Properties

Label 1305.2.c.k.784.10
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 20x^{10} + 148x^{8} + 502x^{6} + 792x^{4} + 496x^{2} + 45 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.10
Root \(1.78841i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.k.784.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.78841i q^{2} -1.19839 q^{4} +(-0.766993 + 2.10041i) q^{5} +4.04635i q^{7} +1.43360i q^{8} +(-3.75638 - 1.37170i) q^{10} -4.80986 q^{11} +0.533576i q^{13} -7.23651 q^{14} -4.96064 q^{16} -0.299844i q^{17} +6.02908 q^{19} +(0.919161 - 2.51712i) q^{20} -8.60198i q^{22} -0.379104i q^{23} +(-3.82344 - 3.22200i) q^{25} -0.954250 q^{26} -4.84912i q^{28} -1.00000 q^{29} +9.14506 q^{31} -6.00444i q^{32} +0.536243 q^{34} +(-8.49899 - 3.10352i) q^{35} -8.51769i q^{37} +10.7824i q^{38} +(-3.01114 - 1.09956i) q^{40} +2.24106 q^{41} +6.01126i q^{43} +5.76411 q^{44} +0.677992 q^{46} -0.299844i q^{47} -9.37293 q^{49} +(5.76224 - 6.83787i) q^{50} -0.639435i q^{52} +11.8608i q^{53} +(3.68913 - 10.1027i) q^{55} -5.80083 q^{56} -1.78841i q^{58} +6.53090 q^{59} -0.755856 q^{61} +16.3551i q^{62} +0.817104 q^{64} +(-1.12073 - 0.409249i) q^{65} -3.95461i q^{67} +0.359332i q^{68} +(5.55036 - 15.1996i) q^{70} -10.6771 q^{71} +11.0455i q^{73} +15.2331 q^{74} -7.22522 q^{76} -19.4624i q^{77} -7.01095 q^{79} +(3.80478 - 10.4194i) q^{80} +4.00793i q^{82} -6.15340i q^{83} +(0.629796 + 0.229979i) q^{85} -10.7506 q^{86} -6.89539i q^{88} +10.0521 q^{89} -2.15903 q^{91} +0.454316i q^{92} +0.536243 q^{94} +(-4.62427 + 12.6635i) q^{95} -2.41013i q^{97} -16.7626i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 16 q^{4} - 10 q^{10} - 12 q^{11} + 16 q^{14} + 16 q^{16} + 20 q^{19} + 14 q^{20} + 8 q^{25} - 56 q^{26} - 12 q^{29} - 16 q^{31} - 4 q^{34} - 16 q^{35} + 16 q^{40} - 32 q^{41} + 68 q^{44} + 20 q^{46}+ \cdots - 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.78841i 1.26459i 0.774726 + 0.632297i \(0.217888\pi\)
−0.774726 + 0.632297i \(0.782112\pi\)
\(3\) 0 0
\(4\) −1.19839 −0.599197
\(5\) −0.766993 + 2.10041i −0.343010 + 0.939332i
\(6\) 0 0
\(7\) 4.04635i 1.52938i 0.644401 + 0.764688i \(0.277107\pi\)
−0.644401 + 0.764688i \(0.722893\pi\)
\(8\) 1.43360i 0.506853i
\(9\) 0 0
\(10\) −3.75638 1.37170i −1.18787 0.433768i
\(11\) −4.80986 −1.45023 −0.725113 0.688630i \(-0.758213\pi\)
−0.725113 + 0.688630i \(0.758213\pi\)
\(12\) 0 0
\(13\) 0.533576i 0.147987i 0.997259 + 0.0739937i \(0.0235745\pi\)
−0.997259 + 0.0739937i \(0.976426\pi\)
\(14\) −7.23651 −1.93404
\(15\) 0 0
\(16\) −4.96064 −1.24016
\(17\) 0.299844i 0.0727229i −0.999339 0.0363615i \(-0.988423\pi\)
0.999339 0.0363615i \(-0.0115768\pi\)
\(18\) 0 0
\(19\) 6.02908 1.38317 0.691583 0.722297i \(-0.256914\pi\)
0.691583 + 0.722297i \(0.256914\pi\)
\(20\) 0.919161 2.51712i 0.205531 0.562845i
\(21\) 0 0
\(22\) 8.60198i 1.83395i
\(23\) 0.379104i 0.0790487i −0.999219 0.0395243i \(-0.987416\pi\)
0.999219 0.0395243i \(-0.0125843\pi\)
\(24\) 0 0
\(25\) −3.82344 3.22200i −0.764688 0.644400i
\(26\) −0.954250 −0.187144
\(27\) 0 0
\(28\) 4.84912i 0.916398i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 9.14506 1.64250 0.821251 0.570567i \(-0.193277\pi\)
0.821251 + 0.570567i \(0.193277\pi\)
\(32\) 6.00444i 1.06145i
\(33\) 0 0
\(34\) 0.536243 0.0919650
\(35\) −8.49899 3.10352i −1.43659 0.524591i
\(36\) 0 0
\(37\) 8.51769i 1.40030i −0.713996 0.700150i \(-0.753116\pi\)
0.713996 0.700150i \(-0.246884\pi\)
\(38\) 10.7824i 1.74914i
\(39\) 0 0
\(40\) −3.01114 1.09956i −0.476103 0.173855i
\(41\) 2.24106 0.349995 0.174998 0.984569i \(-0.444008\pi\)
0.174998 + 0.984569i \(0.444008\pi\)
\(42\) 0 0
\(43\) 6.01126i 0.916708i 0.888770 + 0.458354i \(0.151561\pi\)
−0.888770 + 0.458354i \(0.848439\pi\)
\(44\) 5.76411 0.868972
\(45\) 0 0
\(46\) 0.677992 0.0999645
\(47\) 0.299844i 0.0437368i −0.999761 0.0218684i \(-0.993039\pi\)
0.999761 0.0218684i \(-0.00696148\pi\)
\(48\) 0 0
\(49\) −9.37293 −1.33899
\(50\) 5.76224 6.83787i 0.814904 0.967020i
\(51\) 0 0
\(52\) 0.639435i 0.0886736i
\(53\) 11.8608i 1.62920i 0.580022 + 0.814601i \(0.303044\pi\)
−0.580022 + 0.814601i \(0.696956\pi\)
\(54\) 0 0
\(55\) 3.68913 10.1027i 0.497442 1.36224i
\(56\) −5.80083 −0.775168
\(57\) 0 0
\(58\) 1.78841i 0.234829i
\(59\) 6.53090 0.850251 0.425126 0.905134i \(-0.360230\pi\)
0.425126 + 0.905134i \(0.360230\pi\)
\(60\) 0 0
\(61\) −0.755856 −0.0967774 −0.0483887 0.998829i \(-0.515409\pi\)
−0.0483887 + 0.998829i \(0.515409\pi\)
\(62\) 16.3551i 2.07710i
\(63\) 0 0
\(64\) 0.817104 0.102138
\(65\) −1.12073 0.409249i −0.139009 0.0507611i
\(66\) 0 0
\(67\) 3.95461i 0.483133i −0.970384 0.241567i \(-0.922339\pi\)
0.970384 0.241567i \(-0.0776612\pi\)
\(68\) 0.359332i 0.0435754i
\(69\) 0 0
\(70\) 5.55036 15.1996i 0.663394 1.81670i
\(71\) −10.6771 −1.26714 −0.633571 0.773684i \(-0.718412\pi\)
−0.633571 + 0.773684i \(0.718412\pi\)
\(72\) 0 0
\(73\) 11.0455i 1.29278i 0.763008 + 0.646389i \(0.223722\pi\)
−0.763008 + 0.646389i \(0.776278\pi\)
\(74\) 15.2331 1.77081
\(75\) 0 0
\(76\) −7.22522 −0.828790
\(77\) 19.4624i 2.21794i
\(78\) 0 0
\(79\) −7.01095 −0.788793 −0.394397 0.918940i \(-0.629046\pi\)
−0.394397 + 0.918940i \(0.629046\pi\)
\(80\) 3.80478 10.4194i 0.425387 1.16492i
\(81\) 0 0
\(82\) 4.00793i 0.442602i
\(83\) 6.15340i 0.675424i −0.941250 0.337712i \(-0.890347\pi\)
0.941250 0.337712i \(-0.109653\pi\)
\(84\) 0 0
\(85\) 0.629796 + 0.229979i 0.0683110 + 0.0249447i
\(86\) −10.7506 −1.15926
\(87\) 0 0
\(88\) 6.89539i 0.735051i
\(89\) 10.0521 1.06552 0.532760 0.846267i \(-0.321155\pi\)
0.532760 + 0.846267i \(0.321155\pi\)
\(90\) 0 0
\(91\) −2.15903 −0.226328
\(92\) 0.454316i 0.0473658i
\(93\) 0 0
\(94\) 0.536243 0.0553093
\(95\) −4.62427 + 12.6635i −0.474440 + 1.29925i
\(96\) 0 0
\(97\) 2.41013i 0.244711i −0.992486 0.122356i \(-0.960955\pi\)
0.992486 0.122356i \(-0.0390449\pi\)
\(98\) 16.7626i 1.69328i
\(99\) 0 0
\(100\) 4.58199 + 3.86123i 0.458199 + 0.386123i
\(101\) −16.6038 −1.65214 −0.826071 0.563565i \(-0.809429\pi\)
−0.826071 + 0.563565i \(0.809429\pi\)
\(102\) 0 0
\(103\) 13.4127i 1.32159i −0.750566 0.660795i \(-0.770219\pi\)
0.750566 0.660795i \(-0.229781\pi\)
\(104\) −0.764932 −0.0750078
\(105\) 0 0
\(106\) −21.2119 −2.06028
\(107\) 9.12013i 0.881676i −0.897587 0.440838i \(-0.854681\pi\)
0.897587 0.440838i \(-0.145319\pi\)
\(108\) 0 0
\(109\) −12.7379 −1.22007 −0.610037 0.792373i \(-0.708845\pi\)
−0.610037 + 0.792373i \(0.708845\pi\)
\(110\) 18.0677 + 6.59766i 1.72269 + 0.629062i
\(111\) 0 0
\(112\) 20.0725i 1.89667i
\(113\) 13.7766i 1.29599i 0.761645 + 0.647995i \(0.224392\pi\)
−0.761645 + 0.647995i \(0.775608\pi\)
\(114\) 0 0
\(115\) 0.796274 + 0.290770i 0.0742529 + 0.0271145i
\(116\) 1.19839 0.111268
\(117\) 0 0
\(118\) 11.6799i 1.07522i
\(119\) 1.21327 0.111221
\(120\) 0 0
\(121\) 12.1347 1.10316
\(122\) 1.35178i 0.122384i
\(123\) 0 0
\(124\) −10.9594 −0.984183
\(125\) 9.70008 5.55954i 0.867601 0.497260i
\(126\) 0 0
\(127\) 6.39541i 0.567501i 0.958898 + 0.283751i \(0.0915788\pi\)
−0.958898 + 0.283751i \(0.908421\pi\)
\(128\) 10.5476i 0.932283i
\(129\) 0 0
\(130\) 0.731904 2.00432i 0.0641922 0.175790i
\(131\) 15.6797 1.36994 0.684970 0.728572i \(-0.259816\pi\)
0.684970 + 0.728572i \(0.259816\pi\)
\(132\) 0 0
\(133\) 24.3958i 2.11538i
\(134\) 7.07246 0.610967
\(135\) 0 0
\(136\) 0.429855 0.0368598
\(137\) 14.1792i 1.21141i 0.795690 + 0.605704i \(0.207108\pi\)
−0.795690 + 0.605704i \(0.792892\pi\)
\(138\) 0 0
\(139\) −6.15903 −0.522402 −0.261201 0.965284i \(-0.584119\pi\)
−0.261201 + 0.965284i \(0.584119\pi\)
\(140\) 10.1851 + 3.71924i 0.860802 + 0.314334i
\(141\) 0 0
\(142\) 19.0950i 1.60242i
\(143\) 2.56643i 0.214615i
\(144\) 0 0
\(145\) 0.766993 2.10041i 0.0636953 0.174430i
\(146\) −19.7538 −1.63484
\(147\) 0 0
\(148\) 10.2076i 0.839056i
\(149\) 3.29888 0.270254 0.135127 0.990828i \(-0.456856\pi\)
0.135127 + 0.990828i \(0.456856\pi\)
\(150\) 0 0
\(151\) −11.7747 −0.958209 −0.479104 0.877758i \(-0.659039\pi\)
−0.479104 + 0.877758i \(0.659039\pi\)
\(152\) 8.64327i 0.701061i
\(153\) 0 0
\(154\) 34.8066 2.80479
\(155\) −7.01420 + 19.2084i −0.563394 + 1.54285i
\(156\) 0 0
\(157\) 20.0255i 1.59821i 0.601195 + 0.799103i \(0.294692\pi\)
−0.601195 + 0.799103i \(0.705308\pi\)
\(158\) 12.5384i 0.997503i
\(159\) 0 0
\(160\) 12.6118 + 4.60537i 0.997050 + 0.364086i
\(161\) 1.53399 0.120895
\(162\) 0 0
\(163\) 8.63537i 0.676374i 0.941079 + 0.338187i \(0.109814\pi\)
−0.941079 + 0.338187i \(0.890186\pi\)
\(164\) −2.68568 −0.209716
\(165\) 0 0
\(166\) 11.0048 0.854137
\(167\) 5.98646i 0.463246i 0.972806 + 0.231623i \(0.0744036\pi\)
−0.972806 + 0.231623i \(0.925596\pi\)
\(168\) 0 0
\(169\) 12.7153 0.978100
\(170\) −0.411295 + 1.12633i −0.0315449 + 0.0863856i
\(171\) 0 0
\(172\) 7.20386i 0.549289i
\(173\) 7.75331i 0.589473i −0.955579 0.294737i \(-0.904768\pi\)
0.955579 0.294737i \(-0.0952319\pi\)
\(174\) 0 0
\(175\) 13.0373 15.4710i 0.985530 1.16950i
\(176\) 23.8600 1.79851
\(177\) 0 0
\(178\) 17.9772i 1.34745i
\(179\) 9.21698 0.688909 0.344455 0.938803i \(-0.388064\pi\)
0.344455 + 0.938803i \(0.388064\pi\)
\(180\) 0 0
\(181\) 13.9345 1.03574 0.517871 0.855459i \(-0.326725\pi\)
0.517871 + 0.855459i \(0.326725\pi\)
\(182\) 3.86123i 0.286213i
\(183\) 0 0
\(184\) 0.543482 0.0400660
\(185\) 17.8906 + 6.53301i 1.31535 + 0.480317i
\(186\) 0 0
\(187\) 1.44221i 0.105465i
\(188\) 0.359332i 0.0262070i
\(189\) 0 0
\(190\) −22.6476 8.27007i −1.64303 0.599974i
\(191\) −15.8529 −1.14708 −0.573538 0.819179i \(-0.694430\pi\)
−0.573538 + 0.819179i \(0.694430\pi\)
\(192\) 0 0
\(193\) 12.3360i 0.887963i 0.896036 + 0.443982i \(0.146434\pi\)
−0.896036 + 0.443982i \(0.853566\pi\)
\(194\) 4.31029 0.309460
\(195\) 0 0
\(196\) 11.2325 0.802319
\(197\) 6.51599i 0.464245i −0.972687 0.232122i \(-0.925433\pi\)
0.972687 0.232122i \(-0.0745670\pi\)
\(198\) 0 0
\(199\) 8.40626 0.595904 0.297952 0.954581i \(-0.403696\pi\)
0.297952 + 0.954581i \(0.403696\pi\)
\(200\) 4.61905 5.48127i 0.326616 0.387584i
\(201\) 0 0
\(202\) 29.6944i 2.08929i
\(203\) 4.04635i 0.283998i
\(204\) 0 0
\(205\) −1.71888 + 4.70715i −0.120052 + 0.328761i
\(206\) 23.9873 1.67128
\(207\) 0 0
\(208\) 2.64688i 0.183528i
\(209\) −28.9990 −2.00591
\(210\) 0 0
\(211\) −9.42279 −0.648692 −0.324346 0.945939i \(-0.605144\pi\)
−0.324346 + 0.945939i \(0.605144\pi\)
\(212\) 14.2139i 0.976214i
\(213\) 0 0
\(214\) 16.3105 1.11496
\(215\) −12.6261 4.61060i −0.861093 0.314440i
\(216\) 0 0
\(217\) 37.0041i 2.51200i
\(218\) 22.7806i 1.54290i
\(219\) 0 0
\(220\) −4.42103 + 12.1070i −0.298066 + 0.816253i
\(221\) 0.159990 0.0107621
\(222\) 0 0
\(223\) 18.6498i 1.24889i 0.781071 + 0.624443i \(0.214674\pi\)
−0.781071 + 0.624443i \(0.785326\pi\)
\(224\) 24.2961 1.62335
\(225\) 0 0
\(226\) −24.6381 −1.63890
\(227\) 4.72192i 0.313405i 0.987646 + 0.156703i \(0.0500864\pi\)
−0.987646 + 0.156703i \(0.949914\pi\)
\(228\) 0 0
\(229\) −23.6102 −1.56021 −0.780104 0.625650i \(-0.784834\pi\)
−0.780104 + 0.625650i \(0.784834\pi\)
\(230\) −0.520015 + 1.42406i −0.0342888 + 0.0938998i
\(231\) 0 0
\(232\) 1.43360i 0.0941201i
\(233\) 15.0959i 0.988965i −0.869188 0.494482i \(-0.835358\pi\)
0.869188 0.494482i \(-0.164642\pi\)
\(234\) 0 0
\(235\) 0.629796 + 0.229979i 0.0410834 + 0.0150022i
\(236\) −7.82660 −0.509468
\(237\) 0 0
\(238\) 2.16983i 0.140649i
\(239\) −16.5534 −1.07075 −0.535374 0.844615i \(-0.679829\pi\)
−0.535374 + 0.844615i \(0.679829\pi\)
\(240\) 0 0
\(241\) 14.0704 0.906356 0.453178 0.891420i \(-0.350290\pi\)
0.453178 + 0.891420i \(0.350290\pi\)
\(242\) 21.7018i 1.39505i
\(243\) 0 0
\(244\) 0.905814 0.0579888
\(245\) 7.18897 19.6870i 0.459287 1.25776i
\(246\) 0 0
\(247\) 3.21697i 0.204691i
\(248\) 13.1103i 0.832506i
\(249\) 0 0
\(250\) 9.94271 + 17.3477i 0.628833 + 1.09716i
\(251\) −28.4712 −1.79709 −0.898544 0.438883i \(-0.855374\pi\)
−0.898544 + 0.438883i \(0.855374\pi\)
\(252\) 0 0
\(253\) 1.82344i 0.114638i
\(254\) −11.4376 −0.717659
\(255\) 0 0
\(256\) 20.4976 1.28110
\(257\) 16.3705i 1.02117i 0.859829 + 0.510583i \(0.170570\pi\)
−0.859829 + 0.510583i \(0.829430\pi\)
\(258\) 0 0
\(259\) 34.4655 2.14158
\(260\) 1.34308 + 0.490442i 0.0832940 + 0.0304159i
\(261\) 0 0
\(262\) 28.0416i 1.73242i
\(263\) 6.95196i 0.428676i 0.976760 + 0.214338i \(0.0687594\pi\)
−0.976760 + 0.214338i \(0.931241\pi\)
\(264\) 0 0
\(265\) −24.9125 9.09713i −1.53036 0.558832i
\(266\) −43.6295 −2.67510
\(267\) 0 0
\(268\) 4.73919i 0.289492i
\(269\) 17.9274 1.09305 0.546525 0.837443i \(-0.315950\pi\)
0.546525 + 0.837443i \(0.315950\pi\)
\(270\) 0 0
\(271\) −16.2551 −0.987427 −0.493713 0.869625i \(-0.664361\pi\)
−0.493713 + 0.869625i \(0.664361\pi\)
\(272\) 1.48742i 0.0901881i
\(273\) 0 0
\(274\) −25.3581 −1.53194
\(275\) 18.3902 + 15.4974i 1.10897 + 0.934526i
\(276\) 0 0
\(277\) 26.4786i 1.59094i 0.605992 + 0.795471i \(0.292776\pi\)
−0.605992 + 0.795471i \(0.707224\pi\)
\(278\) 11.0149i 0.660627i
\(279\) 0 0
\(280\) 4.44919 12.1841i 0.265890 0.728140i
\(281\) 9.09714 0.542690 0.271345 0.962482i \(-0.412532\pi\)
0.271345 + 0.962482i \(0.412532\pi\)
\(282\) 0 0
\(283\) 6.18547i 0.367688i −0.982955 0.183844i \(-0.941146\pi\)
0.982955 0.183844i \(-0.0588541\pi\)
\(284\) 12.7954 0.759269
\(285\) 0 0
\(286\) 4.58981 0.271401
\(287\) 9.06811i 0.535274i
\(288\) 0 0
\(289\) 16.9101 0.994711
\(290\) 3.75638 + 1.37170i 0.220582 + 0.0805487i
\(291\) 0 0
\(292\) 13.2369i 0.774629i
\(293\) 2.22796i 0.130159i 0.997880 + 0.0650795i \(0.0207301\pi\)
−0.997880 + 0.0650795i \(0.979270\pi\)
\(294\) 0 0
\(295\) −5.00916 + 13.7176i −0.291645 + 0.798668i
\(296\) 12.2109 0.709745
\(297\) 0 0
\(298\) 5.89973i 0.341762i
\(299\) 0.202281 0.0116982
\(300\) 0 0
\(301\) −24.3236 −1.40199
\(302\) 21.0579i 1.21175i
\(303\) 0 0
\(304\) −29.9081 −1.71535
\(305\) 0.579736 1.58761i 0.0331956 0.0909061i
\(306\) 0 0
\(307\) 34.9479i 1.99458i −0.0735559 0.997291i \(-0.523435\pi\)
0.0735559 0.997291i \(-0.476565\pi\)
\(308\) 23.3236i 1.32898i
\(309\) 0 0
\(310\) −34.3524 12.5442i −1.95108 0.712465i
\(311\) −11.8968 −0.674608 −0.337304 0.941396i \(-0.609515\pi\)
−0.337304 + 0.941396i \(0.609515\pi\)
\(312\) 0 0
\(313\) 2.38938i 0.135056i −0.997717 0.0675278i \(-0.978489\pi\)
0.997717 0.0675278i \(-0.0215111\pi\)
\(314\) −35.8136 −2.02108
\(315\) 0 0
\(316\) 8.40188 0.472643
\(317\) 23.9964i 1.34777i −0.738836 0.673886i \(-0.764624\pi\)
0.738836 0.673886i \(-0.235376\pi\)
\(318\) 0 0
\(319\) 4.80986 0.269300
\(320\) −0.626714 + 1.71625i −0.0350344 + 0.0959415i
\(321\) 0 0
\(322\) 2.74339i 0.152883i
\(323\) 1.80779i 0.100588i
\(324\) 0 0
\(325\) 1.71918 2.04010i 0.0953631 0.113164i
\(326\) −15.4435 −0.855339
\(327\) 0 0
\(328\) 3.21278i 0.177396i
\(329\) 1.21327 0.0668900
\(330\) 0 0
\(331\) 31.5068 1.73177 0.865885 0.500243i \(-0.166756\pi\)
0.865885 + 0.500243i \(0.166756\pi\)
\(332\) 7.37421i 0.404712i
\(333\) 0 0
\(334\) −10.7062 −0.585818
\(335\) 8.30631 + 3.03316i 0.453822 + 0.165719i
\(336\) 0 0
\(337\) 22.5941i 1.23078i −0.788223 0.615389i \(-0.788999\pi\)
0.788223 0.615389i \(-0.211001\pi\)
\(338\) 22.7401i 1.23690i
\(339\) 0 0
\(340\) −0.754744 0.275605i −0.0409318 0.0149468i
\(341\) −43.9865 −2.38200
\(342\) 0 0
\(343\) 9.60169i 0.518443i
\(344\) −8.61771 −0.464636
\(345\) 0 0
\(346\) 13.8661 0.745444
\(347\) 25.3237i 1.35945i −0.733468 0.679724i \(-0.762099\pi\)
0.733468 0.679724i \(-0.237901\pi\)
\(348\) 0 0
\(349\) 11.9657 0.640511 0.320255 0.947331i \(-0.396231\pi\)
0.320255 + 0.947331i \(0.396231\pi\)
\(350\) 27.6684 + 23.3160i 1.47894 + 1.24630i
\(351\) 0 0
\(352\) 28.8805i 1.53934i
\(353\) 27.8488i 1.48224i 0.671372 + 0.741120i \(0.265705\pi\)
−0.671372 + 0.741120i \(0.734295\pi\)
\(354\) 0 0
\(355\) 8.18929 22.4264i 0.434643 1.19027i
\(356\) −12.0464 −0.638456
\(357\) 0 0
\(358\) 16.4837i 0.871190i
\(359\) 25.8847 1.36614 0.683071 0.730352i \(-0.260644\pi\)
0.683071 + 0.730352i \(0.260644\pi\)
\(360\) 0 0
\(361\) 17.3498 0.913150
\(362\) 24.9205i 1.30979i
\(363\) 0 0
\(364\) 2.58738 0.135615
\(365\) −23.2001 8.47182i −1.21435 0.443436i
\(366\) 0 0
\(367\) 30.0434i 1.56825i 0.620602 + 0.784126i \(0.286888\pi\)
−0.620602 + 0.784126i \(0.713112\pi\)
\(368\) 1.88060i 0.0980330i
\(369\) 0 0
\(370\) −11.6837 + 31.9957i −0.607405 + 1.66338i
\(371\) −47.9928 −2.49166
\(372\) 0 0
\(373\) 17.3011i 0.895819i 0.894079 + 0.447909i \(0.147831\pi\)
−0.894079 + 0.447909i \(0.852169\pi\)
\(374\) −2.57925 −0.133370
\(375\) 0 0
\(376\) 0.429855 0.0221681
\(377\) 0.533576i 0.0274806i
\(378\) 0 0
\(379\) −6.00981 −0.308703 −0.154351 0.988016i \(-0.549329\pi\)
−0.154351 + 0.988016i \(0.549329\pi\)
\(380\) 5.54170 15.1759i 0.284283 0.778509i
\(381\) 0 0
\(382\) 28.3514i 1.45059i
\(383\) 15.9914i 0.817124i −0.912731 0.408562i \(-0.866030\pi\)
0.912731 0.408562i \(-0.133970\pi\)
\(384\) 0 0
\(385\) 40.8789 + 14.9275i 2.08338 + 0.760776i
\(386\) −22.0617 −1.12291
\(387\) 0 0
\(388\) 2.88828i 0.146630i
\(389\) −3.12916 −0.158655 −0.0793274 0.996849i \(-0.525277\pi\)
−0.0793274 + 0.996849i \(0.525277\pi\)
\(390\) 0 0
\(391\) −0.113672 −0.00574865
\(392\) 13.4370i 0.678670i
\(393\) 0 0
\(394\) 11.6532 0.587081
\(395\) 5.37735 14.7259i 0.270564 0.740939i
\(396\) 0 0
\(397\) 39.3500i 1.97492i 0.157863 + 0.987461i \(0.449540\pi\)
−0.157863 + 0.987461i \(0.550460\pi\)
\(398\) 15.0338i 0.753577i
\(399\) 0 0
\(400\) 18.9667 + 15.9832i 0.948336 + 0.799159i
\(401\) 5.07853 0.253610 0.126805 0.991928i \(-0.459528\pi\)
0.126805 + 0.991928i \(0.459528\pi\)
\(402\) 0 0
\(403\) 4.87959i 0.243070i
\(404\) 19.8979 0.989960
\(405\) 0 0
\(406\) 7.23651 0.359142
\(407\) 40.9689i 2.03075i
\(408\) 0 0
\(409\) 4.17655 0.206517 0.103259 0.994655i \(-0.467073\pi\)
0.103259 + 0.994655i \(0.467073\pi\)
\(410\) −8.41829 3.07405i −0.415750 0.151817i
\(411\) 0 0
\(412\) 16.0737i 0.791894i
\(413\) 26.4263i 1.30035i
\(414\) 0 0
\(415\) 12.9247 + 4.71962i 0.634447 + 0.231677i
\(416\) 3.20383 0.157081
\(417\) 0 0
\(418\) 51.8620i 2.53666i
\(419\) 16.1637 0.789647 0.394824 0.918757i \(-0.370806\pi\)
0.394824 + 0.918757i \(0.370806\pi\)
\(420\) 0 0
\(421\) 4.91937 0.239755 0.119878 0.992789i \(-0.461750\pi\)
0.119878 + 0.992789i \(0.461750\pi\)
\(422\) 16.8518i 0.820331i
\(423\) 0 0
\(424\) −17.0035 −0.825765
\(425\) −0.966099 + 1.14644i −0.0468627 + 0.0556104i
\(426\) 0 0
\(427\) 3.05846i 0.148009i
\(428\) 10.9295i 0.528298i
\(429\) 0 0
\(430\) 8.24562 22.5806i 0.397639 1.08893i
\(431\) 41.1719 1.98318 0.991591 0.129411i \(-0.0413087\pi\)
0.991591 + 0.129411i \(0.0413087\pi\)
\(432\) 0 0
\(433\) 22.9724i 1.10398i −0.833850 0.551991i \(-0.813868\pi\)
0.833850 0.551991i \(-0.186132\pi\)
\(434\) −66.1783 −3.17666
\(435\) 0 0
\(436\) 15.2651 0.731065
\(437\) 2.28565i 0.109337i
\(438\) 0 0
\(439\) −5.53152 −0.264005 −0.132003 0.991249i \(-0.542141\pi\)
−0.132003 + 0.991249i \(0.542141\pi\)
\(440\) 14.4831 + 5.28872i 0.690457 + 0.252130i
\(441\) 0 0
\(442\) 0.286127i 0.0136097i
\(443\) 3.02219i 0.143589i −0.997419 0.0717944i \(-0.977127\pi\)
0.997419 0.0717944i \(-0.0228725\pi\)
\(444\) 0 0
\(445\) −7.70989 + 21.1135i −0.365484 + 1.00088i
\(446\) −33.3535 −1.57933
\(447\) 0 0
\(448\) 3.30629i 0.156207i
\(449\) −7.44290 −0.351252 −0.175626 0.984457i \(-0.556195\pi\)
−0.175626 + 0.984457i \(0.556195\pi\)
\(450\) 0 0
\(451\) −10.7792 −0.507572
\(452\) 16.5098i 0.776554i
\(453\) 0 0
\(454\) −8.44471 −0.396330
\(455\) 1.65597 4.53486i 0.0776328 0.212597i
\(456\) 0 0
\(457\) 2.81240i 0.131558i −0.997834 0.0657792i \(-0.979047\pi\)
0.997834 0.0657792i \(-0.0209533\pi\)
\(458\) 42.2246i 1.97303i
\(459\) 0 0
\(460\) −0.954250 0.348458i −0.0444922 0.0162469i
\(461\) 15.3906 0.716810 0.358405 0.933566i \(-0.383321\pi\)
0.358405 + 0.933566i \(0.383321\pi\)
\(462\) 0 0
\(463\) 23.7976i 1.10597i 0.833192 + 0.552984i \(0.186511\pi\)
−0.833192 + 0.552984i \(0.813489\pi\)
\(464\) 4.96064 0.230292
\(465\) 0 0
\(466\) 26.9976 1.25064
\(467\) 41.1731i 1.90526i 0.304126 + 0.952632i \(0.401636\pi\)
−0.304126 + 0.952632i \(0.598364\pi\)
\(468\) 0 0
\(469\) 16.0017 0.738892
\(470\) −0.411295 + 1.12633i −0.0189716 + 0.0519538i
\(471\) 0 0
\(472\) 9.36267i 0.430952i
\(473\) 28.9133i 1.32943i
\(474\) 0 0
\(475\) −23.0518 19.4257i −1.05769 0.891313i
\(476\) −1.45398 −0.0666431
\(477\) 0 0
\(478\) 29.6041i 1.35406i
\(479\) −21.5362 −0.984013 −0.492007 0.870591i \(-0.663736\pi\)
−0.492007 + 0.870591i \(0.663736\pi\)
\(480\) 0 0
\(481\) 4.54484 0.207227
\(482\) 25.1636i 1.14617i
\(483\) 0 0
\(484\) −14.5422 −0.661009
\(485\) 5.06225 + 1.84855i 0.229865 + 0.0839384i
\(486\) 0 0
\(487\) 6.21272i 0.281525i 0.990043 + 0.140763i \(0.0449555\pi\)
−0.990043 + 0.140763i \(0.955045\pi\)
\(488\) 1.08359i 0.0490519i
\(489\) 0 0
\(490\) 35.2083 + 12.8568i 1.59055 + 0.580811i
\(491\) 24.2502 1.09439 0.547197 0.837004i \(-0.315695\pi\)
0.547197 + 0.837004i \(0.315695\pi\)
\(492\) 0 0
\(493\) 0.299844i 0.0135043i
\(494\) −5.75326 −0.258851
\(495\) 0 0
\(496\) −45.3654 −2.03696
\(497\) 43.2034i 1.93794i
\(498\) 0 0
\(499\) −35.0007 −1.56685 −0.783424 0.621487i \(-0.786529\pi\)
−0.783424 + 0.621487i \(0.786529\pi\)
\(500\) −11.6245 + 6.66252i −0.519864 + 0.297957i
\(501\) 0 0
\(502\) 50.9181i 2.27259i
\(503\) 2.11250i 0.0941917i −0.998890 0.0470958i \(-0.985003\pi\)
0.998890 0.0470958i \(-0.0149966\pi\)
\(504\) 0 0
\(505\) 12.7350 34.8748i 0.566701 1.55191i
\(506\) −3.26104 −0.144971
\(507\) 0 0
\(508\) 7.66423i 0.340045i
\(509\) 39.5330 1.75227 0.876134 0.482068i \(-0.160114\pi\)
0.876134 + 0.482068i \(0.160114\pi\)
\(510\) 0 0
\(511\) −44.6939 −1.97714
\(512\) 15.5628i 0.687785i
\(513\) 0 0
\(514\) −29.2772 −1.29136
\(515\) 28.1721 + 10.2874i 1.24141 + 0.453319i
\(516\) 0 0
\(517\) 1.44221i 0.0634283i
\(518\) 61.6384i 2.70823i
\(519\) 0 0
\(520\) 0.586698 1.60667i 0.0257284 0.0704572i
\(521\) 24.4951 1.07315 0.536575 0.843853i \(-0.319718\pi\)
0.536575 + 0.843853i \(0.319718\pi\)
\(522\) 0 0
\(523\) 13.4730i 0.589133i −0.955631 0.294567i \(-0.904825\pi\)
0.955631 0.294567i \(-0.0951753\pi\)
\(524\) −18.7904 −0.820864
\(525\) 0 0
\(526\) −12.4329 −0.542101
\(527\) 2.74210i 0.119448i
\(528\) 0 0
\(529\) 22.8563 0.993751
\(530\) 16.2694 44.5536i 0.706696 1.93529i
\(531\) 0 0
\(532\) 29.2358i 1.26753i
\(533\) 1.19578i 0.0517949i
\(534\) 0 0
\(535\) 19.1560 + 6.99508i 0.828186 + 0.302424i
\(536\) 5.66932 0.244877
\(537\) 0 0
\(538\) 32.0614i 1.38226i
\(539\) 45.0825 1.94184
\(540\) 0 0
\(541\) −36.4294 −1.56622 −0.783111 0.621882i \(-0.786368\pi\)
−0.783111 + 0.621882i \(0.786368\pi\)
\(542\) 29.0707i 1.24869i
\(543\) 0 0
\(544\) −1.80040 −0.0771915
\(545\) 9.76992 26.7549i 0.418497 1.14605i
\(546\) 0 0
\(547\) 27.1863i 1.16240i 0.813760 + 0.581201i \(0.197417\pi\)
−0.813760 + 0.581201i \(0.802583\pi\)
\(548\) 16.9922i 0.725872i
\(549\) 0 0
\(550\) −27.7156 + 32.8892i −1.18180 + 1.40240i
\(551\) −6.02908 −0.256848
\(552\) 0 0
\(553\) 28.3687i 1.20636i
\(554\) −47.3544 −2.01190
\(555\) 0 0
\(556\) 7.38095 0.313022
\(557\) 41.0921i 1.74113i −0.492055 0.870564i \(-0.663754\pi\)
0.492055 0.870564i \(-0.336246\pi\)
\(558\) 0 0
\(559\) −3.20746 −0.135661
\(560\) 42.1604 + 15.3955i 1.78160 + 0.650577i
\(561\) 0 0
\(562\) 16.2694i 0.686282i
\(563\) 26.6574i 1.12348i −0.827315 0.561738i \(-0.810133\pi\)
0.827315 0.561738i \(-0.189867\pi\)
\(564\) 0 0
\(565\) −28.9364 10.5665i −1.21736 0.444537i
\(566\) 11.0621 0.464976
\(567\) 0 0
\(568\) 15.3067i 0.642254i
\(569\) 17.9467 0.752363 0.376181 0.926546i \(-0.377237\pi\)
0.376181 + 0.926546i \(0.377237\pi\)
\(570\) 0 0
\(571\) −44.9019 −1.87909 −0.939543 0.342432i \(-0.888749\pi\)
−0.939543 + 0.342432i \(0.888749\pi\)
\(572\) 3.07559i 0.128597i
\(573\) 0 0
\(574\) −16.2175 −0.676904
\(575\) −1.22147 + 1.44948i −0.0509390 + 0.0604476i
\(576\) 0 0
\(577\) 24.3767i 1.01482i 0.861706 + 0.507408i \(0.169396\pi\)
−0.861706 + 0.507408i \(0.830604\pi\)
\(578\) 30.2421i 1.25791i
\(579\) 0 0
\(580\) −0.919161 + 2.51712i −0.0381661 + 0.104518i
\(581\) 24.8988 1.03298
\(582\) 0 0
\(583\) 57.0486i 2.36271i
\(584\) −15.8348 −0.655248
\(585\) 0 0
\(586\) −3.98450 −0.164598
\(587\) 0.641677i 0.0264848i −0.999912 0.0132424i \(-0.995785\pi\)
0.999912 0.0132424i \(-0.00421532\pi\)
\(588\) 0 0
\(589\) 55.1363 2.27185
\(590\) −24.5326 8.95841i −1.00999 0.368812i
\(591\) 0 0
\(592\) 42.2532i 1.73660i
\(593\) 7.16264i 0.294134i 0.989127 + 0.147067i \(0.0469833\pi\)
−0.989127 + 0.147067i \(0.953017\pi\)
\(594\) 0 0
\(595\) −0.930574 + 2.54837i −0.0381498 + 0.104473i
\(596\) −3.95336 −0.161936
\(597\) 0 0
\(598\) 0.361760i 0.0147935i
\(599\) 33.7150 1.37756 0.688779 0.724971i \(-0.258147\pi\)
0.688779 + 0.724971i \(0.258147\pi\)
\(600\) 0 0
\(601\) 12.3214 0.502600 0.251300 0.967909i \(-0.419142\pi\)
0.251300 + 0.967909i \(0.419142\pi\)
\(602\) 43.5005i 1.77295i
\(603\) 0 0
\(604\) 14.1107 0.574156
\(605\) −9.30726 + 25.4879i −0.378394 + 1.03623i
\(606\) 0 0
\(607\) 3.07175i 0.124678i 0.998055 + 0.0623392i \(0.0198561\pi\)
−0.998055 + 0.0623392i \(0.980144\pi\)
\(608\) 36.2013i 1.46816i
\(609\) 0 0
\(610\) 2.83928 + 1.03680i 0.114959 + 0.0419790i
\(611\) 0.159990 0.00647249
\(612\) 0 0
\(613\) 35.7184i 1.44265i −0.692595 0.721327i \(-0.743532\pi\)
0.692595 0.721327i \(-0.256468\pi\)
\(614\) 62.5010 2.52234
\(615\) 0 0
\(616\) 27.9011 1.12417
\(617\) 29.1211i 1.17237i 0.810177 + 0.586185i \(0.199371\pi\)
−0.810177 + 0.586185i \(0.800629\pi\)
\(618\) 0 0
\(619\) −11.7565 −0.472534 −0.236267 0.971688i \(-0.575924\pi\)
−0.236267 + 0.971688i \(0.575924\pi\)
\(620\) 8.40578 23.0192i 0.337584 0.924474i
\(621\) 0 0
\(622\) 21.2764i 0.853105i
\(623\) 40.6742i 1.62958i
\(624\) 0 0
\(625\) 4.23742 + 24.6383i 0.169497 + 0.985531i
\(626\) 4.27317 0.170790
\(627\) 0 0
\(628\) 23.9984i 0.957640i
\(629\) −2.55398 −0.101834
\(630\) 0 0
\(631\) 30.6569 1.22043 0.610216 0.792235i \(-0.291083\pi\)
0.610216 + 0.792235i \(0.291083\pi\)
\(632\) 10.0509i 0.399802i
\(633\) 0 0
\(634\) 42.9153 1.70438
\(635\) −13.4330 4.90524i −0.533072 0.194659i
\(636\) 0 0
\(637\) 5.00117i 0.198154i
\(638\) 8.60198i 0.340556i
\(639\) 0 0
\(640\) 22.1542 + 8.08992i 0.875723 + 0.319782i
\(641\) 45.7844 1.80838 0.904188 0.427135i \(-0.140477\pi\)
0.904188 + 0.427135i \(0.140477\pi\)
\(642\) 0 0
\(643\) 43.7394i 1.72491i −0.506132 0.862456i \(-0.668925\pi\)
0.506132 0.862456i \(-0.331075\pi\)
\(644\) −1.83832 −0.0724400
\(645\) 0 0
\(646\) 3.23306 0.127203
\(647\) 10.6969i 0.420537i −0.977644 0.210269i \(-0.932566\pi\)
0.977644 0.210269i \(-0.0674338\pi\)
\(648\) 0 0
\(649\) −31.4127 −1.23306
\(650\) 3.64852 + 3.07460i 0.143107 + 0.120596i
\(651\) 0 0
\(652\) 10.3486i 0.405282i
\(653\) 17.4970i 0.684709i 0.939571 + 0.342355i \(0.111224\pi\)
−0.939571 + 0.342355i \(0.888776\pi\)
\(654\) 0 0
\(655\) −12.0262 + 32.9337i −0.469903 + 1.28683i
\(656\) −11.1171 −0.434050
\(657\) 0 0
\(658\) 2.16983i 0.0845887i
\(659\) 38.0331 1.48156 0.740779 0.671748i \(-0.234456\pi\)
0.740779 + 0.671748i \(0.234456\pi\)
\(660\) 0 0
\(661\) −1.61112 −0.0626654 −0.0313327 0.999509i \(-0.509975\pi\)
−0.0313327 + 0.999509i \(0.509975\pi\)
\(662\) 56.3469i 2.18999i
\(663\) 0 0
\(664\) 8.82149 0.342340
\(665\) −51.2411 18.7114i −1.98704 0.725597i
\(666\) 0 0
\(667\) 0.379104i 0.0146790i
\(668\) 7.17414i 0.277576i
\(669\) 0 0
\(670\) −5.42453 + 14.8551i −0.209568 + 0.573901i
\(671\) 3.63556 0.140349
\(672\) 0 0
\(673\) 6.25241i 0.241013i −0.992713 0.120506i \(-0.961548\pi\)
0.992713 0.120506i \(-0.0384518\pi\)
\(674\) 40.4074 1.55644
\(675\) 0 0
\(676\) −15.2379 −0.586075
\(677\) 23.4775i 0.902312i −0.892445 0.451156i \(-0.851012\pi\)
0.892445 0.451156i \(-0.148988\pi\)
\(678\) 0 0
\(679\) 9.75221 0.374256
\(680\) −0.329696 + 0.902873i −0.0126433 + 0.0346236i
\(681\) 0 0
\(682\) 78.6656i 3.01226i
\(683\) 6.95644i 0.266181i 0.991104 + 0.133090i \(0.0424900\pi\)
−0.991104 + 0.133090i \(0.957510\pi\)
\(684\) 0 0
\(685\) −29.7821 10.8753i −1.13791 0.415525i
\(686\) 17.1717 0.655619
\(687\) 0 0
\(688\) 29.8197i 1.13686i
\(689\) −6.32862 −0.241101
\(690\) 0 0
\(691\) −50.6725 −1.92767 −0.963836 0.266498i \(-0.914133\pi\)
−0.963836 + 0.266498i \(0.914133\pi\)
\(692\) 9.29153i 0.353211i
\(693\) 0 0
\(694\) 45.2891 1.71915
\(695\) 4.72394 12.9365i 0.179189 0.490709i
\(696\) 0 0
\(697\) 0.671970i 0.0254527i
\(698\) 21.3996i 0.809986i
\(699\) 0 0
\(700\) −15.6239 + 18.5403i −0.590527 + 0.700759i
\(701\) −26.3580 −0.995527 −0.497763 0.867313i \(-0.665845\pi\)
−0.497763 + 0.867313i \(0.665845\pi\)
\(702\) 0 0
\(703\) 51.3539i 1.93685i
\(704\) −3.93015 −0.148123
\(705\) 0 0
\(706\) −49.8049 −1.87443
\(707\) 67.1849i 2.52675i
\(708\) 0 0
\(709\) −1.33497 −0.0501357 −0.0250678 0.999686i \(-0.507980\pi\)
−0.0250678 + 0.999686i \(0.507980\pi\)
\(710\) 40.1074 + 14.6458i 1.50520 + 0.549646i
\(711\) 0 0
\(712\) 14.4106i 0.540061i
\(713\) 3.46693i 0.129838i
\(714\) 0 0
\(715\) 5.39054 + 1.96843i 0.201595 + 0.0736152i
\(716\) −11.0456 −0.412793
\(717\) 0 0
\(718\) 46.2923i 1.72761i
\(719\) 5.44486 0.203059 0.101530 0.994833i \(-0.467626\pi\)
0.101530 + 0.994833i \(0.467626\pi\)
\(720\) 0 0
\(721\) 54.2724 2.02121
\(722\) 31.0286i 1.15476i
\(723\) 0 0
\(724\) −16.6990 −0.620614
\(725\) 3.82344 + 3.22200i 0.141999 + 0.119662i
\(726\) 0 0
\(727\) 32.6745i 1.21183i −0.795529 0.605916i \(-0.792807\pi\)
0.795529 0.605916i \(-0.207193\pi\)
\(728\) 3.09518i 0.114715i
\(729\) 0 0
\(730\) 15.1511 41.4911i 0.560766 1.53566i
\(731\) 1.80244 0.0666657
\(732\) 0 0
\(733\) 20.9195i 0.772678i 0.922357 + 0.386339i \(0.126260\pi\)
−0.922357 + 0.386339i \(0.873740\pi\)
\(734\) −53.7297 −1.98320
\(735\) 0 0
\(736\) −2.27631 −0.0839059
\(737\) 19.0211i 0.700653i
\(738\) 0 0
\(739\) −13.2392 −0.487011 −0.243505 0.969900i \(-0.578297\pi\)
−0.243505 + 0.969900i \(0.578297\pi\)
\(740\) −21.4400 7.82913i −0.788152 0.287804i
\(741\) 0 0
\(742\) 85.8306i 3.15094i
\(743\) 45.8151i 1.68079i −0.541971 0.840397i \(-0.682322\pi\)
0.541971 0.840397i \(-0.317678\pi\)
\(744\) 0 0
\(745\) −2.53022 + 6.92899i −0.0926999 + 0.253859i
\(746\) −30.9414 −1.13285
\(747\) 0 0
\(748\) 1.72834i 0.0631942i
\(749\) 36.9032 1.34841
\(750\) 0 0
\(751\) −26.2736 −0.958738 −0.479369 0.877614i \(-0.659134\pi\)
−0.479369 + 0.877614i \(0.659134\pi\)
\(752\) 1.48742i 0.0542406i
\(753\) 0 0
\(754\) 0.954250 0.0347518
\(755\) 9.03109 24.7316i 0.328675 0.900076i
\(756\) 0 0
\(757\) 19.2465i 0.699527i 0.936838 + 0.349763i \(0.113738\pi\)
−0.936838 + 0.349763i \(0.886262\pi\)
\(758\) 10.7480i 0.390384i
\(759\) 0 0
\(760\) −18.1544 6.62933i −0.658529 0.240471i
\(761\) 19.9183 0.722037 0.361019 0.932559i \(-0.382429\pi\)
0.361019 + 0.932559i \(0.382429\pi\)
\(762\) 0 0
\(763\) 51.5422i 1.86595i
\(764\) 18.9980 0.687325
\(765\) 0 0
\(766\) 28.5992 1.03333
\(767\) 3.48473i 0.125826i
\(768\) 0 0
\(769\) −13.5530 −0.488734 −0.244367 0.969683i \(-0.578580\pi\)
−0.244367 + 0.969683i \(0.578580\pi\)
\(770\) −26.6964 + 73.1081i −0.962072 + 2.63463i
\(771\) 0 0
\(772\) 14.7834i 0.532065i
\(773\) 4.56321i 0.164127i 0.996627 + 0.0820635i \(0.0261510\pi\)
−0.996627 + 0.0820635i \(0.973849\pi\)
\(774\) 0 0
\(775\) −34.9656 29.4654i −1.25600 1.05843i
\(776\) 3.45515 0.124033
\(777\) 0 0
\(778\) 5.59621i 0.200634i
\(779\) 13.5115 0.484101
\(780\) 0 0
\(781\) 51.3555 1.83764
\(782\) 0.203292i 0.00726971i
\(783\) 0 0
\(784\) 46.4957 1.66056
\(785\) −42.0617 15.3594i −1.50124 0.548200i
\(786\) 0 0
\(787\) 17.3056i 0.616878i −0.951244 0.308439i \(-0.900193\pi\)
0.951244 0.308439i \(-0.0998066\pi\)
\(788\) 7.80873i 0.278174i
\(789\) 0 0
\(790\) 26.3358 + 9.61688i 0.936986 + 0.342153i
\(791\) −55.7448 −1.98206
\(792\) 0 0
\(793\) 0.403307i 0.0143218i
\(794\) −70.3738 −2.49747
\(795\) 0 0
\(796\) −10.0740 −0.357064
\(797\) 25.4230i 0.900531i 0.892895 + 0.450265i \(0.148671\pi\)
−0.892895 + 0.450265i \(0.851329\pi\)
\(798\) 0 0
\(799\) −0.0899066 −0.00318067
\(800\) −19.3463 + 22.9576i −0.683996 + 0.811675i
\(801\) 0 0
\(802\) 9.08247i 0.320713i
\(803\) 53.1273i 1.87482i
\(804\) 0 0
\(805\) −1.17656 + 3.22200i −0.0414682 + 0.113561i
\(806\) −8.72668 −0.307384
\(807\) 0 0
\(808\) 23.8032i 0.837393i
\(809\) −39.8770 −1.40200 −0.701001 0.713160i \(-0.747263\pi\)
−0.701001 + 0.713160i \(0.747263\pi\)
\(810\) 0 0
\(811\) 37.9902 1.33402 0.667008 0.745050i \(-0.267574\pi\)
0.667008 + 0.745050i \(0.267574\pi\)
\(812\) 4.84912i 0.170171i
\(813\) 0 0
\(814\) −73.2690 −2.56808
\(815\) −18.1378 6.62327i −0.635340 0.232003i
\(816\) 0 0
\(817\) 36.2424i 1.26796i
\(818\) 7.46937i 0.261160i
\(819\) 0 0
\(820\) 2.05990 5.64102i 0.0719347 0.196993i
\(821\) 2.02361 0.0706245 0.0353122 0.999376i \(-0.488757\pi\)
0.0353122 + 0.999376i \(0.488757\pi\)
\(822\) 0 0
\(823\) 1.80919i 0.0630642i −0.999503 0.0315321i \(-0.989961\pi\)
0.999503 0.0315321i \(-0.0100386\pi\)
\(824\) 19.2284 0.669851
\(825\) 0 0
\(826\) −47.2610 −1.64442
\(827\) 18.8027i 0.653834i 0.945053 + 0.326917i \(0.106010\pi\)
−0.945053 + 0.326917i \(0.893990\pi\)
\(828\) 0 0
\(829\) −13.7594 −0.477884 −0.238942 0.971034i \(-0.576801\pi\)
−0.238942 + 0.971034i \(0.576801\pi\)
\(830\) −8.44060 + 23.1146i −0.292977 + 0.802318i
\(831\) 0 0
\(832\) 0.435987i 0.0151151i
\(833\) 2.81042i 0.0973753i
\(834\) 0 0
\(835\) −12.5740 4.59158i −0.435142 0.158898i
\(836\) 34.7523 1.20193
\(837\) 0 0
\(838\) 28.9072i 0.998583i
\(839\) −14.1913 −0.489938 −0.244969 0.969531i \(-0.578778\pi\)
−0.244969 + 0.969531i \(0.578778\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 8.79782i 0.303193i
\(843\) 0 0
\(844\) 11.2922 0.388694
\(845\) −9.75255 + 26.7073i −0.335498 + 0.918760i
\(846\) 0 0
\(847\) 49.1014i 1.68714i
\(848\) 58.8370i 2.02047i
\(849\) 0 0
\(850\) −2.05030 1.72778i −0.0703246 0.0592622i
\(851\) −3.22909 −0.110692
\(852\) 0 0
\(853\) 16.7293i 0.572801i 0.958110 + 0.286401i \(0.0924589\pi\)
−0.958110 + 0.286401i \(0.907541\pi\)
\(854\) 5.46976 0.187171
\(855\) 0 0
\(856\) 13.0746 0.446880
\(857\) 33.2564i 1.13602i 0.823023 + 0.568009i \(0.192286\pi\)
−0.823023 + 0.568009i \(0.807714\pi\)
\(858\) 0 0
\(859\) 56.5319 1.92884 0.964422 0.264366i \(-0.0851628\pi\)
0.964422 + 0.264366i \(0.0851628\pi\)
\(860\) 15.1311 + 5.52531i 0.515965 + 0.188412i
\(861\) 0 0
\(862\) 73.6321i 2.50792i
\(863\) 43.9271i 1.49530i −0.664096 0.747648i \(-0.731183\pi\)
0.664096 0.747648i \(-0.268817\pi\)
\(864\) 0 0
\(865\) 16.2851 + 5.94674i 0.553711 + 0.202195i
\(866\) 41.0839 1.39609
\(867\) 0 0
\(868\) 44.3455i 1.50519i
\(869\) 33.7217 1.14393
\(870\) 0 0
\(871\) 2.11009 0.0714976
\(872\) 18.2611i 0.618397i
\(873\) 0 0
\(874\) 4.08767 0.138267
\(875\) 22.4958 + 39.2499i 0.760498 + 1.32689i
\(876\) 0 0
\(877\) 13.5059i 0.456063i −0.973654 0.228032i \(-0.926771\pi\)
0.973654 0.228032i \(-0.0732290\pi\)
\(878\) 9.89261i 0.333859i
\(879\) 0 0
\(880\) −18.3004 + 50.1157i −0.616908 + 1.68940i
\(881\) −40.0575 −1.34957 −0.674785 0.738014i \(-0.735764\pi\)
−0.674785 + 0.738014i \(0.735764\pi\)
\(882\) 0 0
\(883\) 16.0102i 0.538786i −0.963030 0.269393i \(-0.913177\pi\)
0.963030 0.269393i \(-0.0868231\pi\)
\(884\) −0.191731 −0.00644861
\(885\) 0 0
\(886\) 5.40491 0.181581
\(887\) 13.8430i 0.464802i 0.972620 + 0.232401i \(0.0746581\pi\)
−0.972620 + 0.232401i \(0.925342\pi\)
\(888\) 0 0
\(889\) −25.8781 −0.867923
\(890\) −37.7595 13.7884i −1.26570 0.462188i
\(891\) 0 0
\(892\) 22.3499i 0.748329i
\(893\) 1.80779i 0.0604953i
\(894\) 0 0
\(895\) −7.06936 + 19.3594i −0.236303 + 0.647114i
\(896\) 42.6792 1.42581
\(897\) 0 0
\(898\) 13.3109i 0.444191i
\(899\) −9.14506 −0.305005
\(900\) 0 0
\(901\) 3.55639 0.118480
\(902\) 19.2776i 0.641873i
\(903\) 0 0
\(904\) −19.7500 −0.656876
\(905\) −10.6877 + 29.2681i −0.355270 + 0.972905i
\(906\) 0 0
\(907\) 2.47532i 0.0821915i −0.999155 0.0410958i \(-0.986915\pi\)
0.999155 0.0410958i \(-0.0130849\pi\)
\(908\) 5.65873i 0.187791i
\(909\) 0 0
\(910\) 8.11016 + 2.96154i 0.268849 + 0.0981740i
\(911\) −4.32063 −0.143149 −0.0715744 0.997435i \(-0.522802\pi\)
−0.0715744 + 0.997435i \(0.522802\pi\)
\(912\) 0 0
\(913\) 29.5970i 0.979518i
\(914\) 5.02971 0.166368
\(915\) 0 0
\(916\) 28.2944 0.934872
\(917\) 63.4454i 2.09515i
\(918\) 0 0
\(919\) −34.6470 −1.14290 −0.571450 0.820637i \(-0.693619\pi\)
−0.571450 + 0.820637i \(0.693619\pi\)
\(920\) −0.416847 + 1.14153i −0.0137430 + 0.0376353i
\(921\) 0 0
\(922\) 27.5246i 0.906473i
\(923\) 5.69706i 0.187521i
\(924\) 0 0
\(925\) −27.4440 + 32.5669i −0.902353 + 1.07079i
\(926\) −42.5597 −1.39860
\(927\) 0 0
\(928\) 6.00444i 0.197106i
\(929\) 9.64854 0.316558 0.158279 0.987394i \(-0.449405\pi\)
0.158279 + 0.987394i \(0.449405\pi\)
\(930\) 0 0
\(931\) −56.5102 −1.85205
\(932\) 18.0908i 0.592585i
\(933\) 0 0
\(934\) −73.6342 −2.40938
\(935\) −3.02923 1.10616i −0.0990664 0.0361755i
\(936\) 0 0
\(937\) 5.16386i 0.168696i 0.996436 + 0.0843480i \(0.0268807\pi\)
−0.996436 + 0.0843480i \(0.973119\pi\)
\(938\) 28.6176i 0.934398i
\(939\) 0 0
\(940\) −0.754744 0.275605i −0.0246170 0.00898925i
\(941\) −46.0541 −1.50132 −0.750661 0.660688i \(-0.770265\pi\)
−0.750661 + 0.660688i \(0.770265\pi\)
\(942\) 0 0
\(943\) 0.849596i 0.0276666i
\(944\) −32.3975 −1.05445
\(945\) 0 0
\(946\) 51.7087 1.68120
\(947\) 7.00646i 0.227679i −0.993499 0.113840i \(-0.963685\pi\)
0.993499 0.113840i \(-0.0363150\pi\)
\(948\) 0 0
\(949\) −5.89361 −0.191315
\(950\) 34.7411 41.2261i 1.12715 1.33755i
\(951\) 0 0
\(952\) 1.73934i 0.0563725i
\(953\) 48.2817i 1.56400i 0.623281 + 0.781998i \(0.285799\pi\)
−0.623281 + 0.781998i \(0.714201\pi\)
\(954\) 0 0
\(955\) 12.1591 33.2976i 0.393459 1.07749i
\(956\) 19.8375 0.641589
\(957\) 0 0
\(958\) 38.5154i 1.24438i
\(959\) −57.3738 −1.85270
\(960\) 0 0
\(961\) 52.6322 1.69781
\(962\) 8.12801i 0.262058i
\(963\) 0 0
\(964\) −16.8619 −0.543086
\(965\) −25.9106 9.46162i −0.834092 0.304580i
\(966\) 0 0
\(967\) 19.8989i 0.639906i −0.947433 0.319953i \(-0.896333\pi\)
0.947433 0.319953i \(-0.103667\pi\)
\(968\) 17.3963i 0.559138i
\(969\) 0 0
\(970\) −3.30596 + 9.05337i −0.106148 + 0.290686i
\(971\) 28.8071 0.924464 0.462232 0.886759i \(-0.347049\pi\)
0.462232 + 0.886759i \(0.347049\pi\)
\(972\) 0 0
\(973\) 24.9216i 0.798950i
\(974\) −11.1109 −0.356015
\(975\) 0 0
\(976\) 3.74953 0.120019
\(977\) 34.4662i 1.10267i 0.834284 + 0.551336i \(0.185882\pi\)
−0.834284 + 0.551336i \(0.814118\pi\)
\(978\) 0 0
\(979\) −48.3491 −1.54524
\(980\) −8.61523 + 23.5928i −0.275203 + 0.753644i
\(981\) 0 0
\(982\) 43.3691i 1.38396i
\(983\) 21.8433i 0.696695i −0.937366 0.348347i \(-0.886743\pi\)
0.937366 0.348347i \(-0.113257\pi\)
\(984\) 0 0
\(985\) 13.6862 + 4.99772i 0.436080 + 0.159241i
\(986\) −0.536243 −0.0170775
\(987\) 0 0
\(988\) 3.85521i 0.122650i
\(989\) 2.27889 0.0724646
\(990\) 0 0
\(991\) −6.00703 −0.190820 −0.0954099 0.995438i \(-0.530416\pi\)
−0.0954099 + 0.995438i \(0.530416\pi\)
\(992\) 54.9110i 1.74343i
\(993\) 0 0
\(994\) 77.2652 2.45070
\(995\) −6.44755 + 17.6566i −0.204401 + 0.559752i
\(996\) 0 0
\(997\) 19.9499i 0.631821i 0.948789 + 0.315911i \(0.102310\pi\)
−0.948789 + 0.315911i \(0.897690\pi\)
\(998\) 62.5955i 1.98143i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.k.784.10 yes 12
3.2 odd 2 1305.2.c.l.784.3 yes 12
5.2 odd 4 6525.2.a.ce.1.3 12
5.3 odd 4 6525.2.a.ce.1.10 12
5.4 even 2 inner 1305.2.c.k.784.3 12
15.2 even 4 6525.2.a.cf.1.10 12
15.8 even 4 6525.2.a.cf.1.3 12
15.14 odd 2 1305.2.c.l.784.10 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1305.2.c.k.784.3 12 5.4 even 2 inner
1305.2.c.k.784.10 yes 12 1.1 even 1 trivial
1305.2.c.l.784.3 yes 12 3.2 odd 2
1305.2.c.l.784.10 yes 12 15.14 odd 2
6525.2.a.ce.1.3 12 5.2 odd 4
6525.2.a.ce.1.10 12 5.3 odd 4
6525.2.a.cf.1.3 12 15.8 even 4
6525.2.a.cf.1.10 12 15.2 even 4