Properties

Label 1305.2.c.j.784.6
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.3899266318336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 6x^{7} + 19x^{6} - 12x^{5} + 4x^{4} + 2x^{3} + 9x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.6
Root \(0.561843 - 0.561843i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.j.784.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.712495i q^{2} +1.49235 q^{4} +(-2.01848 + 0.962154i) q^{5} +2.77986i q^{7} +2.48828i q^{8} +O(q^{10})\) \(q+0.712495i q^{2} +1.49235 q^{4} +(-2.01848 + 0.962154i) q^{5} +2.77986i q^{7} +2.48828i q^{8} +(-0.685530 - 1.43816i) q^{10} -4.26814 q^{11} +0.779856i q^{13} -1.98063 q^{14} +1.21181 q^{16} -1.90354i q^{17} -6.72036 q^{19} +(-3.01228 + 1.43587i) q^{20} -3.04103i q^{22} -2.17168i q^{23} +(3.14852 - 3.88418i) q^{25} -0.555643 q^{26} +4.14852i q^{28} +1.00000 q^{29} -8.82061 q^{31} +5.83998i q^{32} +1.35626 q^{34} +(-2.67465 - 5.61108i) q^{35} -1.48402i q^{37} -4.78822i q^{38} +(-2.39411 - 5.02255i) q^{40} +7.71389 q^{41} -8.19624i q^{43} -6.36956 q^{44} +1.54731 q^{46} -5.19381i q^{47} -0.727598 q^{49} +(2.76746 + 2.24330i) q^{50} +1.16382i q^{52} +11.7853i q^{53} +(8.61515 - 4.10661i) q^{55} -6.91707 q^{56} +0.712495i q^{58} -4.46028 q^{59} -5.24905 q^{61} -6.28464i q^{62} -1.73733 q^{64} +(-0.750341 - 1.57412i) q^{65} +8.49375i q^{67} -2.84075i q^{68} +(3.99787 - 1.90567i) q^{70} -0.663102 q^{71} +16.5345i q^{73} +1.05736 q^{74} -10.0291 q^{76} -11.8648i q^{77} -9.54554 q^{79} +(-2.44602 + 1.16595i) q^{80} +5.49611i q^{82} +0.0123998i q^{83} +(1.83150 + 3.84226i) q^{85} +5.83978 q^{86} -10.6203i q^{88} -5.46783 q^{89} -2.16789 q^{91} -3.24091i q^{92} +3.70056 q^{94} +(13.5649 - 6.46602i) q^{95} +0.952006i q^{97} -0.518410i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 10 q^{4} + 4 q^{10} - 24 q^{11} + 12 q^{14} + 2 q^{16} + 4 q^{19} - 8 q^{20} + 2 q^{25} + 10 q^{29} + 4 q^{31} - 8 q^{34} - 2 q^{35} - 14 q^{40} + 28 q^{41} + 40 q^{44} - 12 q^{46} + 14 q^{49} + 12 q^{50} + 2 q^{55} + 4 q^{56} + 8 q^{59} - 24 q^{61} + 18 q^{64} - 6 q^{65} + 20 q^{70} - 60 q^{71} + 4 q^{74} - 88 q^{76} + 36 q^{79} + 30 q^{80} - 14 q^{85} - 60 q^{86} - 44 q^{89} - 24 q^{91} + 100 q^{94} + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.712495i 0.503810i 0.967752 + 0.251905i \(0.0810571\pi\)
−0.967752 + 0.251905i \(0.918943\pi\)
\(3\) 0 0
\(4\) 1.49235 0.746175
\(5\) −2.01848 + 0.962154i −0.902692 + 0.430288i
\(6\) 0 0
\(7\) 2.77986i 1.05069i 0.850890 + 0.525343i \(0.176063\pi\)
−0.850890 + 0.525343i \(0.823937\pi\)
\(8\) 2.48828i 0.879741i
\(9\) 0 0
\(10\) −0.685530 1.43816i −0.216784 0.454785i
\(11\) −4.26814 −1.28689 −0.643446 0.765491i \(-0.722496\pi\)
−0.643446 + 0.765491i \(0.722496\pi\)
\(12\) 0 0
\(13\) 0.779856i 0.216293i 0.994135 + 0.108147i \(0.0344916\pi\)
−0.994135 + 0.108147i \(0.965508\pi\)
\(14\) −1.98063 −0.529347
\(15\) 0 0
\(16\) 1.21181 0.302953
\(17\) 1.90354i 0.461677i −0.972992 0.230838i \(-0.925853\pi\)
0.972992 0.230838i \(-0.0741469\pi\)
\(18\) 0 0
\(19\) −6.72036 −1.54176 −0.770878 0.636983i \(-0.780182\pi\)
−0.770878 + 0.636983i \(0.780182\pi\)
\(20\) −3.01228 + 1.43587i −0.673566 + 0.321071i
\(21\) 0 0
\(22\) 3.04103i 0.648349i
\(23\) 2.17168i 0.452827i −0.974031 0.226413i \(-0.927300\pi\)
0.974031 0.226413i \(-0.0727000\pi\)
\(24\) 0 0
\(25\) 3.14852 3.88418i 0.629704 0.776835i
\(26\) −0.555643 −0.108971
\(27\) 0 0
\(28\) 4.14852i 0.783997i
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −8.82061 −1.58423 −0.792114 0.610373i \(-0.791020\pi\)
−0.792114 + 0.610373i \(0.791020\pi\)
\(32\) 5.83998i 1.03237i
\(33\) 0 0
\(34\) 1.35626 0.232597
\(35\) −2.67465 5.61108i −0.452098 0.948446i
\(36\) 0 0
\(37\) 1.48402i 0.243971i −0.992532 0.121986i \(-0.961074\pi\)
0.992532 0.121986i \(-0.0389262\pi\)
\(38\) 4.78822i 0.776752i
\(39\) 0 0
\(40\) −2.39411 5.02255i −0.378542 0.794135i
\(41\) 7.71389 1.20471 0.602354 0.798229i \(-0.294230\pi\)
0.602354 + 0.798229i \(0.294230\pi\)
\(42\) 0 0
\(43\) 8.19624i 1.24991i −0.780659 0.624957i \(-0.785116\pi\)
0.780659 0.624957i \(-0.214884\pi\)
\(44\) −6.36956 −0.960247
\(45\) 0 0
\(46\) 1.54731 0.228139
\(47\) 5.19381i 0.757595i −0.925480 0.378798i \(-0.876338\pi\)
0.925480 0.378798i \(-0.123662\pi\)
\(48\) 0 0
\(49\) −0.727598 −0.103943
\(50\) 2.76746 + 2.24330i 0.391377 + 0.317251i
\(51\) 0 0
\(52\) 1.16382i 0.161393i
\(53\) 11.7853i 1.61884i 0.587231 + 0.809419i \(0.300218\pi\)
−0.587231 + 0.809419i \(0.699782\pi\)
\(54\) 0 0
\(55\) 8.61515 4.10661i 1.16167 0.553735i
\(56\) −6.91707 −0.924332
\(57\) 0 0
\(58\) 0.712495i 0.0935552i
\(59\) −4.46028 −0.580679 −0.290339 0.956924i \(-0.593768\pi\)
−0.290339 + 0.956924i \(0.593768\pi\)
\(60\) 0 0
\(61\) −5.24905 −0.672071 −0.336036 0.941849i \(-0.609086\pi\)
−0.336036 + 0.941849i \(0.609086\pi\)
\(62\) 6.28464i 0.798150i
\(63\) 0 0
\(64\) −1.73733 −0.217166
\(65\) −0.750341 1.57412i −0.0930684 0.195246i
\(66\) 0 0
\(67\) 8.49375i 1.03768i 0.854872 + 0.518838i \(0.173635\pi\)
−0.854872 + 0.518838i \(0.826365\pi\)
\(68\) 2.84075i 0.344492i
\(69\) 0 0
\(70\) 3.99787 1.90567i 0.477837 0.227772i
\(71\) −0.663102 −0.0786957 −0.0393479 0.999226i \(-0.512528\pi\)
−0.0393479 + 0.999226i \(0.512528\pi\)
\(72\) 0 0
\(73\) 16.5345i 1.93522i 0.252455 + 0.967609i \(0.418762\pi\)
−0.252455 + 0.967609i \(0.581238\pi\)
\(74\) 1.05736 0.122915
\(75\) 0 0
\(76\) −10.0291 −1.15042
\(77\) 11.8648i 1.35212i
\(78\) 0 0
\(79\) −9.54554 −1.07396 −0.536978 0.843596i \(-0.680434\pi\)
−0.536978 + 0.843596i \(0.680434\pi\)
\(80\) −2.44602 + 1.16595i −0.273473 + 0.130357i
\(81\) 0 0
\(82\) 5.49611i 0.606944i
\(83\) 0.0123998i 0.00136106i 1.00000 0.000680528i \(0.000216619\pi\)
−1.00000 0.000680528i \(0.999783\pi\)
\(84\) 0 0
\(85\) 1.83150 + 3.84226i 0.198654 + 0.416752i
\(86\) 5.83978 0.629720
\(87\) 0 0
\(88\) 10.6203i 1.13213i
\(89\) −5.46783 −0.579588 −0.289794 0.957089i \(-0.593587\pi\)
−0.289794 + 0.957089i \(0.593587\pi\)
\(90\) 0 0
\(91\) −2.16789 −0.227256
\(92\) 3.24091i 0.337888i
\(93\) 0 0
\(94\) 3.70056 0.381684
\(95\) 13.5649 6.46602i 1.39173 0.663399i
\(96\) 0 0
\(97\) 0.952006i 0.0966615i 0.998831 + 0.0483308i \(0.0153902\pi\)
−0.998831 + 0.0483308i \(0.984610\pi\)
\(98\) 0.518410i 0.0523673i
\(99\) 0 0
\(100\) 4.69870 5.79655i 0.469870 0.579655i
\(101\) −8.31781 −0.827653 −0.413826 0.910356i \(-0.635808\pi\)
−0.413826 + 0.910356i \(0.635808\pi\)
\(102\) 0 0
\(103\) 12.4091i 1.22271i 0.791357 + 0.611355i \(0.209375\pi\)
−0.791357 + 0.611355i \(0.790625\pi\)
\(104\) −1.94050 −0.190282
\(105\) 0 0
\(106\) −8.39698 −0.815587
\(107\) 17.5579i 1.69739i −0.528883 0.848695i \(-0.677389\pi\)
0.528883 0.848695i \(-0.322611\pi\)
\(108\) 0 0
\(109\) −1.00973 −0.0967146 −0.0483573 0.998830i \(-0.515399\pi\)
−0.0483573 + 0.998830i \(0.515399\pi\)
\(110\) 2.92594 + 6.13825i 0.278977 + 0.585259i
\(111\) 0 0
\(112\) 3.36866i 0.318309i
\(113\) 15.5787i 1.46552i 0.680487 + 0.732761i \(0.261768\pi\)
−0.680487 + 0.732761i \(0.738232\pi\)
\(114\) 0 0
\(115\) 2.08949 + 4.38349i 0.194846 + 0.408763i
\(116\) 1.49235 0.138561
\(117\) 0 0
\(118\) 3.17792i 0.292552i
\(119\) 5.29157 0.485078
\(120\) 0 0
\(121\) 7.21701 0.656091
\(122\) 3.73992i 0.338596i
\(123\) 0 0
\(124\) −13.1634 −1.18211
\(125\) −2.61805 + 10.8695i −0.234165 + 0.972197i
\(126\) 0 0
\(127\) 16.9536i 1.50438i 0.658943 + 0.752192i \(0.271004\pi\)
−0.658943 + 0.752192i \(0.728996\pi\)
\(128\) 10.4421i 0.922961i
\(129\) 0 0
\(130\) 1.12155 0.534614i 0.0983669 0.0468888i
\(131\) −11.9324 −1.04254 −0.521268 0.853393i \(-0.674541\pi\)
−0.521268 + 0.853393i \(0.674541\pi\)
\(132\) 0 0
\(133\) 18.6816i 1.61990i
\(134\) −6.05175 −0.522792
\(135\) 0 0
\(136\) 4.73655 0.406156
\(137\) 0.239785i 0.0204862i −0.999948 0.0102431i \(-0.996739\pi\)
0.999948 0.0102431i \(-0.00326054\pi\)
\(138\) 0 0
\(139\) 17.0255 1.44408 0.722040 0.691851i \(-0.243205\pi\)
0.722040 + 0.691851i \(0.243205\pi\)
\(140\) −3.99151 8.37370i −0.337345 0.707707i
\(141\) 0 0
\(142\) 0.472457i 0.0396477i
\(143\) 3.32853i 0.278346i
\(144\) 0 0
\(145\) −2.01848 + 0.962154i −0.167626 + 0.0799025i
\(146\) −11.7808 −0.974982
\(147\) 0 0
\(148\) 2.21468i 0.182045i
\(149\) −4.13046 −0.338380 −0.169190 0.985583i \(-0.554115\pi\)
−0.169190 + 0.985583i \(0.554115\pi\)
\(150\) 0 0
\(151\) −3.21580 −0.261698 −0.130849 0.991402i \(-0.541770\pi\)
−0.130849 + 0.991402i \(0.541770\pi\)
\(152\) 16.7221i 1.35635i
\(153\) 0 0
\(154\) 8.45362 0.681212
\(155\) 17.8042 8.48678i 1.43007 0.681675i
\(156\) 0 0
\(157\) 6.84237i 0.546081i −0.962003 0.273040i \(-0.911971\pi\)
0.962003 0.273040i \(-0.0880292\pi\)
\(158\) 6.80115i 0.541070i
\(159\) 0 0
\(160\) −5.61895 11.7879i −0.444217 0.931913i
\(161\) 6.03696 0.475779
\(162\) 0 0
\(163\) 14.0502i 1.10050i −0.835001 0.550248i \(-0.814533\pi\)
0.835001 0.550248i \(-0.185467\pi\)
\(164\) 11.5118 0.898923
\(165\) 0 0
\(166\) −0.00883480 −0.000685713
\(167\) 17.8725i 1.38301i 0.722370 + 0.691507i \(0.243053\pi\)
−0.722370 + 0.691507i \(0.756947\pi\)
\(168\) 0 0
\(169\) 12.3918 0.953217
\(170\) −2.73759 + 1.30494i −0.209964 + 0.100084i
\(171\) 0 0
\(172\) 12.2317i 0.932656i
\(173\) 2.82518i 0.214795i 0.994216 + 0.107397i \(0.0342517\pi\)
−0.994216 + 0.107397i \(0.965748\pi\)
\(174\) 0 0
\(175\) 10.7974 + 8.75243i 0.816210 + 0.661622i
\(176\) −5.17218 −0.389868
\(177\) 0 0
\(178\) 3.89580i 0.292002i
\(179\) 20.2829 1.51601 0.758006 0.652247i \(-0.226174\pi\)
0.758006 + 0.652247i \(0.226174\pi\)
\(180\) 0 0
\(181\) −8.63783 −0.642045 −0.321023 0.947072i \(-0.604027\pi\)
−0.321023 + 0.947072i \(0.604027\pi\)
\(182\) 1.54461i 0.114494i
\(183\) 0 0
\(184\) 5.40376 0.398370
\(185\) 1.42785 + 2.99546i 0.104978 + 0.220231i
\(186\) 0 0
\(187\) 8.12458i 0.594128i
\(188\) 7.75099i 0.565299i
\(189\) 0 0
\(190\) 4.60701 + 9.66493i 0.334227 + 0.701168i
\(191\) −0.896850 −0.0648938 −0.0324469 0.999473i \(-0.510330\pi\)
−0.0324469 + 0.999473i \(0.510330\pi\)
\(192\) 0 0
\(193\) 10.4506i 0.752251i −0.926569 0.376126i \(-0.877256\pi\)
0.926569 0.376126i \(-0.122744\pi\)
\(194\) −0.678299 −0.0486991
\(195\) 0 0
\(196\) −1.08583 −0.0775594
\(197\) 9.57740i 0.682361i 0.939998 + 0.341181i \(0.110827\pi\)
−0.939998 + 0.341181i \(0.889173\pi\)
\(198\) 0 0
\(199\) −5.61768 −0.398227 −0.199113 0.979976i \(-0.563806\pi\)
−0.199113 + 0.979976i \(0.563806\pi\)
\(200\) 9.66493 + 7.83441i 0.683414 + 0.553976i
\(201\) 0 0
\(202\) 5.92640i 0.416980i
\(203\) 2.77986i 0.195108i
\(204\) 0 0
\(205\) −15.5703 + 7.42195i −1.08748 + 0.518372i
\(206\) −8.84145 −0.616013
\(207\) 0 0
\(208\) 0.945039i 0.0655267i
\(209\) 28.6834 1.98407
\(210\) 0 0
\(211\) −0.605216 −0.0416648 −0.0208324 0.999783i \(-0.506632\pi\)
−0.0208324 + 0.999783i \(0.506632\pi\)
\(212\) 17.5878i 1.20794i
\(213\) 0 0
\(214\) 12.5099 0.855162
\(215\) 7.88604 + 16.5439i 0.537824 + 1.12829i
\(216\) 0 0
\(217\) 24.5200i 1.66453i
\(218\) 0.719428i 0.0487258i
\(219\) 0 0
\(220\) 12.8568 6.12850i 0.866807 0.413183i
\(221\) 1.48449 0.0998575
\(222\) 0 0
\(223\) 16.5537i 1.10852i 0.832344 + 0.554260i \(0.186999\pi\)
−0.832344 + 0.554260i \(0.813001\pi\)
\(224\) −16.2343 −1.08470
\(225\) 0 0
\(226\) −11.0997 −0.738344
\(227\) 22.0061i 1.46060i −0.683128 0.730299i \(-0.739381\pi\)
0.683128 0.730299i \(-0.260619\pi\)
\(228\) 0 0
\(229\) 24.5647 1.62328 0.811641 0.584157i \(-0.198575\pi\)
0.811641 + 0.584157i \(0.198575\pi\)
\(230\) −3.12322 + 1.48875i −0.205939 + 0.0981654i
\(231\) 0 0
\(232\) 2.48828i 0.163364i
\(233\) 5.56824i 0.364787i 0.983226 + 0.182394i \(0.0583845\pi\)
−0.983226 + 0.182394i \(0.941615\pi\)
\(234\) 0 0
\(235\) 4.99725 + 10.4836i 0.325984 + 0.683875i
\(236\) −6.65630 −0.433288
\(237\) 0 0
\(238\) 3.77022i 0.244387i
\(239\) 6.90640 0.446738 0.223369 0.974734i \(-0.428295\pi\)
0.223369 + 0.974734i \(0.428295\pi\)
\(240\) 0 0
\(241\) −25.1989 −1.62320 −0.811602 0.584210i \(-0.801404\pi\)
−0.811602 + 0.584210i \(0.801404\pi\)
\(242\) 5.14208i 0.330545i
\(243\) 0 0
\(244\) −7.83342 −0.501483
\(245\) 1.46864 0.700061i 0.0938281 0.0447253i
\(246\) 0 0
\(247\) 5.24091i 0.333471i
\(248\) 21.9482i 1.39371i
\(249\) 0 0
\(250\) −7.74446 1.86535i −0.489803 0.117975i
\(251\) −28.3687 −1.79062 −0.895309 0.445446i \(-0.853045\pi\)
−0.895309 + 0.445446i \(0.853045\pi\)
\(252\) 0 0
\(253\) 9.26903i 0.582739i
\(254\) −12.0793 −0.757924
\(255\) 0 0
\(256\) −10.9146 −0.682163
\(257\) 8.71100i 0.543377i 0.962385 + 0.271688i \(0.0875820\pi\)
−0.962385 + 0.271688i \(0.912418\pi\)
\(258\) 0 0
\(259\) 4.12536 0.256337
\(260\) −1.11977 2.34914i −0.0694453 0.145688i
\(261\) 0 0
\(262\) 8.50175i 0.525240i
\(263\) 13.2128i 0.814736i 0.913264 + 0.407368i \(0.133553\pi\)
−0.913264 + 0.407368i \(0.866447\pi\)
\(264\) 0 0
\(265\) −11.3393 23.7884i −0.696567 1.46131i
\(266\) 13.3106 0.816123
\(267\) 0 0
\(268\) 12.6757i 0.774289i
\(269\) −10.3447 −0.630725 −0.315363 0.948971i \(-0.602126\pi\)
−0.315363 + 0.948971i \(0.602126\pi\)
\(270\) 0 0
\(271\) 9.76022 0.592891 0.296445 0.955050i \(-0.404199\pi\)
0.296445 + 0.955050i \(0.404199\pi\)
\(272\) 2.30674i 0.139866i
\(273\) 0 0
\(274\) 0.170845 0.0103212
\(275\) −13.4383 + 16.5782i −0.810361 + 0.999703i
\(276\) 0 0
\(277\) 1.87503i 0.112659i −0.998412 0.0563297i \(-0.982060\pi\)
0.998412 0.0563297i \(-0.0179398\pi\)
\(278\) 12.1306i 0.727542i
\(279\) 0 0
\(280\) 13.9620 6.65528i 0.834387 0.397729i
\(281\) 21.2930 1.27024 0.635118 0.772415i \(-0.280951\pi\)
0.635118 + 0.772415i \(0.280951\pi\)
\(282\) 0 0
\(283\) 15.8729i 0.943544i −0.881721 0.471772i \(-0.843615\pi\)
0.881721 0.471772i \(-0.156385\pi\)
\(284\) −0.989581 −0.0587208
\(285\) 0 0
\(286\) 2.37156 0.140233
\(287\) 21.4435i 1.26577i
\(288\) 0 0
\(289\) 13.3765 0.786855
\(290\) −0.685530 1.43816i −0.0402557 0.0844515i
\(291\) 0 0
\(292\) 24.6753i 1.44401i
\(293\) 33.1369i 1.93588i 0.251189 + 0.967938i \(0.419178\pi\)
−0.251189 + 0.967938i \(0.580822\pi\)
\(294\) 0 0
\(295\) 9.00298 4.29147i 0.524174 0.249859i
\(296\) 3.69266 0.214631
\(297\) 0 0
\(298\) 2.94293i 0.170479i
\(299\) 1.69360 0.0979433
\(300\) 0 0
\(301\) 22.7844 1.31327
\(302\) 2.29124i 0.131846i
\(303\) 0 0
\(304\) −8.14381 −0.467080
\(305\) 10.5951 5.05039i 0.606673 0.289184i
\(306\) 0 0
\(307\) 17.2605i 0.985109i 0.870282 + 0.492555i \(0.163937\pi\)
−0.870282 + 0.492555i \(0.836063\pi\)
\(308\) 17.7065i 1.00892i
\(309\) 0 0
\(310\) 6.04679 + 12.6854i 0.343435 + 0.720483i
\(311\) 32.5116 1.84356 0.921781 0.387711i \(-0.126734\pi\)
0.921781 + 0.387711i \(0.126734\pi\)
\(312\) 0 0
\(313\) 6.26304i 0.354008i −0.984210 0.177004i \(-0.943359\pi\)
0.984210 0.177004i \(-0.0566405\pi\)
\(314\) 4.87516 0.275121
\(315\) 0 0
\(316\) −14.2453 −0.801360
\(317\) 18.8523i 1.05885i 0.848356 + 0.529426i \(0.177593\pi\)
−0.848356 + 0.529426i \(0.822407\pi\)
\(318\) 0 0
\(319\) −4.26814 −0.238970
\(320\) 3.50676 1.67158i 0.196034 0.0934440i
\(321\) 0 0
\(322\) 4.30130i 0.239702i
\(323\) 12.7925i 0.711793i
\(324\) 0 0
\(325\) 3.02910 + 2.45539i 0.168024 + 0.136201i
\(326\) 10.0107 0.554441
\(327\) 0 0
\(328\) 19.1943i 1.05983i
\(329\) 14.4380 0.795995
\(330\) 0 0
\(331\) −0.596245 −0.0327726 −0.0163863 0.999866i \(-0.505216\pi\)
−0.0163863 + 0.999866i \(0.505216\pi\)
\(332\) 0.0185049i 0.00101559i
\(333\) 0 0
\(334\) −12.7341 −0.696776
\(335\) −8.17229 17.1445i −0.446500 0.936702i
\(336\) 0 0
\(337\) 32.6414i 1.77809i 0.457818 + 0.889046i \(0.348631\pi\)
−0.457818 + 0.889046i \(0.651369\pi\)
\(338\) 8.82911i 0.480240i
\(339\) 0 0
\(340\) 2.73324 + 5.73400i 0.148231 + 0.310970i
\(341\) 37.6476 2.03873
\(342\) 0 0
\(343\) 17.4364i 0.941476i
\(344\) 20.3946 1.09960
\(345\) 0 0
\(346\) −2.01293 −0.108216
\(347\) 13.1985i 0.708531i 0.935145 + 0.354265i \(0.115269\pi\)
−0.935145 + 0.354265i \(0.884731\pi\)
\(348\) 0 0
\(349\) −15.6412 −0.837255 −0.418628 0.908158i \(-0.637489\pi\)
−0.418628 + 0.908158i \(0.637489\pi\)
\(350\) −6.23606 + 7.69313i −0.333332 + 0.411215i
\(351\) 0 0
\(352\) 24.9258i 1.32855i
\(353\) 5.65486i 0.300978i −0.988612 0.150489i \(-0.951915\pi\)
0.988612 0.150489i \(-0.0480848\pi\)
\(354\) 0 0
\(355\) 1.33846 0.638006i 0.0710380 0.0338619i
\(356\) −8.15991 −0.432475
\(357\) 0 0
\(358\) 14.4514i 0.763782i
\(359\) 25.2693 1.33366 0.666832 0.745208i \(-0.267650\pi\)
0.666832 + 0.745208i \(0.267650\pi\)
\(360\) 0 0
\(361\) 26.1632 1.37701
\(362\) 6.15441i 0.323469i
\(363\) 0 0
\(364\) −3.23525 −0.169573
\(365\) −15.9087 33.3746i −0.832701 1.74690i
\(366\) 0 0
\(367\) 26.2788i 1.37174i −0.727722 0.685872i \(-0.759421\pi\)
0.727722 0.685872i \(-0.240579\pi\)
\(368\) 2.63167i 0.137185i
\(369\) 0 0
\(370\) −2.13425 + 1.01734i −0.110954 + 0.0528890i
\(371\) −32.7615 −1.70089
\(372\) 0 0
\(373\) 1.43033i 0.0740596i 0.999314 + 0.0370298i \(0.0117897\pi\)
−0.999314 + 0.0370298i \(0.988210\pi\)
\(374\) −5.78872 −0.299328
\(375\) 0 0
\(376\) 12.9237 0.666487
\(377\) 0.779856i 0.0401646i
\(378\) 0 0
\(379\) 35.2336 1.80983 0.904915 0.425591i \(-0.139934\pi\)
0.904915 + 0.425591i \(0.139934\pi\)
\(380\) 20.2436 9.64957i 1.03847 0.495012i
\(381\) 0 0
\(382\) 0.639001i 0.0326941i
\(383\) 32.0701i 1.63870i −0.573291 0.819352i \(-0.694334\pi\)
0.573291 0.819352i \(-0.305666\pi\)
\(384\) 0 0
\(385\) 11.4158 + 23.9489i 0.581802 + 1.22055i
\(386\) 7.44601 0.378992
\(387\) 0 0
\(388\) 1.42073i 0.0721265i
\(389\) 1.63922 0.0831117 0.0415558 0.999136i \(-0.486769\pi\)
0.0415558 + 0.999136i \(0.486769\pi\)
\(390\) 0 0
\(391\) −4.13389 −0.209060
\(392\) 1.81047i 0.0914425i
\(393\) 0 0
\(394\) −6.82385 −0.343781
\(395\) 19.2675 9.18428i 0.969452 0.462111i
\(396\) 0 0
\(397\) 2.04098i 0.102434i 0.998688 + 0.0512170i \(0.0163100\pi\)
−0.998688 + 0.0512170i \(0.983690\pi\)
\(398\) 4.00257i 0.200631i
\(399\) 0 0
\(400\) 3.81542 4.70689i 0.190771 0.235345i
\(401\) −17.4108 −0.869455 −0.434727 0.900562i \(-0.643155\pi\)
−0.434727 + 0.900562i \(0.643155\pi\)
\(402\) 0 0
\(403\) 6.87880i 0.342658i
\(404\) −12.4131 −0.617574
\(405\) 0 0
\(406\) −1.98063 −0.0982972
\(407\) 6.33400i 0.313965i
\(408\) 0 0
\(409\) 37.3010 1.84441 0.922207 0.386696i \(-0.126384\pi\)
0.922207 + 0.386696i \(0.126384\pi\)
\(410\) −5.28810 11.0938i −0.261161 0.547883i
\(411\) 0 0
\(412\) 18.5188i 0.912356i
\(413\) 12.3989i 0.610111i
\(414\) 0 0
\(415\) −0.0119305 0.0250287i −0.000585646 0.00122861i
\(416\) −4.55434 −0.223295
\(417\) 0 0
\(418\) 20.4368i 0.999596i
\(419\) 4.32941 0.211506 0.105753 0.994392i \(-0.466275\pi\)
0.105753 + 0.994392i \(0.466275\pi\)
\(420\) 0 0
\(421\) −34.2505 −1.66927 −0.834634 0.550806i \(-0.814321\pi\)
−0.834634 + 0.550806i \(0.814321\pi\)
\(422\) 0.431214i 0.0209911i
\(423\) 0 0
\(424\) −29.3252 −1.42416
\(425\) −7.39369 5.99334i −0.358647 0.290720i
\(426\) 0 0
\(427\) 14.5916i 0.706137i
\(428\) 26.2026i 1.26655i
\(429\) 0 0
\(430\) −11.7875 + 5.61877i −0.568443 + 0.270961i
\(431\) −34.4885 −1.66125 −0.830626 0.556831i \(-0.812017\pi\)
−0.830626 + 0.556831i \(0.812017\pi\)
\(432\) 0 0
\(433\) 3.02258i 0.145256i −0.997359 0.0726279i \(-0.976861\pi\)
0.997359 0.0726279i \(-0.0231386\pi\)
\(434\) 17.4704 0.838606
\(435\) 0 0
\(436\) −1.50687 −0.0721661
\(437\) 14.5945i 0.698148i
\(438\) 0 0
\(439\) −8.37392 −0.399665 −0.199833 0.979830i \(-0.564040\pi\)
−0.199833 + 0.979830i \(0.564040\pi\)
\(440\) 10.2184 + 21.4369i 0.487143 + 1.02197i
\(441\) 0 0
\(442\) 1.05769i 0.0503092i
\(443\) 29.8770i 1.41950i −0.704454 0.709749i \(-0.748808\pi\)
0.704454 0.709749i \(-0.251192\pi\)
\(444\) 0 0
\(445\) 11.0367 5.26089i 0.523189 0.249390i
\(446\) −11.7945 −0.558484
\(447\) 0 0
\(448\) 4.82952i 0.228174i
\(449\) 12.0780 0.569994 0.284997 0.958528i \(-0.408007\pi\)
0.284997 + 0.958528i \(0.408007\pi\)
\(450\) 0 0
\(451\) −32.9240 −1.55033
\(452\) 23.2489i 1.09354i
\(453\) 0 0
\(454\) 15.6793 0.735864
\(455\) 4.37583 2.08584i 0.205142 0.0977857i
\(456\) 0 0
\(457\) 3.03357i 0.141905i 0.997480 + 0.0709523i \(0.0226038\pi\)
−0.997480 + 0.0709523i \(0.977396\pi\)
\(458\) 17.5022i 0.817826i
\(459\) 0 0
\(460\) 3.11825 + 6.54171i 0.145389 + 0.305009i
\(461\) 4.44508 0.207028 0.103514 0.994628i \(-0.466991\pi\)
0.103514 + 0.994628i \(0.466991\pi\)
\(462\) 0 0
\(463\) 9.04875i 0.420531i 0.977644 + 0.210266i \(0.0674329\pi\)
−0.977644 + 0.210266i \(0.932567\pi\)
\(464\) 1.21181 0.0562570
\(465\) 0 0
\(466\) −3.96734 −0.183784
\(467\) 8.11327i 0.375437i −0.982223 0.187719i \(-0.939891\pi\)
0.982223 0.187719i \(-0.0601093\pi\)
\(468\) 0 0
\(469\) −23.6114 −1.09027
\(470\) −7.46951 + 3.56051i −0.344543 + 0.164234i
\(471\) 0 0
\(472\) 11.0984i 0.510847i
\(473\) 34.9827i 1.60851i
\(474\) 0 0
\(475\) −21.1592 + 26.1030i −0.970850 + 1.19769i
\(476\) 7.89688 0.361953
\(477\) 0 0
\(478\) 4.92078i 0.225071i
\(479\) 6.62947 0.302908 0.151454 0.988464i \(-0.451604\pi\)
0.151454 + 0.988464i \(0.451604\pi\)
\(480\) 0 0
\(481\) 1.15732 0.0527693
\(482\) 17.9541i 0.817787i
\(483\) 0 0
\(484\) 10.7703 0.489559
\(485\) −0.915976 1.92160i −0.0415923 0.0872556i
\(486\) 0 0
\(487\) 29.2047i 1.32339i −0.749773 0.661695i \(-0.769837\pi\)
0.749773 0.661695i \(-0.230163\pi\)
\(488\) 13.0611i 0.591249i
\(489\) 0 0
\(490\) 0.498790 + 1.04640i 0.0225330 + 0.0472715i
\(491\) 4.32464 0.195168 0.0975841 0.995227i \(-0.468889\pi\)
0.0975841 + 0.995227i \(0.468889\pi\)
\(492\) 0 0
\(493\) 1.90354i 0.0857312i
\(494\) 3.73412 0.168006
\(495\) 0 0
\(496\) −10.6889 −0.479947
\(497\) 1.84333i 0.0826846i
\(498\) 0 0
\(499\) −4.29688 −0.192355 −0.0961774 0.995364i \(-0.530662\pi\)
−0.0961774 + 0.995364i \(0.530662\pi\)
\(500\) −3.90705 + 16.2211i −0.174728 + 0.725429i
\(501\) 0 0
\(502\) 20.2126i 0.902131i
\(503\) 14.2512i 0.635429i −0.948186 0.317715i \(-0.897085\pi\)
0.948186 0.317715i \(-0.102915\pi\)
\(504\) 0 0
\(505\) 16.7893 8.00301i 0.747115 0.356129i
\(506\) −6.60414 −0.293590
\(507\) 0 0
\(508\) 25.3007i 1.12254i
\(509\) −19.4974 −0.864206 −0.432103 0.901824i \(-0.642228\pi\)
−0.432103 + 0.901824i \(0.642228\pi\)
\(510\) 0 0
\(511\) −45.9635 −2.03331
\(512\) 13.1076i 0.579280i
\(513\) 0 0
\(514\) −6.20654 −0.273759
\(515\) −11.9395 25.0476i −0.526117 1.10373i
\(516\) 0 0
\(517\) 22.1679i 0.974943i
\(518\) 2.93930i 0.129145i
\(519\) 0 0
\(520\) 3.91686 1.86706i 0.171766 0.0818760i
\(521\) −24.5229 −1.07437 −0.537185 0.843465i \(-0.680512\pi\)
−0.537185 + 0.843465i \(0.680512\pi\)
\(522\) 0 0
\(523\) 10.8566i 0.474725i 0.971421 + 0.237362i \(0.0762829\pi\)
−0.971421 + 0.237362i \(0.923717\pi\)
\(524\) −17.8073 −0.777914
\(525\) 0 0
\(526\) −9.41406 −0.410472
\(527\) 16.7904i 0.731401i
\(528\) 0 0
\(529\) 18.2838 0.794948
\(530\) 16.9491 8.07919i 0.736224 0.350938i
\(531\) 0 0
\(532\) 27.8795i 1.20873i
\(533\) 6.01572i 0.260570i
\(534\) 0 0
\(535\) 16.8934 + 35.4403i 0.730367 + 1.53222i
\(536\) −21.1348 −0.912886
\(537\) 0 0
\(538\) 7.37052i 0.317766i
\(539\) 3.10549 0.133763
\(540\) 0 0
\(541\) −22.7032 −0.976085 −0.488043 0.872820i \(-0.662289\pi\)
−0.488043 + 0.872820i \(0.662289\pi\)
\(542\) 6.95410i 0.298704i
\(543\) 0 0
\(544\) 11.1166 0.476622
\(545\) 2.03812 0.971516i 0.0873035 0.0416152i
\(546\) 0 0
\(547\) 32.8229i 1.40340i −0.712471 0.701702i \(-0.752424\pi\)
0.712471 0.701702i \(-0.247576\pi\)
\(548\) 0.357843i 0.0152863i
\(549\) 0 0
\(550\) −11.8119 9.57474i −0.503660 0.408268i
\(551\) −6.72036 −0.286297
\(552\) 0 0
\(553\) 26.5352i 1.12839i
\(554\) 1.33595 0.0567590
\(555\) 0 0
\(556\) 25.4080 1.07754
\(557\) 26.3234i 1.11536i −0.830057 0.557679i \(-0.811692\pi\)
0.830057 0.557679i \(-0.188308\pi\)
\(558\) 0 0
\(559\) 6.39189 0.270348
\(560\) −3.24117 6.79958i −0.136965 0.287335i
\(561\) 0 0
\(562\) 15.1712i 0.639958i
\(563\) 28.4750i 1.20008i 0.799971 + 0.600039i \(0.204848\pi\)
−0.799971 + 0.600039i \(0.795152\pi\)
\(564\) 0 0
\(565\) −14.9891 31.4453i −0.630597 1.32291i
\(566\) 11.3093 0.475367
\(567\) 0 0
\(568\) 1.64999i 0.0692318i
\(569\) −14.7555 −0.618582 −0.309291 0.950967i \(-0.600092\pi\)
−0.309291 + 0.950967i \(0.600092\pi\)
\(570\) 0 0
\(571\) −0.204397 −0.00855376 −0.00427688 0.999991i \(-0.501361\pi\)
−0.00427688 + 0.999991i \(0.501361\pi\)
\(572\) 4.96734i 0.207695i
\(573\) 0 0
\(574\) −15.2784 −0.637708
\(575\) −8.43519 6.83758i −0.351772 0.285147i
\(576\) 0 0
\(577\) 37.3300i 1.55407i −0.629457 0.777035i \(-0.716723\pi\)
0.629457 0.777035i \(-0.283277\pi\)
\(578\) 9.53071i 0.396425i
\(579\) 0 0
\(580\) −3.01228 + 1.43587i −0.125078 + 0.0596213i
\(581\) −0.0344697 −0.00143004
\(582\) 0 0
\(583\) 50.3014i 2.08327i
\(584\) −41.1425 −1.70249
\(585\) 0 0
\(586\) −23.6098 −0.975314
\(587\) 10.8497i 0.447813i 0.974611 + 0.223907i \(0.0718811\pi\)
−0.974611 + 0.223907i \(0.928119\pi\)
\(588\) 0 0
\(589\) 59.2776 2.44249
\(590\) 3.05765 + 6.41458i 0.125882 + 0.264084i
\(591\) 0 0
\(592\) 1.79835i 0.0739119i
\(593\) 14.0575i 0.577272i 0.957439 + 0.288636i \(0.0932018\pi\)
−0.957439 + 0.288636i \(0.906798\pi\)
\(594\) 0 0
\(595\) −10.6809 + 5.09131i −0.437876 + 0.208723i
\(596\) −6.16409 −0.252491
\(597\) 0 0
\(598\) 1.20668i 0.0493448i
\(599\) −5.52446 −0.225724 −0.112862 0.993611i \(-0.536002\pi\)
−0.112862 + 0.993611i \(0.536002\pi\)
\(600\) 0 0
\(601\) −6.85394 −0.279578 −0.139789 0.990181i \(-0.544642\pi\)
−0.139789 + 0.990181i \(0.544642\pi\)
\(602\) 16.2337i 0.661638i
\(603\) 0 0
\(604\) −4.79910 −0.195273
\(605\) −14.5674 + 6.94387i −0.592248 + 0.282308i
\(606\) 0 0
\(607\) 30.4979i 1.23787i 0.785442 + 0.618935i \(0.212436\pi\)
−0.785442 + 0.618935i \(0.787564\pi\)
\(608\) 39.2467i 1.59166i
\(609\) 0 0
\(610\) 3.59838 + 7.54895i 0.145694 + 0.305648i
\(611\) 4.05042 0.163863
\(612\) 0 0
\(613\) 29.9211i 1.20850i −0.796794 0.604250i \(-0.793473\pi\)
0.796794 0.604250i \(-0.206527\pi\)
\(614\) −12.2980 −0.496308
\(615\) 0 0
\(616\) 29.5230 1.18952
\(617\) 1.04305i 0.0419917i 0.999780 + 0.0209959i \(0.00668368\pi\)
−0.999780 + 0.0209959i \(0.993316\pi\)
\(618\) 0 0
\(619\) −22.1661 −0.890930 −0.445465 0.895299i \(-0.646962\pi\)
−0.445465 + 0.895299i \(0.646962\pi\)
\(620\) 26.5701 12.6653i 1.06708 0.508649i
\(621\) 0 0
\(622\) 23.1643i 0.928805i
\(623\) 15.1998i 0.608966i
\(624\) 0 0
\(625\) −5.17364 24.4588i −0.206946 0.978352i
\(626\) 4.46238 0.178353
\(627\) 0 0
\(628\) 10.2112i 0.407472i
\(629\) −2.82489 −0.112636
\(630\) 0 0
\(631\) 20.1089 0.800524 0.400262 0.916401i \(-0.368919\pi\)
0.400262 + 0.916401i \(0.368919\pi\)
\(632\) 23.7520i 0.944804i
\(633\) 0 0
\(634\) −13.4322 −0.533460
\(635\) −16.3119 34.2204i −0.647319 1.35800i
\(636\) 0 0
\(637\) 0.567422i 0.0224821i
\(638\) 3.04103i 0.120395i
\(639\) 0 0
\(640\) −10.0469 21.0772i −0.397139 0.833149i
\(641\) −5.93422 −0.234388 −0.117194 0.993109i \(-0.537390\pi\)
−0.117194 + 0.993109i \(0.537390\pi\)
\(642\) 0 0
\(643\) 0.951317i 0.0375163i −0.999824 0.0187581i \(-0.994029\pi\)
0.999824 0.0187581i \(-0.00597125\pi\)
\(644\) 9.00926 0.355015
\(645\) 0 0
\(646\) −9.11458 −0.358608
\(647\) 35.1384i 1.38143i 0.723126 + 0.690716i \(0.242705\pi\)
−0.723126 + 0.690716i \(0.757295\pi\)
\(648\) 0 0
\(649\) 19.0371 0.747271
\(650\) −1.74945 + 2.15822i −0.0686192 + 0.0846522i
\(651\) 0 0
\(652\) 20.9678i 0.821163i
\(653\) 45.9930i 1.79984i −0.436050 0.899922i \(-0.643623\pi\)
0.436050 0.899922i \(-0.356377\pi\)
\(654\) 0 0
\(655\) 24.0852 11.4808i 0.941088 0.448591i
\(656\) 9.34779 0.364970
\(657\) 0 0
\(658\) 10.2870i 0.401030i
\(659\) −19.3162 −0.752451 −0.376226 0.926528i \(-0.622778\pi\)
−0.376226 + 0.926528i \(0.622778\pi\)
\(660\) 0 0
\(661\) 44.3224 1.72394 0.861970 0.506959i \(-0.169230\pi\)
0.861970 + 0.506959i \(0.169230\pi\)
\(662\) 0.424821i 0.0165111i
\(663\) 0 0
\(664\) −0.0308542 −0.00119738
\(665\) 17.9746 + 37.7085i 0.697025 + 1.46227i
\(666\) 0 0
\(667\) 2.17168i 0.0840878i
\(668\) 26.6720i 1.03197i
\(669\) 0 0
\(670\) 12.2153 5.82272i 0.471920 0.224951i
\(671\) 22.4037 0.864883
\(672\) 0 0
\(673\) 12.7421i 0.491170i −0.969375 0.245585i \(-0.921020\pi\)
0.969375 0.245585i \(-0.0789801\pi\)
\(674\) −23.2569 −0.895821
\(675\) 0 0
\(676\) 18.4930 0.711267
\(677\) 9.41654i 0.361907i 0.983492 + 0.180954i \(0.0579184\pi\)
−0.983492 + 0.180954i \(0.942082\pi\)
\(678\) 0 0
\(679\) −2.64644 −0.101561
\(680\) −9.56063 + 4.55729i −0.366634 + 0.174764i
\(681\) 0 0
\(682\) 26.8237i 1.02713i
\(683\) 6.92316i 0.264907i 0.991189 + 0.132454i \(0.0422856\pi\)
−0.991189 + 0.132454i \(0.957714\pi\)
\(684\) 0 0
\(685\) 0.230710 + 0.484001i 0.00881497 + 0.0184927i
\(686\) −12.4233 −0.474325
\(687\) 0 0
\(688\) 9.93231i 0.378666i
\(689\) −9.19085 −0.350144
\(690\) 0 0
\(691\) −48.7272 −1.85367 −0.926835 0.375469i \(-0.877482\pi\)
−0.926835 + 0.375469i \(0.877482\pi\)
\(692\) 4.21616i 0.160274i
\(693\) 0 0
\(694\) −9.40384 −0.356965
\(695\) −34.3655 + 16.3811i −1.30356 + 0.621371i
\(696\) 0 0
\(697\) 14.6837i 0.556186i
\(698\) 11.1443i 0.421818i
\(699\) 0 0
\(700\) 16.1136 + 13.0617i 0.609036 + 0.493686i
\(701\) −2.88580 −0.108995 −0.0544975 0.998514i \(-0.517356\pi\)
−0.0544975 + 0.998514i \(0.517356\pi\)
\(702\) 0 0
\(703\) 9.97314i 0.376144i
\(704\) 7.41516 0.279469
\(705\) 0 0
\(706\) 4.02906 0.151636
\(707\) 23.1223i 0.869604i
\(708\) 0 0
\(709\) 1.73056 0.0649924 0.0324962 0.999472i \(-0.489654\pi\)
0.0324962 + 0.999472i \(0.489654\pi\)
\(710\) 0.454576 + 0.953645i 0.0170599 + 0.0357896i
\(711\) 0 0
\(712\) 13.6055i 0.509887i
\(713\) 19.1555i 0.717381i
\(714\) 0 0
\(715\) 3.20256 + 6.71857i 0.119769 + 0.251260i
\(716\) 30.2692 1.13121
\(717\) 0 0
\(718\) 18.0043i 0.671913i
\(719\) −12.9089 −0.481420 −0.240710 0.970597i \(-0.577380\pi\)
−0.240710 + 0.970597i \(0.577380\pi\)
\(720\) 0 0
\(721\) −34.4956 −1.28468
\(722\) 18.6412i 0.693752i
\(723\) 0 0
\(724\) −12.8907 −0.479078
\(725\) 3.14852 3.88418i 0.116933 0.144255i
\(726\) 0 0
\(727\) 38.3405i 1.42197i −0.703207 0.710985i \(-0.748249\pi\)
0.703207 0.710985i \(-0.251751\pi\)
\(728\) 5.39431i 0.199927i
\(729\) 0 0
\(730\) 23.7792 11.3349i 0.880108 0.419523i
\(731\) −15.6019 −0.577057
\(732\) 0 0
\(733\) 34.8966i 1.28894i 0.764631 + 0.644468i \(0.222921\pi\)
−0.764631 + 0.644468i \(0.777079\pi\)
\(734\) 18.7235 0.691098
\(735\) 0 0
\(736\) 12.6826 0.467485
\(737\) 36.2525i 1.33538i
\(738\) 0 0
\(739\) −14.2969 −0.525921 −0.262960 0.964807i \(-0.584699\pi\)
−0.262960 + 0.964807i \(0.584699\pi\)
\(740\) 2.13086 + 4.47028i 0.0783320 + 0.164331i
\(741\) 0 0
\(742\) 23.3424i 0.856927i
\(743\) 44.1357i 1.61918i −0.586995 0.809591i \(-0.699689\pi\)
0.586995 0.809591i \(-0.300311\pi\)
\(744\) 0 0
\(745\) 8.33725 3.97414i 0.305453 0.145601i
\(746\) −1.01910 −0.0373120
\(747\) 0 0
\(748\) 12.1247i 0.443324i
\(749\) 48.8085 1.78343
\(750\) 0 0
\(751\) 9.56375 0.348986 0.174493 0.984658i \(-0.444171\pi\)
0.174493 + 0.984658i \(0.444171\pi\)
\(752\) 6.29393i 0.229516i
\(753\) 0 0
\(754\) −0.555643 −0.0202353
\(755\) 6.49103 3.09410i 0.236233 0.112606i
\(756\) 0 0
\(757\) 30.1910i 1.09731i 0.836048 + 0.548656i \(0.184860\pi\)
−0.836048 + 0.548656i \(0.815140\pi\)
\(758\) 25.1038i 0.911811i
\(759\) 0 0
\(760\) 16.0893 + 33.7533i 0.583619 + 1.22436i
\(761\) −8.27038 −0.299801 −0.149900 0.988701i \(-0.547895\pi\)
−0.149900 + 0.988701i \(0.547895\pi\)
\(762\) 0 0
\(763\) 2.80690i 0.101617i
\(764\) −1.33841 −0.0484221
\(765\) 0 0
\(766\) 22.8498 0.825595
\(767\) 3.47837i 0.125597i
\(768\) 0 0
\(769\) 22.4592 0.809901 0.404950 0.914339i \(-0.367289\pi\)
0.404950 + 0.914339i \(0.367289\pi\)
\(770\) −17.0635 + 8.13368i −0.614924 + 0.293118i
\(771\) 0 0
\(772\) 15.5960i 0.561311i
\(773\) 26.9520i 0.969398i −0.874681 0.484699i \(-0.838929\pi\)
0.874681 0.484699i \(-0.161071\pi\)
\(774\) 0 0
\(775\) −27.7719 + 34.2608i −0.997595 + 1.23068i
\(776\) −2.36886 −0.0850371
\(777\) 0 0
\(778\) 1.16794i 0.0418725i
\(779\) −51.8401 −1.85737
\(780\) 0 0
\(781\) 2.83021 0.101273
\(782\) 2.94537i 0.105326i
\(783\) 0 0
\(784\) −0.881713 −0.0314897
\(785\) 6.58341 + 13.8112i 0.234972 + 0.492942i
\(786\) 0 0
\(787\) 1.16423i 0.0415004i 0.999785 + 0.0207502i \(0.00660546\pi\)
−0.999785 + 0.0207502i \(0.993395\pi\)
\(788\) 14.2928i 0.509161i
\(789\) 0 0
\(790\) 6.54375 + 13.7280i 0.232816 + 0.488420i