
−0.447016 + 0.894526i \(0.647513\pi\)
\(20\) −7.24733 8.18946i −1.62055 1.83122i
\(21\) 0 0
\(22\) 12.2221i 2.60575i
\(23\) 2.21197i 0.461227i −0.973045 0.230614i \(-0.925927\pi\)
0.973045 0.230614i \(-0.0740734\pi\)
\(24\) 0 0
\(25\) −0.608053 + 4.96289i −0.121611 + 0.992578i
\(26\) −18.1148 −3.55261
\(27\) 0 0
\(28\) 6.55283i 1.23837i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −6.88700 −1.23694 −0.618471 0.785808i \(-0.712247\pi\)
−0.618471 + 0.785808i \(0.712247\pi\)
\(32\) 11.4337i 2.02122i
\(33\) 0 0
\(34\) 16.0886 2.75917
\(35\) 2.24365 1.98554i 0.379246 0.335617i
\(36\) 0 0
\(37\) 5.79075i 0.951993i 0.879447 + 0.475996i \(0.157912\pi\)
−0.879447 + 0.475996i \(0.842088\pi\)
\(38\) 10.2296i 1.65946i
\(39\) 0 0
\(40\) 12.7061 11.2444i 2.00901 1.77789i
\(41\) −7.05434 −1.10170 −0.550851 0.834603i \(-0.685697\pi\)
−0.550851 + 0.834603i \(0.685697\pi\)
\(42\) 0 0
\(43\) 11.9077i 1.81591i −0.419067 0.907955i \(-0.637643\pi\)
0.419067 0.907955i \(-0.362357\pi\)
\(44\) 22.7709 3.43284
\(45\) 0 0
\(46\) 5.80642 0.856110
\(47\) 6.12899i 0.894005i −0.894533 0.447002i \(-0.852492\pi\)
0.894533 0.447002i \(-0.147508\pi\)
\(48\) 0 0
\(49\) 5.20473 0.743533
\(50\) −13.0276 1.59614i −1.84238 0.225728i
\(51\) 0 0
\(52\) 33.7497i 4.68024i
\(53\) 1.31265i 0.180306i −0.995928 0.0901531i \(-0.971264\pi\)
0.995928 0.0901531i \(-0.0287356\pi\)
\(54\) 0 0
\(55\) −6.89968 7.79662i −0.930352 1.05130i
\(56\) −10.1668 −1.35860
\(57\) 0 0
\(58\) 2.62500i 0.344679i
\(59\) 6.20611 0.807967 0.403983 0.914766i \(-0.367625\pi\)
0.403983 + 0.914766i \(0.367625\pi\)
\(60\) 0 0
\(61\) −14.2242 −1.82122 −0.910612 0.413263i \(-0.864389\pi\)
−0.910612 + 0.413263i \(0.864389\pi\)
\(62\) 18.0784i 2.29595i
\(63\) 0 0
\(64\) −9.73965 −1.21746
\(65\) −11.5557 + 10.2263i −1.43331 + 1.26842i
\(66\) 0 0
\(67\) 3.00997i 0.367726i 0.982952 + 0.183863i \(0.0588603\pi\)
−0.982952 + 0.183863i \(0.941140\pi\)
\(68\) 29.9746i 3.63495i
\(69\) 0 0
\(70\) 5.21204 + 5.88959i 0.622957 + 0.703940i
\(71\) 6.04971 0.717968 0.358984 0.933344i \(-0.383123\pi\)
0.358984 + 0.933344i \(0.383123\pi\)
\(72\) 0 0
\(73\) 4.47120i 0.523315i 0.965161 + 0.261657i \(0.0842690\pi\)
−0.965161 + 0.261657i \(0.915731\pi\)
\(74\) −15.2007 −1.76705
\(75\) 0 0
\(76\) 19.0587 2.18619
\(77\) 6.23849i 0.710942i
\(78\) 0 0
\(79\) 1.31186 0.147596 0.0737978 0.997273i \(-0.476488\pi\)
0.0737978 + 0.997273i \(0.476488\pi\)
\(80\) 15.0218 + 16.9746i 1.67949 + 1.89781i
\(81\) 0 0
\(82\) 18.5176i 2.04493i
\(83\) 4.20110i 0.461131i −0.973057 0.230565i \(-0.925942\pi\)
0.973057 0.230565i \(-0.0740576\pi\)
\(84\) 0 0
\(85\) 10.2631 9.08244i 1.11319 0.985129i
\(86\) 31.2578 3.37061
\(87\) 0 0
\(88\) 35.3294i 3.76613i
\(89\) 0.232864 0.0246835 0.0123418 0.999924i \(-0.496071\pi\)
0.0123418 + 0.999924i \(0.496071\pi\)
\(90\) 0 0
\(91\) 9.24634 0.969279
\(92\) 10.8179i 1.12785i
\(93\) 0 0
\(94\) 16.0886 1.65941
\(95\) −5.77488 6.52560i −0.592490 0.669513i
\(96\) 0 0
\(97\) 2.99879i 0.304481i 0.988343 + 0.152240i \(0.0486488\pi\)
−0.988343 + 0.152240i \(0.951351\pi\)
\(98\) 13.6624i 1.38011i
\(99\) 0 0
\(100\) 2.97376 24.2716i 0.297376 2.42716i
\(101\) −15.4724 −1.53956 −0.769782 0.638306i \(-0.779635\pi\)
−0.769782 + 0.638306i \(0.779635\pi\)
\(102\) 0 0
\(103\) 11.5085i 1.13397i 0.823728 + 0.566985i \(0.191890\pi\)
−0.823728 + 0.566985i \(0.808110\pi\)
\(104\) 52.3632 5.13463
\(105\) 0 0
\(106\) 3.44570 0.334676
\(107\) 16.5277i 1.59779i 0.601471 + 0.798895i \(0.294582\pi\)
−0.601471 + 0.798895i \(0.705418\pi\)
\(108\) 0 0
\(109\) −3.89730 −0.373293 −0.186647 0.982427i \(-0.559762\pi\)
−0.186647 + 0.982427i \(0.559762\pi\)
\(110\) 20.4661 18.1116i 1.95137 1.72688i
\(111\) 0 0
\(112\) 13.5823i 1.28340i
\(113\) 8.11123i 0.763040i 0.924361 + 0.381520i \(0.124599\pi\)
−0.924361 + 0.381520i \(0.875401\pi\)
\(114\) 0 0
\(115\) 3.70399 3.27788i 0.345399 0.305664i
\(116\) 4.89062 0.454083
\(117\) 0 0
\(118\) 16.2910i 1.49971i
\(119\) −8.21208 −0.752800
\(120\) 0 0
\(121\) 10.6785 0.970777
\(122\) 37.3386i 3.38047i
\(123\) 0 0
\(124\) 33.6817 3.02471
\(125\) −9.21153 + 6.33622i −0.823905 + 0.566728i
\(126\) 0 0
\(127\) 6.07606i 0.539163i 0.962978 + 0.269582i \(0.0868854\pi\)
−0.962978 + 0.269582i \(0.913115\pi\)
\(128\) 2.69909i 0.238568i
\(129\) 0 0
\(130\) −26.8440 30.3337i −2.35438 2.66044i
\(131\) 1.40292 0.122574 0.0612870 0.998120i \(-0.480479\pi\)
0.0612870 + 0.998120i \(0.480479\pi\)
\(132\) 0 0
\(133\) 5.22149i 0.452760i
\(134\) −7.90117 −0.682557
\(135\) 0 0
\(136\) −46.5061 −3.98786
\(137\) 5.98153i 0.511037i −0.966804 0.255518i \(-0.917754\pi\)
0.966804 0.255518i \(-0.0822461\pi\)
\(138\) 0 0
\(139\) 5.24634 0.444988 0.222494 0.974934i \(-0.428580\pi\)
0.222494 + 0.974934i \(0.428580\pi\)
\(140\) −10.9729 + 9.71052i −0.927376 + 0.820689i
\(141\) 0 0
\(142\) 15.8805i 1.33266i
\(143\) 32.1307i 2.68690i
\(144\) 0 0
\(145\) −1.48188 1.67452i −0.123064 0.139062i
\(146\) −11.7369 −0.971353
\(147\) 0 0
\(148\) 28.3204i 2.32792i
\(149\) 7.74964 0.634875 0.317438 0.948279i \(-0.397178\pi\)
0.317438 + 0.948279i \(0.397178\pi\)
\(150\) 0 0
\(151\) −12.7704 −1.03924 −0.519619 0.854398i \(-0.673926\pi\)
−0.519619 + 0.854398i \(0.673926\pi\)
\(152\) 29.5699i 2.39844i
\(153\) 0 0
\(154\) −16.3760 −1.31962
\(155\) −10.2057 11.5324i −0.819743 0.926307i
\(156\) 0 0
\(157\) 19.2823i 1.53889i 0.638710 + 0.769447i \(0.279468\pi\)
−0.638710 + 0.769447i \(0.720532\pi\)
\(158\) 3.44363i 0.273960i
\(159\) 0 0
\(160\) −19.1461 + 16.9435i −1.51363 + 1.33950i
\(161\) −2.96376 −0.233577
\(162\) 0 0
\(163\) 7.46999i 0.585095i 0.956251 + 0.292547i \(0.0945030\pi\)
−0.956251 + 0.292547i \(0.905497\pi\)
\(164\) 34.5001 2.69401
\(165\) 0 0
\(166\) 11.0279 0.855930
\(167\) 6.07493i 0.470092i −0.971984 0.235046i \(-0.924476\pi\)
0.971984 0.235046i \(-0.0755242\pi\)
\(168\) 0 0
\(169\) −34.6223 −2.66325
\(170\) 23.8414 + 26.9407i 1.82855 + 2.06626i
\(171\) 0 0
\(172\) 58.2362i 4.44047i
\(173\) 22.7580i 1.73026i −0.501550 0.865128i \(-0.667237\pi\)
0.501550 0.865128i \(-0.332763\pi\)
\(174\) 0 0
\(175\) 6.64966 + 0.814715i 0.502667 + 0.0615867i
\(176\) −47.1979 −3.55768
\(177\) 0 0
\(178\) 0.611267i 0.0458164i
\(179\) 1.87173 0.139900 0.0699498 0.997551i \(-0.477716\pi\)
0.0699498 + 0.997551i \(0.477716\pi\)
\(180\) 0 0
\(181\) 18.9013 1.40492 0.702461 0.711722i \(-0.252084\pi\)
0.702461 + 0.711722i \(0.252084\pi\)
\(182\) 24.2716i 1.79913i
\(183\) 0 0
\(184\) −16.7842 −1.23735
\(185\) −9.69674 + 8.58120i −0.712918 + 0.630903i
\(186\) 0 0
\(187\) 28.5367i 2.08681i
\(188\) 29.9746i 2.18612i
\(189\) 0 0
\(190\) 17.1297 15.1591i 1.24272 1.09975i
\(191\) −10.3997 −0.752495 −0.376248 0.926519i \(-0.622786\pi\)
−0.376248 + 0.926519i \(0.622786\pi\)
\(192\) 0 0
\(193\) 5.32409i 0.383237i 0.981470 + 0.191618i \(0.0613736\pi\)
−0.981470 + 0.191618i \(0.938626\pi\)
\(194\) −7.87182 −0.565164
\(195\) 0 0
\(196\) −25.4544 −1.81817
\(197\) 13.3489i 0.951071i −0.879697 0.475535i \(-0.842254\pi\)
0.879697 0.475535i \(-0.157746\pi\)
\(198\) 0 0
\(199\) −20.6404 −1.46316 −0.731580 0.681755i \(-0.761217\pi\)
−0.731580 + 0.681755i \(0.761217\pi\)
\(200\) 37.6579 + 4.61384i 2.66281 + 0.326248i
\(201\) 0 0
\(202\) 40.6151i 2.85767i
\(203\) 1.33988i 0.0940408i
\(204\) 0 0
\(205\) −10.4537 11.8126i −0.730118 0.825031i
\(206\) −30.2099 −2.10482
\(207\) 0 0
\(208\) 69.9540i 4.85044i
\(209\) 18.1445 1.25508
\(210\) 0 0
\(211\) −11.0541 −0.760998 −0.380499 0.924781i \(-0.624248\pi\)
−0.380499 + 0.924781i \(0.624248\pi\)
\(212\) 6.41967i 0.440905i
\(213\) 0 0
\(214\) −43.3851 −2.96575
\(215\) 19.9398 17.6458i 1.35988 1.20344i
\(216\) 0 0
\(217\) 9.22772i 0.626418i
\(218\) 10.2304i 0.692891i
\(219\) 0 0
\(220\) 33.7437 + 38.1303i 2.27500 + 2.57075i
\(221\) 42.2955 2.84510
\(222\) 0 0
\(223\) 23.4495i 1.57030i −0.619307 0.785149i \(-0.712587\pi\)
0.619307 0.785149i \(-0.287413\pi\)
\(224\) 15.3198 1.02360
\(225\) 0 0
\(226\) −21.2920 −1.41632
\(227\) 4.66282i 0.309482i 0.987955 + 0.154741i \(0.0494544\pi\)
−0.987955 + 0.154741i \(0.950546\pi\)
\(228\) 0 0
\(229\) 9.77936 0.646238 0.323119 0.946358i \(-0.395269\pi\)
0.323119 + 0.946358i \(0.395269\pi\)
\(230\) 8.60443 + 9.72298i 0.567359 + 0.641114i
\(231\) 0 0
\(232\) 7.58789i 0.498169i
\(233\) 9.39163i 0.615266i 0.951505 + 0.307633i \(0.0995370\pi\)
−0.951505 + 0.307633i \(0.900463\pi\)
\(234\) 0 0
\(235\) 10.2631 9.08244i 0.669493 0.592473i
\(236\) −30.3518 −1.97573
\(237\) 0 0
\(238\) 21.5567i 1.39731i
\(239\) −22.9585 −1.48506 −0.742530 0.669813i \(-0.766374\pi\)
−0.742530 + 0.669813i \(0.766374\pi\)
\(240\) 0 0
\(241\) 1.04624 0.0673944 0.0336972 0.999432i \(-0.489272\pi\)
0.0336972 + 0.999432i \(0.489272\pi\)
\(242\) 28.0312i 1.80191i
\(243\) 0 0
\(244\) 69.5653 4.45346
\(245\) 7.71280 + 8.71544i 0.492753 + 0.556809i
\(246\) 0 0
\(247\) 26.8927i 1.71114i
\(248\) 52.2578i 3.31837i
\(249\) 0 0
\(250\) −16.6326 24.1803i −1.05194 1.52929i
\(251\) −1.08079 −0.0682188 −0.0341094 0.999418i \(-0.510859\pi\)
−0.0341094 + 0.999418i \(0.510859\pi\)
\(252\) 0 0
\(253\) 10.2990i 0.647491i
\(254\) −15.9497 −1.00077
\(255\) 0 0
\(256\) −12.3942 −0.774636
\(257\) 11.4142i 0.712001i 0.934486 + 0.356000i \(0.115860\pi\)
−0.934486 + 0.356000i \(0.884140\pi\)
\(258\) 0 0
\(259\) 7.75888 0.482113
\(260\) 56.5146 50.0130i 3.50489 3.10168i
\(261\) 0 0
\(262\) 3.68268i 0.227517i
\(263\) 0.662105i 0.0408271i 0.999792 + 0.0204136i \(0.00649829\pi\)
−0.999792 + 0.0204136i \(0.993502\pi\)
\(264\) 0 0
\(265\) 2.19806 1.94519i 0.135026 0.119492i
\(266\) −13.7064 −0.840393
\(267\) 0 0
\(268\) 14.7206i 0.899206i
\(269\) −22.3008 −1.35970 −0.679851 0.733350i \(-0.737956\pi\)
−0.679851 + 0.733350i \(0.737956\pi\)
\(270\) 0 0
\(271\) 5.53607 0.336292 0.168146 0.985762i \(-0.446222\pi\)
0.168146 + 0.985762i \(0.446222\pi\)
\(272\) 62.1293i 3.76714i
\(273\) 0 0
\(274\) 15.7015 0.948564
\(275\) 2.83111 23.1073i 0.170722 1.39342i
\(276\) 0 0
\(277\) 12.6054i 0.757383i 0.925523 + 0.378692i \(0.123626\pi\)
−0.925523 + 0.378692i \(0.876374\pi\)
\(278\) 13.7716i 0.825967i
\(279\) 0 0
\(280\) −15.0660 17.0246i −0.900368 1.01741i
\(281\) −3.34566 −0.199585 −0.0997926 0.995008i \(-0.531818\pi\)
−0.0997926 + 0.995008i \(0.531818\pi\)
\(282\) 0 0
\(283\) 4.86489i 0.289188i 0.989491 + 0.144594i \(0.0461876\pi\)
−0.989491 + 0.144594i \(0.953812\pi\)
\(284\) −29.5869 −1.75566
\(285\) 0 0
\(286\) 84.3431 4.98731
\(287\) 9.45194i 0.557930i
\(288\) 0 0
\(289\) −20.5645 −1.20968
\(290\) 4.39562 3.88994i 0.258120 0.228425i
\(291\) 0 0
\(292\) 21.8670i 1.27967i
\(293\) 4.13296i 0.241450i 0.992686 + 0.120725i \(0.0385219\pi\)
−0.992686 + 0.120725i \(0.961478\pi\)
\(294\) 0 0
\(295\) 9.19672 + 10.3923i 0.535454 + 0.605062i
\(296\) 43.9395 2.55393
\(297\) 0 0
\(298\) 20.3428i 1.17843i
\(299\) 15.2646 0.882772
\(300\) 0 0
\(301\) −15.9549 −0.919623
\(302\) 33.5222i 1.92899i
\(303\) 0 0
\(304\) −39.5037 −2.26569
\(305\) −21.0786 23.8188i −1.20696 1.36386i
\(306\) 0 0
\(307\) 15.7578i 0.899344i 0.893194 + 0.449672i \(0.148459\pi\)
−0.893194 + 0.449672i \(0.851541\pi\)
\(308\) 30.5101i 1.73848i
\(309\) 0 0
\(310\) 30.2726 26.7900i 1.71937 1.52157i
\(311\) −22.0419 −1.24988 −0.624940 0.780673i \(-0.714877\pi\)
−0.624940 + 0.780673i \(0.714877\pi\)
\(312\) 0 0
\(313\) 9.68896i 0.547653i 0.961779 + 0.273826i \(0.0882893\pi\)
−0.961779 + 0.273826i \(0.911711\pi\)
\(314\) −50.6160 −2.85643
\(315\) 0 0
\(316\) −6.41581 −0.360917
\(317\) 4.64549i 0.260917i −0.991454 0.130458i \(-0.958355\pi\)
0.991454 0.130458i \(-0.0416449\pi\)
\(318\) 0 0
\(319\) 4.65602 0.260687
\(320\) −14.4330 16.3093i −0.806830 0.911715i
\(321\) 0 0
\(322\) 7.77988i 0.433556i
\(323\) 23.8846i 1.32898i
\(324\) 0 0
\(325\) −34.2484 4.19611i −1.89976 0.232758i
\(326\) −19.6087 −1.08603
\(327\) 0 0
\(328\) 53.5275i 2.95556i
\(329\) −8.21208 −0.452747
\(330\) 0 0
\(331\) −6.38231 −0.350804 −0.175402 0.984497i \(-0.556122\pi\)
−0.175402 + 0.984497i \(0.556122\pi\)
\(332\) 20.5460i 1.12761i
\(333\) 0 0
\(334\) 15.9467 0.872565
\(335\) −5.04026 + 4.46042i −0.275379 + 0.243699i
\(336\) 0 0
\(337\) 8.44947i 0.460272i −0.973159 0.230136i \(-0.926083\pi\)
0.973159 0.230136i \(-0.0739171\pi\)
\(338\) 90.8835i 4.94341i
\(339\) 0 0
\(340\) −50.1931 + 44.4188i −2.72210 + 2.40895i
\(341\) 32.0660 1.73647
\(342\) 0 0
\(343\) 16.3528i 0.882970i
\(344\) −90.3545 −4.87159
\(345\) 0 0
\(346\) 59.7397 3.21163
\(347\) 15.3895i 0.826150i 0.910697 + 0.413075i \(0.135545\pi\)
−0.910697 + 0.413075i \(0.864455\pi\)
\(348\) 0 0
\(349\) −1.89930 −0.101667 −0.0508336 0.998707i \(-0.516188\pi\)
−0.0508336 + 0.998707i \(0.516188\pi\)
\(350\) −2.13863 + 17.4553i −0.114314 + 0.933027i
\(351\) 0 0
\(352\) 53.2358i 2.83748i
\(353\) 17.8674i 0.950985i 0.879720 + 0.475492i \(0.157730\pi\)
−0.879720 + 0.475492i \(0.842270\pi\)
\(354\) 0 0
\(355\) 8.96495 + 10.1304i 0.475810 + 0.537664i
\(356\) −1.13885 −0.0603589
\(357\) 0 0
\(358\) 4.91329i 0.259675i
\(359\) −24.7905 −1.30839 −0.654197 0.756324i \(-0.726993\pi\)
−0.654197 + 0.756324i \(0.726993\pi\)
\(360\) 0 0
\(361\) −3.81345 −0.200708
\(362\) 49.6159i 2.60775i
\(363\) 0 0
\(364\) −45.2204 −2.37019
\(365\) −7.48713 + 6.62579i −0.391894 + 0.346810i
\(366\) 0 0
\(367\) 20.5944i 1.07502i 0.843258 + 0.537509i \(0.180635\pi\)
−0.843258 + 0.537509i \(0.819365\pi\)
\(368\) 22.4226i 1.16886i
\(369\) 0 0
\(370\) −22.5257 25.4539i −1.17105 1.32329i
\(371\) −1.75879 −0.0913116
\(372\) 0 0
\(373\) 7.55956i 0.391419i −0.980662 0.195710i \(-0.937299\pi\)
0.980662 0.195710i \(-0.0627010\pi\)
\(374\) −74.9089 −3.87345
\(375\) 0 0
\(376\) −46.5061 −2.39837
\(377\) 6.90089i 0.355414i
\(378\) 0 0
\(379\) 29.0454 1.49196 0.745980 0.665968i \(-0.231981\pi\)
0.745980 + 0.665968i \(0.231981\pi\)
\(380\) 28.2428 + 31.9143i 1.44882 + 1.63717i
\(381\) 0 0
\(382\) 27.2992i 1.39675i
\(383\) 9.20227i 0.470214i −0.971969 0.235107i \(-0.924456\pi\)
0.971969 0.235107i \(-0.0755441\pi\)
\(384\) 0 0
\(385\) −10.4465 + 9.24471i −0.532403 + 0.471154i
\(386\) −13.9757 −0.711347
\(387\) 0 0
\(388\) 14.6660i 0.744551i
\(389\) 12.7690 0.647414 0.323707 0.946157i \(-0.395071\pi\)
0.323707 + 0.946157i \(0.395071\pi\)
\(390\) 0 0
\(391\) −13.5571 −0.685614
\(392\) 39.4929i 1.99469i
\(393\) 0 0
\(394\) 35.0409 1.76534
\(395\) 1.94402 + 2.19674i 0.0978142 + 0.110530i
\(396\) 0 0
\(397\) 24.2689i 1.21802i −0.793163 0.609009i \(-0.791567\pi\)
0.793163 0.609009i \(-0.208433\pi\)
\(398\) 54.1811i 2.71585i
\(399\) 0 0
\(400\) −6.16381 + 50.3086i −0.308190 + 2.51543i
\(401\) 3.50670 0.175116 0.0875581 0.996159i \(-0.472094\pi\)
0.0875581 + 0.996159i \(0.472094\pi\)
\(402\) 0 0
\(403\) 47.5264i 2.36746i
\(404\) 75.6699 3.76472
\(405\) 0 0
\(406\) −3.51717 −0.174554
\(407\) 26.9618i 1.33645i
\(408\) 0 0
\(409\) −15.0852 −0.745913 −0.372956 0.927849i \(-0.621656\pi\)
−0.372956 + 0.927849i \(0.621656\pi\)
\(410\) 31.0082 27.4409i 1.53139 1.35521i
\(411\) 0 0
\(412\) 56.2839i 2.77291i
\(413\) 8.31542i 0.409175i
\(414\) 0 0
\(415\) 7.03484 6.22553i 0.345327 0.305599i
\(416\) −78.9030 −3.86854
\(417\) 0 0
\(418\) 47.6293i 2.32962i
\(419\) 35.1725 1.71829 0.859144 0.511734i \(-0.170997\pi\)
0.859144 + 0.511734i \(0.170997\pi\)
\(420\) 0 0
\(421\) 24.4390 1.19108 0.595541 0.803325i \(-0.296938\pi\)
0.595541 + 0.803325i \(0.296938\pi\)
\(422\) 29.0171i 1.41253i
\(423\) 0 0
\(424\) −9.96023 −0.483712
\(425\) 30.4175 + 3.72675i 1.47547 + 0.180774i
\(426\) 0 0
\(427\) 19.0587i 0.922314i
\(428\) 80.8306i 3.90710i
\(429\) 0 0
\(430\) 46.3203 + 52.3418i 2.23376 + 2.52415i
\(431\) −38.0385 −1.83225 −0.916125 0.400892i \(-0.868700\pi\)
−0.916125 + 0.400892i \(0.868700\pi\)
\(432\) 0 0
\(433\) 19.3627i 0.930513i 0.885176 + 0.465256i \(0.154038\pi\)
−0.885176 + 0.465256i \(0.845962\pi\)
\(434\) −24.2228 −1.16273
\(435\) 0 0
\(436\) 19.0602 0.912819
\(437\) 8.62003i 0.412352i
\(438\) 0 0
\(439\) −11.4598 −0.546946 −0.273473 0.961880i \(-0.588172\pi\)
−0.273473 + 0.961880i \(0.588172\pi\)
\(440\) −59.1599 + 52.3540i −2.82034 + 2.49588i
\(441\) 0 0
\(442\) 111.026i 5.28095i
\(443\) 14.4767i 0.687811i 0.939004 + 0.343905i \(0.111750\pi\)
−0.939004 + 0.343905i \(0.888250\pi\)
\(444\) 0 0
\(445\) 0.345076 + 0.389936i 0.0163582 + 0.0184847i
\(446\) 61.5550 2.91472
\(447\) 0 0
\(448\) 13.0499i 0.616551i
\(449\) 13.4544 0.634955 0.317477 0.948266i \(-0.397164\pi\)
0.317477 + 0.948266i \(0.397164\pi\)
\(450\) 0 0
\(451\) 32.8452 1.54662
\(452\) 39.6690i 1.86587i
\(453\) 0 0
\(454\) −12.2399 −0.574447
\(455\) 13.7020 + 15.4832i 0.642359 + 0.725864i
\(456\) 0 0
\(457\) 8.41068i 0.393435i 0.980460 + 0.196717i \(0.0630282\pi\)
−0.980460 + 0.196717i \(0.936972\pi\)
\(458\) 25.6708i 1.19952i
\(459\) 0 0
\(460\) −18.1148 + 16.0309i −0.844609 + 0.747443i
\(461\) 23.6845 1.10310 0.551549 0.834142i \(-0.314037\pi\)
0.551549 + 0.834142i \(0.314037\pi\)
\(462\) 0 0
\(463\) 8.12644i 0.377668i 0.982009 + 0.188834i \(0.0604707\pi\)
−0.982009 + 0.188834i \(0.939529\pi\)
\(464\) −10.1370 −0.470597
\(465\) 0 0
\(466\) −24.6530 −1.14203
\(467\) 7.02702i 0.325172i 0.986694 + 0.162586i \(0.0519835\pi\)
−0.986694 + 0.162586i \(0.948017\pi\)
\(468\) 0 0
\(469\) 4.03298 0.186226
\(470\) 23.8414 + 26.9407i 1.09972 + 1.24268i
\(471\) 0 0
\(472\) 47.0913i 2.16755i
\(473\) 55.4426i 2.54925i
\(474\) 0 0
\(475\) 2.36958 19.3403i 0.108724 0.887396i
\(476\) 40.1622 1.84083
\(477\) 0 0
\(478\) 60.2660i 2.75650i
\(479\) 27.7993 1.27018 0.635090 0.772438i \(-0.280963\pi\)
0.635090 + 0.772438i \(0.280963\pi\)
\(480\) 0 0
\(481\) −39.9613 −1.82208
\(482\) 2.74639i 0.125094i
\(483\) 0 0
\(484\) −52.2248 −2.37385
\(485\) −5.02154 + 4.44385i −0.228016 + 0.201785i
\(486\) 0 0
\(487\) 6.76082i 0.306362i −0.988198 0.153181i \(-0.951048\pi\)
0.988198 0.153181i \(-0.0489517\pi\)
\(488\) 107.932i 4.88584i
\(489\) 0 0
\(490\) −22.8780 + 20.2461i −1.03352 + 0.914625i
\(491\) 23.3110 1.05201 0.526006 0.850481i \(-0.323689\pi\)
0.526006 + 0.850481i \(0.323689\pi\)
\(492\) 0 0
\(493\) 6.12899i 0.276036i
\(494\) 70.5934 3.17615
\(495\) 0 0
\(496\) −69.8132 −3.13471
\(497\) 8.10586i 0.363597i
\(498\) 0 0
\(499\) 12.7385 0.570253 0.285126 0.958490i \(-0.407964\pi\)
0.285126 + 0.958490i \(0.407964\pi\)
\(500\) 45.0502 30.9881i 2.01470 1.38583i
\(501\) 0 0
\(502\) 2.83707i 0.126625i
\(503\) 28.1328i 1.25438i 0.778867 + 0.627190i \(0.215795\pi\)
−0.778867 + 0.627190i \(0.784205\pi\)
\(504\) 0 0
\(505\) −22.9283 25.9089i −1.02030 1.15293i
\(506\) −27.0348 −1.20184
\(507\) 0 0
\(508\) 29.7157i 1.31842i
\(509\) −19.5447 −0.866305 −0.433152 0.901321i \(-0.642599\pi\)
−0.433152 + 0.901321i \(0.642599\pi\)
\(510\) 0 0
\(511\) 5.99086 0.265020
\(512\) 37.9329i 1.67641i
\(513\) 0 0
\(514\) −29.9624 −1.32158
\(515\) −19.2713 + 17.0543i −0.849195 + 0.751501i
\(516\) 0 0
\(517\) 28.5367i 1.25504i
\(518\) 20.3671i 0.894877i
\(519\) 0 0
\(520\) 77.5961 + 87.6834i 3.40281 + 3.84517i
\(521\) −20.4477 −0.895831 −0.447915 0.894076i \(-0.647833\pi\)
−0.447915 + 0.894076i \(0.647833\pi\)
\(522\) 0 0
\(523\) 5.82433i 0.254680i −0.991859 0.127340i \(-0.959356\pi\)
0.991859 0.127340i \(-0.0406439\pi\)
\(524\) −6.86118 −0.299732
\(525\) 0 0
\(526\) −1.73802 −0.0757815
\(527\) 42.2103i 1.83871i
\(528\) 0 0
\(529\) 18.1072 0.787269
\(530\) 5.10612 + 5.76991i 0.221796 + 0.250629i
\(531\) 0 0
\(532\) 25.5363i 1.10714i
\(533\) 48.6812i 2.10862i
\(534\) 0 0
\(535\) −27.6760 + 24.4921i −1.19654 + 1.05888i
\(536\) 22.8393 0.986508
\(537\) 0 0
\(538\) 58.5395i 2.52382i
\(539\) −24.2334 −1.04380
\(540\) 0 0
\(541\) −27.8021 −1.19531 −0.597653 0.801755i \(-0.703900\pi\)
−0.597653 + 0.801755i \(0.703900\pi\)
\(542\) 14.5322i 0.624211i
\(543\) 0 0
\(544\) 70.0773 3.00454
\(545\) −5.77533 6.52611i −0.247388 0.279548i
\(546\) 0 0
\(547\) 14.9066i 0.637360i 0.947862 + 0.318680i \(0.103240\pi\)
−0.947862 + 0.318680i \(0.896760\pi\)
\(548\) 29.2534i 1.24964i
\(549\) 0 0
\(550\) 60.6567 + 7.43166i 2.58641 + 0.316887i
\(551\) 3.89699 0.166017
\(552\) 0 0
\(553\) 1.75773i 0.0747462i
\(554\) −33.0891 −1.40582
\(555\) 0 0
\(556\) −25.6579 −1.08814
\(557\) 10.3968i 0.440529i −0.975440 0.220264i \(-0.929308\pi\)
0.975440 0.220264i \(-0.0706920\pi\)
\(558\) 0 0
\(559\) 82.1739 3.47558
\(560\) 22.7438 20.1273i 0.961102 0.850534i
\(561\) 0 0
\(562\) 8.78235i 0.370461i
\(563\) 40.1299i 1.69127i 0.533759 + 0.845636i \(0.320779\pi\)
−0.533759 + 0.845636i \(0.679221\pi\)
\(564\) 0 0
\(565\) −13.5824 + 12.0199i −0.571417 + 0.505680i
\(566\) −12.7703 −0.536778
\(567\) 0 0
\(568\) 45.9045i 1.92611i
\(569\) 28.0544 1.17610 0.588051 0.808824i \(-0.299895\pi\)
0.588051 + 0.808824i \(0.299895\pi\)
\(570\) 0 0
\(571\) −16.5985 −0.694626 −0.347313 0.937749i \(-0.612906\pi\)
−0.347313 + 0.937749i \(0.612906\pi\)
\(572\) 157.139i 6.57032i
\(573\) 0 0
\(574\) −24.8113 −1.03560
\(575\) 10.9778 + 1.34499i 0.457804 + 0.0560901i
\(576\) 0 0
\(577\) 11.9936i 0.499302i −0.968336 0.249651i \(-0.919684\pi\)
0.968336 0.249651i \(-0.0803159\pi\)
\(578\) 53.9818i 2.24535i
\(579\) 0 0
\(580\) 7.24733 + 8.18946i 0.300929 + 0.340049i
\(581\) −5.62895 −0.233528
\(582\) 0 0
\(583\) 6.11172i 0.253122i
\(584\) 33.9270 1.40391
\(585\) 0 0
\(586\) −10.8490 −0.448169
\(587\) 8.58663i 0.354408i −0.984174 0.177204i \(-0.943295\pi\)
0.984174 0.177204i \(-0.0567053\pi\)
\(588\) 0 0
\(589\) 26.8386 1.10586
\(590\) −27.2797 + 24.1414i −1.12309 + 0.993886i
\(591\) 0 0
\(592\) 58.7006i 2.41258i
\(593\) 16.1445i 0.662976i −0.943459 0.331488i \(-0.892449\pi\)
0.943459 0.331488i \(-0.107551\pi\)
\(594\) 0 0
\(595\) −12.1693 13.7513i −0.498894 0.563749i
\(596\) −37.9006 −1.55247
\(597\) 0 0
\(598\) 40.0695i 1.63856i
\(599\) 32.8519 1.34229 0.671146 0.741326i \(-0.265803\pi\)
0.671146 + 0.741326i \(0.265803\pi\)
\(600\) 0 0
\(601\) 30.9385 1.26201 0.631004 0.775780i \(-0.282643\pi\)
0.631004 + 0.775780i \(0.282643\pi\)
\(602\) 41.8815i 1.70696i
\(603\) 0 0
\(604\) 62.4551 2.54126
\(605\) 15.8243 + 17.8815i 0.643351 + 0.726985i
\(606\) 0 0
\(607\) 11.3258i 0.459699i −0.973226 0.229849i \(-0.926177\pi\)
0.973226 0.229849i \(-0.0738234\pi\)
\(608\) 44.5572i 1.80703i
\(609\) 0 0
\(610\) 62.5243 55.3313i 2.53153 2.24030i
\(611\) 42.2955 1.71109
\(612\) 0 0
\(613\) 22.7537i 0.919015i 0.888174 + 0.459508i \(0.151974\pi\)
−0.888174 + 0.459508i \(0.848026\pi\)
\(614\) −41.3642 −1.66932
\(615\) 0 0
\(616\) 47.3370 1.90726
\(617\) 12.2226i 0.492062i 0.969262 + 0.246031i \(0.0791265\pi\)
−0.969262 + 0.246031i \(0.920873\pi\)
\(618\) 0 0
\(619\) −15.3131 −0.615486 −0.307743 0.951469i \(-0.599574\pi\)
−0.307743 + 0.951469i \(0.599574\pi\)
\(620\) 49.9123 + 56.4008i 2.00453 + 2.26511i
\(621\) 0 0
\(622\) 57.8599i 2.31997i
\(623\) 0.312008i 0.0125004i
\(624\) 0 0
\(625\) −24.2605 6.03540i −0.970422 0.241416i
\(626\) −25.4335 −1.01653
\(627\) 0 0
\(628\) 94.3025i 3.76308i
\(629\) 35.4914 1.41514
\(630\) 0 0
\(631\) −7.63898 −0.304103 −0.152051 0.988373i \(-0.548588\pi\)
−0.152051 + 0.988373i \(0.548588\pi\)
\(632\) 9.95424i 0.395958i
\(633\) 0 0
\(634\) 12.1944 0.484302
\(635\) −10.1745 + 9.00401i −0.403763 + 0.357313i
\(636\) 0 0
\(637\) 35.9173i 1.42309i
\(638\) 12.2221i 0.483876i
\(639\) 0 0
\(640\) 4.51969 3.99974i 0.178657 0.158103i
\(641\) −30.6857 −1.21201 −0.606007 0.795459i \(-0.707230\pi\)
−0.606007 + 0.795459i \(0.707230\pi\)
\(642\) 0 0
\(643\) 22.1507i 0.873539i −0.899574 0.436769i \(-0.856123\pi\)
0.899574 0.436769i \(-0.143877\pi\)
\(644\) 14.4947 0.571169
\(645\) 0 0
\(646\) −62.6971 −2.46679
\(647\) 33.6116i 1.32141i −0.750647 0.660704i \(-0.770258\pi\)
0.750647 0.660704i \(-0.229742\pi\)
\(648\) 0 0
\(649\) −28.8958 −1.13426
\(650\) 11.0148 89.9019i 0.432035 3.52624i
\(651\) 0 0
\(652\) 36.5329i 1.43074i
\(653\) 23.8816i 0.934558i 0.884110 + 0.467279i \(0.154766\pi\)
−0.884110 + 0.467279i \(0.845234\pi\)
\(654\) 0 0
\(655\) 2.07897 + 2.34923i 0.0812320 + 0.0917920i
\(656\) −71.5095 −2.79198
\(657\) 0 0
\(658\) 21.5567i 0.840368i
\(659\) 14.3592 0.559355 0.279678 0.960094i \(-0.409772\pi\)
0.279678 + 0.960094i \(0.409772\pi\)
\(660\) 0 0
\(661\) 26.0880 1.01471 0.507353 0.861738i \(-0.330624\pi\)
0.507353 + 0.861738i \(0.330624\pi\)
\(662\) 16.7536i 0.651146i
\(663\) 0 0
\(664\) −31.8775 −1.23709
\(665\) −8.74350 + 7.73762i −0.339058 + 0.300052i
\(666\) 0 0
\(667\) 2.21197i 0.0856478i
\(668\) 29.7102i 1.14952i
\(669\) 0 0
\(670\) −11.7086 13.2307i −0.452343 0.511146i
\(671\) 66.2283 2.55671
\(672\) 0 0
\(673\) 21.3205i 0.821846i 0.911670 + 0.410923i \(0.134793\pi\)
−0.911670 + 0.410923i \(0.865207\pi\)
\(674\) 22.1798 0.854336
\(675\) 0 0
\(676\) 169.325 6.51248
\(677\) 3.63342i 0.139644i −0.997559 0.0698218i \(-0.977757\pi\)
0.997559 0.0698218i \(-0.0222431\pi\)
\(678\) 0 0
\(679\) 4.01801 0.154197
\(680\) −68.9165 77.8755i −2.64283 2.98639i
\(681\) 0 0
\(682\) 84.1733i 3.22316i
\(683\) 39.7305i 1.52025i 0.649779 + 0.760123i \(0.274861\pi\)
−0.649779 + 0.760123i \(0.725139\pi\)
\(684\) 0 0
\(685\) 10.0162 8.86392i 0.382700 0.338673i
\(686\) 42.9262 1.63893
\(687\) 0 0
\(688\) 120.708i 4.60195i
\(689\) 9.05844 0.345099
\(690\) 0 0
\(691\) 8.88067 0.337837 0.168918 0.985630i \(-0.445973\pi\)
0.168918 + 0.985630i \(0.445973\pi\)
\(692\) 111.301i 4.23102i
\(693\) 0 0
\(694\) −40.3973 −1.53346
\(695\) 7.77445 + 8.78511i 0.294902 + 0.333238i
\(696\) 0 0
\(697\) 43.2360i 1.63768i
\(698\) 4.98567i 0.188710i
\(699\) 0 0
\(700\) −32.5210 3.98447i −1.22918 0.150599i
\(701\) −45.6880 −1.72561 −0.862806 0.505536i \(-0.831295\pi\)
−0.862806 + 0.505536i \(0.831295\pi\)
\(702\) 0 0
\(703\) 22.5665i 0.851112i
\(704\) 45.3480 1.70912
\(705\) 0 0
\(706\) −46.9019 −1.76518
\(707\) 20.7311i 0.779675i
\(708\) 0 0
\(709\) 35.5852 1.33643 0.668215 0.743969i \(-0.267059\pi\)
0.668215 + 0.743969i \(0.267059\pi\)
\(710\) −26.5922 + 23.5330i −0.997989 + 0.883178i
\(711\) 0 0
\(712\) 1.76694i 0.0662190i
\(713\) 15.2338i 0.570511i
\(714\) 0 0
\(715\) 53.8036 47.6139i 2.01214 1.78066i
\(716\) −9.15392 −0.342098
\(717\) 0 0
\(718\) 65.0751i 2.42858i
\(719\) 23.1553 0.863545 0.431773 0.901983i \(-0.357888\pi\)
0.431773 + 0.901983i \(0.357888\pi\)
\(720\) 0 0
\(721\) 15.4200 0.574271
\(722\) 10.0103i 0.372545i
\(723\) 0 0
\(724\) −92.4391 −3.43547
\(725\) 0.608053 4.96289i 0.0225825 0.184317i
\(726\) 0 0
\(727\) 34.1200i 1.26544i 0.774380 + 0.632720i \(0.218062\pi\)
−0.774380 + 0.632720i \(0.781938\pi\)
\(728\) 70.1602i 2.60031i
\(729\) 0 0
\(730\) −17.3927 19.6537i −0.643733 0.727417i
\(731\) −72.9823 −2.69935
\(732\) 0 0
\(733\) 10.3872i 0.383660i −0.981428 0.191830i \(-0.938558\pi\)
0.981428 0.191830i \(-0.0614423\pi\)
\(734\) −54.0603 −1.99540
\(735\) 0 0
\(736\) 25.2911 0.932242
\(737\) 14.0145i 0.516230i
\(738\) 0 0
\(739\) 32.0193 1.17785 0.588925 0.808188i \(-0.299551\pi\)
0.588925 + 0.808188i \(0.299551\pi\)
\(740\) 47.4231 41.9674i 1.74331 1.54275i
\(741\) 0 0
\(742\) 4.61681i 0.169489i
\(743\) 51.2195i 1.87906i −0.342465 0.939531i \(-0.611262\pi\)
0.342465 0.939531i \(-0.388738\pi\)
\(744\) 0 0
\(745\) 11.4841 + 12.9770i 0.420743 + 0.475439i
\(746\) 19.8439 0.726535
\(747\) 0 0
\(748\) 139.562i 5.10290i
\(749\) 22.1450 0.809161
\(750\) 0 0
\(751\) −39.4419 −1.43925 −0.719627 0.694361i \(-0.755687\pi\)
−0.719627 + 0.694361i \(0.755687\pi\)
\(752\) 62.1293i 2.26562i
\(753\) 0 0
\(754\) 18.1148 0.659703
\(755\) −18.9242 21.3843i −0.688721 0.778253i
\(756\) 0 0
\(757\) 50.3776i 1.83100i 0.402313 + 0.915502i \(0.368206\pi\)
−0.402313 + 0.915502i \(0.631794\pi\)
\(758\) 76.2441i 2.76931i
\(759\) 0 0
\(760\) −49.5155 + 43.8192i −1.79612 + 1.58949i
\(761\) 46.2866 1.67789 0.838945 0.544217i \(-0.183173\pi\)
0.838945 + 0.544217i \(0.183173\pi\)
\(762\) 0 0
\(763\) 5.22189i 0.189045i
\(764\) 50.8610 1.84009
\(765\) 0 0
\(766\) 24.1560 0.872790
\(767\) 42.8277i 1.54642i
\(768\) 0 0
\(769\) −53.5564 −1.93129 −0.965647 0.259856i \(-0.916325\pi\)
−0.965647 + 0.259856i \(0.916325\pi\)
\(770\) −24.2674 27.4221i −0.874535 0.988222i
\(771\) 0 0
\(772\) 26.0381i 0.937133i
\(773\) 7.80587i 0.280758i 0.990098 + 0.140379i \(0.0448320\pi\)
−0.990098 + 0.140379i \(0.955168\pi\)
\(774\) 0 0
\(775\) 4.18766 34.1794i 0.150425 1.22776i
\(776\) 22.7545 0.816838
\(777\) 0 0
\(778\) 33.5186i 1.20170i
\(779\) 27.4907 0.984956
\(780\) 0 0
\(781\) −28.1676 −1.00792
\(782\) 35.5875i 1.27261i
\(783\) 0 0
\(784\) 52.7602 1.88429
\(785\) −32.2886 + 28.5741i −1.15243 + 1.01985i
\(786\) 0 0
\(787\) 31.5089i 1.12317i −0.827419 0.561585i \(-0.810192\pi\)
0.827419 0.561585i \(-0.189808\pi\)
\(788\) 65.2845i 2.32567i
\(789\) 0 0
\(790\) −5.76644 + 5.10305i −0.205161 + 0.181558i
\(791\) 10.8680 0.386423
\(792\) 0 0
\(793\) 98.1597i 3.48575i
\(794\) 63.7057 2.26083
\(795\) 0 0
\(796\) 100.945 3.57788
\(797\) 25.6334i 0.907983i −0.891006 0.453992i \(-0.850000\pi\)
0.891006 0.453992i \(-0.150000\pi\)
\(798\) 0 0
\(799\) −37.5645 −1.32894
\(800\) −56.7444 6.95232i −2.00622 0.245802i
\(801\) 0 0
\(802\) 9.20509i 0.325043i
\(803\) 20.8180i 0.734652i
\(804\) 0 0
\(805\) −4.39195 4.96289i −0.154796 0.174919i
\(806\) 124.757 4.39437
\(807\) 0 0
\(808\) 117.403i 4.13023i
\(809\) 24.1633 0.849535 0.424767 0.905303i \(-0.360356\pi\)
0.424767 + 0.905303i \(0.360356\pi\)
\(810\) 0 0
\(811\) 56.1745 1.97255 0.986277 0.165099i \(-0.0527944\pi\)
0.986277 + 0.165099i \(0.0527944\pi\)
\(812\) 6.55283i 0.229959i
\(813\) 0 0
\(814\) 70.7749 2.48066
\(815\) −12.5087 + 11.0696i −0.438160 + 0.387753i
\(816\) 0 0
\(817\) 46.4043i 1.62348i
\(818\) 39.5985i 1.38453i
\(819\) 0 0
\(820\) 51.1251 + 57.7712i 1.78537 + 2.01746i
\(821\) 29.0885 1.01520 0.507598 0.861594i \(-0.330533\pi\)
0.507598 + 0.861594i \(0.330533\pi\)
\(822\) 0 0
\(823\) 46.8596i 1.63342i −0.577047 0.816711i \(-0.695795\pi\)
0.577047 0.816711i \(-0.304205\pi\)
\(824\) 87.3254 3.04213
\(825\) 0 0
\(826\) 21.8280 0.759492
\(827\) 21.6577i 0.753113i 0.926394 + 0.376556i \(0.122892\pi\)
−0.926394 + 0.376556i \(0.877108\pi\)
\(828\) 0 0
\(829\) −20.1844 −0.701035 −0.350517 0.936556i \(-0.613994\pi\)
−0.350517 + 0.936556i \(0.613994\pi\)
\(830\) 16.3420 + 18.4665i 0.567240 + 0.640980i
\(831\) 0 0
\(832\) 67.2122i 2.33016i
\(833\) 31.8997i 1.10526i
\(834\) 0 0
\(835\) 10.1726 9.00233i 0.352038 0.311539i
\(836\) −88.7379 −3.06906
\(837\) 0 0
\(838\) 92.3277i 3.18941i
\(839\) 25.5393 0.881716 0.440858 0.897577i \(-0.354674\pi\)
0.440858 + 0.897577i \(0.354674\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 64.1522i 2.21083i
\(843\) 0 0
\(844\) 54.0616 1.86088
\(845\) −51.3061 57.9758i −1.76498 1.99443i
\(846\) 0 0
\(847\) 14.3079i 0.491626i
\(848\) 13.3063i 0.456939i
\(849\) 0 0
\(850\) −9.78272 + 79.8459i −0.335544 + 2.73869i
\(851\) 12.8090 0.439085
\(852\) 0 0
\(853\) 26.9472i 0.922655i −0.887230 0.461328i \(-0.847373\pi\)
0.887230 0.461328i \(-0.152627\pi\)
\(854\) −50.0290 −1.71196
\(855\) 0 0
\(856\) 125.410 4.28643
\(857\) 18.9777i 0.648267i −0.946011 0.324134i \(-0.894927\pi\)
0.946011 0.324134i \(-0.105073\pi\)
\(858\) 0 0
\(859\) −34.1724 −1.16595 −0.582973 0.812491i \(-0.698111\pi\)
−0.582973 + 0.812491i \(0.698111\pi\)
\(860\) −97.5178 + 86.2992i −3.32533 + 2.94278i
\(861\) 0 0
\(862\) 99.8511i 3.40094i
\(863\) 17.6589i 0.601117i −0.953763 0.300558i \(-0.902827\pi\)
0.953763 0.300558i \(-0.0971730\pi\)
\(864\) 0 0
\(865\) 38.1088 33.7246i 1.29574 1.14667i
\(866\) −50.8271 −1.72718
\(867\) 0 0
\(868\) 45.1293i 1.53179i
\(869\) −6.10804 −0.207201
\(870\) 0 0
\(871\) −20.7715 −0.703814
\(872\) 29.5723i 1.00144i
\(873\) 0 0
\(874\) −22.6276 −0.765389
\(875\) 8.48974 + 12.3423i 0.287006 + 0.417246i
\(876\) 0 0
\(877\) 13.4119i 0.452888i 0.974024 + 0.226444i \(0.0727100\pi\)
−0.974024 + 0.226444i \(0.927290\pi\)
\(878\) 30.0820i 1.01522i
\(879\) 0 0
\(880\) −69.9417 79.0340i −2.35774 2.66423i
\(881\) −19.3105 −0.650588 −0.325294 0.945613i \(-0.605463\pi\)
−0.325294 + 0.945613i \(0.605463\pi\)
\(882\) 0 0
\(883\) 7.59663i 0.255647i 0.991797 + 0.127823i \(0.0407991\pi\)
−0.991797 + 0.127823i \(0.959201\pi\)
\(884\) −206.851 −6.95716
\(885\) 0 0
\(886\) −38.0014 −1.27668
\(887\) 37.4220i 1.25651i −0.778009 0.628253i \(-0.783770\pi\)
0.778009 0.628253i \(-0.216230\pi\)
\(888\) 0 0
\(889\) 8.14117 0.273046
\(890\) −1.02358 + 0.905826i −0.0343105 + 0.0303633i
\(891\) 0 0
\(892\) 114.683i 3.83987i
\(893\) 23.8846i 0.799268i
\(894\) 0 0
\(895\) 2.77368 + 3.13425i 0.0927139 + 0.104766i
\(896\) −3.61645 −0.120817
\(897\) 0 0
\(898\) 35.3179i 1.17857i
\(899\) 6.88700 0.229694
\(900\) 0 0
\(901\) −8.04521 −0.268025
\(902\) 86.2185i 2.87076i
\(903\) 0 0
\(904\) 61.5471 2.04703
\(905\) 28.0095 + 31.6507i 0.931067 + 1.05210i
\(906\) 0 0
\(907\) 27.9154i 0.926916i −0.886119 0.463458i \(-0.846608\pi\)
0.886119 0.463458i \(-0.153392\pi\)
\(908\) 22.8041i 0.756781i
\(909\) 0 0
\(910\) −40.6434 + 35.9677i −1.34732 + 1.19232i
\(911\) −2.76946 −0.0917562 −0.0458781 0.998947i \(-0.514609\pi\)
−0.0458781 + 0.998947i \(0.514609\pi\)
\(912\) 0 0
\(913\) 19.5604i 0.647355i
\(914\) −22.0780 −0.730276
\(915\) 0 0
\(916\) −47.8272 −1.58025
\(917\) 1.87974i 0.0620746i
\(918\) 0 0
\(919\) −24.9275 −0.822283 −0.411141 0.911572i \(-0.634870\pi\)
−0.411141 + 0.911572i \(0.634870\pi\)
\(920\) −24.8722 28.1055i −0.820011 0.926610i
\(921\) 0 0
\(922\) 62.1719i 2.04752i
\(923\) 41.7484i 1.37416i
\(924\) 0 0
\(925\) −28.7388 3.52108i −0.944927 0.115772i
\(926\) −21.3319 −0.701010
\(927\) 0 0
\(928\) 11.4337i 0.375331i
\(929\) −45.2284 −1.48389 −0.741947 0.670458i \(-0.766097\pi\)
−0.741947 + 0.670458i \(0.766097\pi\)
\(930\) 0 0
\(931\) −20.2828 −0.664742
\(932\) 45.9310i 1.50452i
\(933\) 0 0
\(934\) −18.4459 −0.603569
\(935\) −47.7854 + 42.2880i −1.56275 + 1.38297i
\(936\) 0 0
\(937\) 39.2167i 1.28115i 0.767895 + 0.640576i \(0.221304\pi\)
−0.767895 + 0.640576i \(0.778696\pi\)
\(938\) 10.5866i 0.345664i
\(939\) 0 0
\(940\) −50.1931 + 44.4188i −1.63712 + 1.44878i
\(941\) −8.43823 −0.275078 −0.137539 0.990496i \(-0.543919\pi\)
−0.137539 + 0.990496i \(0.543919\pi\)
\(942\) 0 0
\(943\) 15.6040i 0.508135i
\(944\) 62.9111 2.04758
\(945\) 0 0
\(946\) −145.537 −4.73181
\(947\) 20.8288i 0.676844i −0.940994 0.338422i \(-0.890107\pi\)
0.940994 0.338422i \(-0.109893\pi\)
\(948\) 0 0
\(949\) −30.8553 −1.00160
\(950\) 50.7684 + 6.22014i 1.64714 + 0.201808i
\(951\) 0 0
\(952\) 62.3124i 2.01956i
\(953\) 59.9085i 1.94063i −0.241850 0.970314i \(-0.577754\pi\)
0.241850 0.970314i \(-0.422246\pi\)
\(954\) 0 0
\(955\) −15.4111 17.4145i −0.498692 0.563521i
\(956\) 112.281 3.63144
\(957\) 0 0
\(958\) 72.9731i 2.35765i
\(959\) −8.01451 −0.258802
\(960\) 0 0
\(961\) 16.4307 0.530024
\(962\) 104.898i 3.38206i
\(963\) 0 0
\(964\) −5.11678 −0.164800
\(965\) −8.91531 + 7.88968i −0.286994 + 0.253978i
\(966\) 0 0
\(967\) 35.8015i 1.15130i 0.817696 + 0.575650i \(0.195251\pi\)
−0.817696 + 0.575650i \(0.804749\pi\)
\(968\) 81.0276i 2.60433i
\(969\) 0 0
\(970\) −11.6651 13.1815i −0.374544 0.423234i
\(971\) −45.0783 −1.44663 −0.723316 0.690517i \(-0.757383\pi\)
−0.723316 + 0.690517i \(0.757383\pi\)
\(972\) 0 0
\(973\) 7.02944i 0.225353i
\(974\) 17.7471 0.568655
\(975\) 0 0
\(976\) −144.190 −4.61542
\(977\) 32.5779i 1.04226i −0.853478 0.521129i \(-0.825511\pi\)
0.853478 0.521129i \(-0.174489\pi\)
\(978\) 0 0
\(979\) −1.08422 −0.0346518
\(980\) −37.7204 42.6240i −1.20493 1.36157i
\(981\) 0 0
\(982\) 61.1915i 1.95270i
\(983\) 36.0502i 1.14982i −0.818215 0.574912i \(-0.805036\pi\)
0.818215 0.574912i \(-0.194964\pi\)
\(984\) 0 0
\(985\) 22.3531 19.7815i 0.712228 0.630292i
\(986\) −16.0886 −0.512365
\(987\) 0 0
\(988\) 131.522i 4.18428i
\(989\) −26.3395 −0.837548
\(990\) 0 0
\(991\) −49.5150 −1.57289 −0.786447 0.617657i \(-0.788082\pi\)
−0.786447 + 0.617657i \(0.788082\pi\)
\(992\) 78.7441i 2.50013i
\(993\) 0 0
\(994\) 21.2779 0.674893
\(995\) −30.5867 34.5629i −0.969662 1.09572i
\(996\) 0 0
\(997\) 23.3377i 0.739112i −0.929209 0.369556i \(-0.879510\pi\)
0.929209 0.369556i \(-0.120490\pi\)
\(998\) 33.4385i 1.05848i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.k.784.12 yes 12
3.2 odd 2 1305.2.c.l.784.1 yes 12
5.2 odd 4 6525.2.a.ce.1.1 12
5.3 odd 4 6525.2.a.ce.1.12 12
5.4 even 2 inner 1305.2.c.k.784.1 12
15.2 even 4 6525.2.a.cf.1.12 12
15.8 even 4 6525.2.a.cf.1.1 12
15.14 odd 2 1305.2.c.l.784.12 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.c.k.784.1 12 5.4 even 2 inner
1305.2.c.k.784.12 yes 12 1.1 even 1 trivial
1305.2.c.l.784.1 yes 12 3.2 odd 2
1305.2.c.l.784.12 yes 12 15.14 odd 2
6525.2.a.ce.1.1 12 5.2 odd 4
6525.2.a.ce.1.12 12 5.3 odd 4
6525.2.a.cf.1.1 12 15.8 even 4
6525.2.a.cf.1.12 12 15.2 even 4