Properties

Label 1305.2.c.j.784.3
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.3899266318336.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} + 2x^{8} + 6x^{7} + 19x^{6} - 12x^{5} + 4x^{4} + 2x^{3} + 9x^{2} - 6x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.3
Root \(-0.604479 - 0.604479i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.j.784.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.71457i q^{2} -0.939748 q^{4} +(-1.51903 + 1.64090i) q^{5} +0.654317i q^{7} -1.81788i q^{8} +(2.81344 + 2.60448i) q^{10} -0.163559 q^{11} +2.65432i q^{13} +1.12187 q^{14} -4.99637 q^{16} -3.86328i q^{17} +3.47954 q^{19} +(1.42750 - 1.54203i) q^{20} +0.280433i q^{22} -7.69972i q^{23} +(-0.385107 - 4.98515i) q^{25} +4.55101 q^{26} -0.614893i q^{28} +1.00000 q^{29} +5.05274 q^{31} +4.93087i q^{32} -6.62385 q^{34} +(-1.07367 - 0.993926i) q^{35} -10.5904i q^{37} -5.96591i q^{38} +(2.98295 + 2.76140i) q^{40} +6.17417 q^{41} -10.5547i q^{43} +0.153704 q^{44} -13.2017 q^{46} +10.3036i q^{47} +6.57187 q^{49} +(-8.54738 + 0.660292i) q^{50} -2.49439i q^{52} -4.04766i q^{53} +(0.248450 - 0.268383i) q^{55} +1.18947 q^{56} -1.71457i q^{58} -0.328734 q^{59} -5.72054 q^{61} -8.66328i q^{62} -1.53842 q^{64} +(-4.35547 - 4.03198i) q^{65} -3.51985i q^{67} +3.63050i q^{68} +(-1.70416 + 1.84088i) q^{70} -11.7457 q^{71} -1.12143i q^{73} -18.1580 q^{74} -3.26989 q^{76} -0.107019i q^{77} +12.4074 q^{79} +(7.58963 - 8.19854i) q^{80} -10.5860i q^{82} -7.89306i q^{83} +(6.33925 + 5.86842i) q^{85} -18.0968 q^{86} +0.297329i q^{88} +5.04702 q^{89} -1.73677 q^{91} +7.23579i q^{92} +17.6663 q^{94} +(-5.28551 + 5.70957i) q^{95} -8.49076i q^{97} -11.2679i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{4} + 4 q^{10} - 24 q^{11} + 12 q^{14} + 2 q^{16} + 4 q^{19} - 8 q^{20} + 2 q^{25} + 10 q^{29} + 4 q^{31} - 8 q^{34} - 2 q^{35} - 14 q^{40} + 28 q^{41} + 40 q^{44} - 12 q^{46} + 14 q^{49} + 12 q^{50}+ \cdots + 36 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71457i 1.21238i −0.795319 0.606192i \(-0.792696\pi\)
0.795319 0.606192i \(-0.207304\pi\)
\(3\) 0 0
\(4\) −0.939748 −0.469874
\(5\) −1.51903 + 1.64090i −0.679330 + 0.733833i
\(6\) 0 0
\(7\) 0.654317i 0.247309i 0.992325 + 0.123654i \(0.0394614\pi\)
−0.992325 + 0.123654i \(0.960539\pi\)
\(8\) 1.81788i 0.642716i
\(9\) 0 0
\(10\) 2.81344 + 2.60448i 0.889687 + 0.823609i
\(11\) −0.163559 −0.0493148 −0.0246574 0.999696i \(-0.507849\pi\)
−0.0246574 + 0.999696i \(0.507849\pi\)
\(12\) 0 0
\(13\) 2.65432i 0.736175i 0.929791 + 0.368088i \(0.119987\pi\)
−0.929791 + 0.368088i \(0.880013\pi\)
\(14\) 1.12187 0.299833
\(15\) 0 0
\(16\) −4.99637 −1.24909
\(17\) 3.86328i 0.936982i −0.883468 0.468491i \(-0.844798\pi\)
0.883468 0.468491i \(-0.155202\pi\)
\(18\) 0 0
\(19\) 3.47954 0.798260 0.399130 0.916894i \(-0.369312\pi\)
0.399130 + 0.916894i \(0.369312\pi\)
\(20\) 1.42750 1.54203i 0.319199 0.344809i
\(21\) 0 0
\(22\) 0.280433i 0.0597884i
\(23\) 7.69972i 1.60550i −0.596314 0.802751i \(-0.703369\pi\)
0.596314 0.802751i \(-0.296631\pi\)
\(24\) 0 0
\(25\) −0.385107 4.98515i −0.0770214 0.997029i
\(26\) 4.55101 0.892527
\(27\) 0 0
\(28\) 0.614893i 0.116204i
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 5.05274 0.907499 0.453750 0.891129i \(-0.350086\pi\)
0.453750 + 0.891129i \(0.350086\pi\)
\(32\) 4.93087i 0.871663i
\(33\) 0 0
\(34\) −6.62385 −1.13598
\(35\) −1.07367 0.993926i −0.181483 0.168004i
\(36\) 0 0
\(37\) 10.5904i 1.74106i −0.492118 0.870528i \(-0.663777\pi\)
0.492118 0.870528i \(-0.336223\pi\)
\(38\) 5.96591i 0.967798i
\(39\) 0 0
\(40\) 2.98295 + 2.76140i 0.471646 + 0.436616i
\(41\) 6.17417 0.964244 0.482122 0.876104i \(-0.339866\pi\)
0.482122 + 0.876104i \(0.339866\pi\)
\(42\) 0 0
\(43\) 10.5547i 1.60958i −0.593559 0.804790i \(-0.702278\pi\)
0.593559 0.804790i \(-0.297722\pi\)
\(44\) 0.153704 0.0231717
\(45\) 0 0
\(46\) −13.2017 −1.94648
\(47\) 10.3036i 1.50294i 0.659767 + 0.751470i \(0.270655\pi\)
−0.659767 + 0.751470i \(0.729345\pi\)
\(48\) 0 0
\(49\) 6.57187 0.938838
\(50\) −8.54738 + 0.660292i −1.20878 + 0.0933795i
\(51\) 0 0
\(52\) 2.49439i 0.345909i
\(53\) 4.04766i 0.555989i −0.960583 0.277995i \(-0.910330\pi\)
0.960583 0.277995i \(-0.0896697\pi\)
\(54\) 0 0
\(55\) 0.248450 0.268383i 0.0335010 0.0361888i
\(56\) 1.18947 0.158949
\(57\) 0 0
\(58\) 1.71457i 0.225134i
\(59\) −0.328734 −0.0427975 −0.0213988 0.999771i \(-0.506812\pi\)
−0.0213988 + 0.999771i \(0.506812\pi\)
\(60\) 0 0
\(61\) −5.72054 −0.732441 −0.366220 0.930528i \(-0.619348\pi\)
−0.366220 + 0.930528i \(0.619348\pi\)
\(62\) 8.66328i 1.10024i
\(63\) 0 0
\(64\) −1.53842 −0.192303
\(65\) −4.35547 4.03198i −0.540230 0.500106i
\(66\) 0 0
\(67\) 3.51985i 0.430019i −0.976612 0.215009i \(-0.931022\pi\)
0.976612 0.215009i \(-0.0689782\pi\)
\(68\) 3.63050i 0.440263i
\(69\) 0 0
\(70\) −1.70416 + 1.84088i −0.203686 + 0.220027i
\(71\) −11.7457 −1.39396 −0.696981 0.717090i \(-0.745474\pi\)
−0.696981 + 0.717090i \(0.745474\pi\)
\(72\) 0 0
\(73\) 1.12143i 0.131253i −0.997844 0.0656267i \(-0.979095\pi\)
0.997844 0.0656267i \(-0.0209047\pi\)
\(74\) −18.1580 −2.11083
\(75\) 0 0
\(76\) −3.26989 −0.375082
\(77\) 0.107019i 0.0121960i
\(78\) 0 0
\(79\) 12.4074 1.39594 0.697970 0.716127i \(-0.254087\pi\)
0.697970 + 0.716127i \(0.254087\pi\)
\(80\) 7.58963 8.19854i 0.848546 0.916625i
\(81\) 0 0
\(82\) 10.5860i 1.16903i
\(83\) 7.89306i 0.866376i −0.901304 0.433188i \(-0.857389\pi\)
0.901304 0.433188i \(-0.142611\pi\)
\(84\) 0 0
\(85\) 6.33925 + 5.86842i 0.687588 + 0.636520i
\(86\) −18.0968 −1.95143
\(87\) 0 0
\(88\) 0.297329i 0.0316954i
\(89\) 5.04702 0.534983 0.267491 0.963560i \(-0.413805\pi\)
0.267491 + 0.963560i \(0.413805\pi\)
\(90\) 0 0
\(91\) −1.73677 −0.182062
\(92\) 7.23579i 0.754383i
\(93\) 0 0
\(94\) 17.6663 1.82214
\(95\) −5.28551 + 5.70957i −0.542282 + 0.585790i
\(96\) 0 0
\(97\) 8.49076i 0.862106i −0.902327 0.431053i \(-0.858142\pi\)
0.902327 0.431053i \(-0.141858\pi\)
\(98\) 11.2679i 1.13823i
\(99\) 0 0
\(100\) 0.361903 + 4.68478i 0.0361903 + 0.468478i
\(101\) −1.81126 −0.180227 −0.0901136 0.995931i \(-0.528723\pi\)
−0.0901136 + 0.995931i \(0.528723\pi\)
\(102\) 0 0
\(103\) 5.80807i 0.572286i 0.958187 + 0.286143i \(0.0923733\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(104\) 4.82522 0.473152
\(105\) 0 0
\(106\) −6.94000 −0.674072
\(107\) 3.48568i 0.336973i 0.985704 + 0.168487i \(0.0538880\pi\)
−0.985704 + 0.168487i \(0.946112\pi\)
\(108\) 0 0
\(109\) −8.11029 −0.776825 −0.388412 0.921486i \(-0.626976\pi\)
−0.388412 + 0.921486i \(0.626976\pi\)
\(110\) −0.460162 0.425985i −0.0438747 0.0406161i
\(111\) 0 0
\(112\) 3.26921i 0.308911i
\(113\) 2.06715i 0.194461i −0.995262 0.0972307i \(-0.969002\pi\)
0.995262 0.0972307i \(-0.0309985\pi\)
\(114\) 0 0
\(115\) 12.6345 + 11.6961i 1.17817 + 1.09067i
\(116\) −0.939748 −0.0872534
\(117\) 0 0
\(118\) 0.563637i 0.0518870i
\(119\) 2.52781 0.231724
\(120\) 0 0
\(121\) −10.9732 −0.997568
\(122\) 9.80827i 0.887999i
\(123\) 0 0
\(124\) −4.74830 −0.426410
\(125\) 8.76512 + 6.94066i 0.783976 + 0.620791i
\(126\) 0 0
\(127\) 12.9962i 1.15323i 0.817017 + 0.576613i \(0.195626\pi\)
−0.817017 + 0.576613i \(0.804374\pi\)
\(128\) 12.4995i 1.10481i
\(129\) 0 0
\(130\) −6.91311 + 7.46775i −0.606320 + 0.654965i
\(131\) −8.69003 −0.759251 −0.379626 0.925140i \(-0.623947\pi\)
−0.379626 + 0.925140i \(0.623947\pi\)
\(132\) 0 0
\(133\) 2.27672i 0.197417i
\(134\) −6.03504 −0.521348
\(135\) 0 0
\(136\) −7.02295 −0.602213
\(137\) 14.4550i 1.23498i 0.786580 + 0.617489i \(0.211850\pi\)
−0.786580 + 0.617489i \(0.788150\pi\)
\(138\) 0 0
\(139\) 1.72208 0.146065 0.0730324 0.997330i \(-0.476732\pi\)
0.0730324 + 0.997330i \(0.476732\pi\)
\(140\) 1.00898 + 0.934040i 0.0852742 + 0.0789408i
\(141\) 0 0
\(142\) 20.1389i 1.69002i
\(143\) 0.434137i 0.0363043i
\(144\) 0 0
\(145\) −1.51903 + 1.64090i −0.126148 + 0.136269i
\(146\) −1.92277 −0.159129
\(147\) 0 0
\(148\) 9.95234i 0.818077i
\(149\) 16.1461 1.32274 0.661369 0.750060i \(-0.269976\pi\)
0.661369 + 0.750060i \(0.269976\pi\)
\(150\) 0 0
\(151\) −0.733083 −0.0596574 −0.0298287 0.999555i \(-0.509496\pi\)
−0.0298287 + 0.999555i \(0.509496\pi\)
\(152\) 6.32536i 0.513055i
\(153\) 0 0
\(154\) −0.183492 −0.0147862
\(155\) −7.67526 + 8.29105i −0.616492 + 0.665953i
\(156\) 0 0
\(157\) 10.8270i 0.864085i −0.901853 0.432043i \(-0.857793\pi\)
0.901853 0.432043i \(-0.142207\pi\)
\(158\) 21.2733i 1.69241i
\(159\) 0 0
\(160\) −8.09107 7.49013i −0.639655 0.592147i
\(161\) 5.03806 0.397054
\(162\) 0 0
\(163\) 13.5528i 1.06154i −0.847517 0.530768i \(-0.821904\pi\)
0.847517 0.530768i \(-0.178096\pi\)
\(164\) −5.80216 −0.453073
\(165\) 0 0
\(166\) −13.5332 −1.05038
\(167\) 18.4671i 1.42902i 0.699623 + 0.714512i \(0.253351\pi\)
−0.699623 + 0.714512i \(0.746649\pi\)
\(168\) 0 0
\(169\) 5.95460 0.458046
\(170\) 10.0618 10.8691i 0.771706 0.833621i
\(171\) 0 0
\(172\) 9.91878i 0.756300i
\(173\) 8.92785i 0.678772i 0.940647 + 0.339386i \(0.110219\pi\)
−0.940647 + 0.339386i \(0.889781\pi\)
\(174\) 0 0
\(175\) 3.26187 0.251982i 0.246574 0.0190481i
\(176\) 0.817200 0.0615987
\(177\) 0 0
\(178\) 8.65346i 0.648604i
\(179\) −1.86896 −0.139693 −0.0698465 0.997558i \(-0.522251\pi\)
−0.0698465 + 0.997558i \(0.522251\pi\)
\(180\) 0 0
\(181\) 16.8852 1.25507 0.627533 0.778590i \(-0.284065\pi\)
0.627533 + 0.778590i \(0.284065\pi\)
\(182\) 2.97780i 0.220730i
\(183\) 0 0
\(184\) −13.9971 −1.03188
\(185\) 17.3778 + 16.0872i 1.27764 + 1.18275i
\(186\) 0 0
\(187\) 0.631872i 0.0462071i
\(188\) 9.68282i 0.706192i
\(189\) 0 0
\(190\) 9.78946 + 9.06238i 0.710202 + 0.657454i
\(191\) −7.58677 −0.548960 −0.274480 0.961593i \(-0.588506\pi\)
−0.274480 + 0.961593i \(0.588506\pi\)
\(192\) 0 0
\(193\) 27.2794i 1.96362i 0.189876 + 0.981808i \(0.439191\pi\)
−0.189876 + 0.981808i \(0.560809\pi\)
\(194\) −14.5580 −1.04520
\(195\) 0 0
\(196\) −6.17590 −0.441136
\(197\) 9.70626i 0.691542i −0.938319 0.345771i \(-0.887617\pi\)
0.938319 0.345771i \(-0.112383\pi\)
\(198\) 0 0
\(199\) −22.9520 −1.62703 −0.813513 0.581547i \(-0.802448\pi\)
−0.813513 + 0.581547i \(0.802448\pi\)
\(200\) −9.06238 + 0.700077i −0.640807 + 0.0495029i
\(201\) 0 0
\(202\) 3.10553i 0.218504i
\(203\) 0.654317i 0.0459241i
\(204\) 0 0
\(205\) −9.37874 + 10.1312i −0.655040 + 0.707594i
\(206\) 9.95834 0.693831
\(207\) 0 0
\(208\) 13.2619i 0.919551i
\(209\) −0.569108 −0.0393660
\(210\) 0 0
\(211\) 18.0020 1.23931 0.619655 0.784874i \(-0.287273\pi\)
0.619655 + 0.784874i \(0.287273\pi\)
\(212\) 3.80378i 0.261245i
\(213\) 0 0
\(214\) 5.97644 0.408541
\(215\) 17.3192 + 16.0329i 1.18116 + 1.09344i
\(216\) 0 0
\(217\) 3.30610i 0.224432i
\(218\) 13.9057i 0.941810i
\(219\) 0 0
\(220\) −0.233481 + 0.252213i −0.0157413 + 0.0170042i
\(221\) 10.2544 0.689783
\(222\) 0 0
\(223\) 19.1383i 1.28160i −0.767708 0.640799i \(-0.778603\pi\)
0.767708 0.640799i \(-0.221397\pi\)
\(224\) −3.22635 −0.215570
\(225\) 0 0
\(226\) −3.54428 −0.235762
\(227\) 13.3621i 0.886872i −0.896306 0.443436i \(-0.853759\pi\)
0.896306 0.443436i \(-0.146241\pi\)
\(228\) 0 0
\(229\) −7.45145 −0.492405 −0.246203 0.969218i \(-0.579183\pi\)
−0.246203 + 0.969218i \(0.579183\pi\)
\(230\) 20.0538 21.6627i 1.32231 1.42839i
\(231\) 0 0
\(232\) 1.81788i 0.119349i
\(233\) 21.5080i 1.40904i −0.709687 0.704518i \(-0.751163\pi\)
0.709687 0.704518i \(-0.248837\pi\)
\(234\) 0 0
\(235\) −16.9072 15.6515i −1.10291 1.02099i
\(236\) 0.308927 0.0201094
\(237\) 0 0
\(238\) 4.33410i 0.280938i
\(239\) 24.1169 1.55999 0.779997 0.625784i \(-0.215221\pi\)
0.779997 + 0.625784i \(0.215221\pi\)
\(240\) 0 0
\(241\) −7.22805 −0.465600 −0.232800 0.972525i \(-0.574789\pi\)
−0.232800 + 0.972525i \(0.574789\pi\)
\(242\) 18.8144i 1.20944i
\(243\) 0 0
\(244\) 5.37587 0.344155
\(245\) −9.98285 + 10.7838i −0.637781 + 0.688951i
\(246\) 0 0
\(247\) 9.23579i 0.587659i
\(248\) 9.18526i 0.583264i
\(249\) 0 0
\(250\) 11.9002 15.0284i 0.752637 0.950480i
\(251\) 8.74458 0.551953 0.275977 0.961164i \(-0.410999\pi\)
0.275977 + 0.961164i \(0.410999\pi\)
\(252\) 0 0
\(253\) 1.25936i 0.0791750i
\(254\) 22.2829 1.39815
\(255\) 0 0
\(256\) 18.3544 1.14715
\(257\) 10.1877i 0.635494i −0.948176 0.317747i \(-0.897074\pi\)
0.948176 0.317747i \(-0.102926\pi\)
\(258\) 0 0
\(259\) 6.92950 0.430578
\(260\) 4.09304 + 3.78905i 0.253840 + 0.234987i
\(261\) 0 0
\(262\) 14.8997i 0.920504i
\(263\) 11.6794i 0.720184i −0.932917 0.360092i \(-0.882745\pi\)
0.932917 0.360092i \(-0.117255\pi\)
\(264\) 0 0
\(265\) 6.64181 + 6.14851i 0.408003 + 0.377700i
\(266\) 3.90359 0.239345
\(267\) 0 0
\(268\) 3.30778i 0.202055i
\(269\) 23.0385 1.40468 0.702342 0.711839i \(-0.252138\pi\)
0.702342 + 0.711839i \(0.252138\pi\)
\(270\) 0 0
\(271\) −4.45505 −0.270625 −0.135312 0.990803i \(-0.543204\pi\)
−0.135312 + 0.990803i \(0.543204\pi\)
\(272\) 19.3024i 1.17038i
\(273\) 0 0
\(274\) 24.7842 1.49727
\(275\) 0.0629876 + 0.815364i 0.00379829 + 0.0491683i
\(276\) 0 0
\(277\) 15.7000i 0.943321i −0.881780 0.471661i \(-0.843655\pi\)
0.881780 0.471661i \(-0.156345\pi\)
\(278\) 2.95262i 0.177087i
\(279\) 0 0
\(280\) −1.80683 + 1.95180i −0.107979 + 0.116642i
\(281\) −13.4721 −0.803677 −0.401838 0.915711i \(-0.631629\pi\)
−0.401838 + 0.915711i \(0.631629\pi\)
\(282\) 0 0
\(283\) 5.86481i 0.348627i 0.984690 + 0.174313i \(0.0557706\pi\)
−0.984690 + 0.174313i \(0.944229\pi\)
\(284\) 11.0380 0.654986
\(285\) 0 0
\(286\) −0.744357 −0.0440148
\(287\) 4.03987i 0.238466i
\(288\) 0 0
\(289\) 2.07510 0.122065
\(290\) 2.81344 + 2.60448i 0.165211 + 0.152940i
\(291\) 0 0
\(292\) 1.05386i 0.0616726i
\(293\) 10.3642i 0.605485i 0.953072 + 0.302742i \(0.0979022\pi\)
−0.953072 + 0.302742i \(0.902098\pi\)
\(294\) 0 0
\(295\) 0.499356 0.539420i 0.0290737 0.0314062i
\(296\) −19.2521 −1.11901
\(297\) 0 0
\(298\) 27.6836i 1.60367i
\(299\) 20.4375 1.18193
\(300\) 0 0
\(301\) 6.90614 0.398063
\(302\) 1.25692i 0.0723277i
\(303\) 0 0
\(304\) −17.3850 −0.997101
\(305\) 8.68967 9.38684i 0.497569 0.537489i
\(306\) 0 0
\(307\) 16.0760i 0.917504i 0.888564 + 0.458752i \(0.151703\pi\)
−0.888564 + 0.458752i \(0.848297\pi\)
\(308\) 0.100571i 0.00573057i
\(309\) 0 0
\(310\) 14.2156 + 13.1598i 0.807390 + 0.747424i
\(311\) −16.9976 −0.963846 −0.481923 0.876214i \(-0.660061\pi\)
−0.481923 + 0.876214i \(0.660061\pi\)
\(312\) 0 0
\(313\) 25.2391i 1.42660i 0.700858 + 0.713300i \(0.252800\pi\)
−0.700858 + 0.713300i \(0.747200\pi\)
\(314\) −18.5636 −1.04760
\(315\) 0 0
\(316\) −11.6598 −0.655916
\(317\) 3.06731i 0.172277i 0.996283 + 0.0861386i \(0.0274528\pi\)
−0.996283 + 0.0861386i \(0.972547\pi\)
\(318\) 0 0
\(319\) −0.163559 −0.00915753
\(320\) 2.33690 2.52439i 0.130637 0.141118i
\(321\) 0 0
\(322\) 8.63810i 0.481382i
\(323\) 13.4424i 0.747955i
\(324\) 0 0
\(325\) 13.2322 1.02220i 0.733988 0.0567012i
\(326\) −23.2372 −1.28699
\(327\) 0 0
\(328\) 11.2239i 0.619735i
\(329\) −6.74185 −0.371690
\(330\) 0 0
\(331\) −19.9971 −1.09914 −0.549571 0.835447i \(-0.685209\pi\)
−0.549571 + 0.835447i \(0.685209\pi\)
\(332\) 7.41749i 0.407088i
\(333\) 0 0
\(334\) 31.6631 1.73253
\(335\) 5.77573 + 5.34676i 0.315562 + 0.292125i
\(336\) 0 0
\(337\) 6.45613i 0.351688i 0.984418 + 0.175844i \(0.0562654\pi\)
−0.984418 + 0.175844i \(0.943735\pi\)
\(338\) 10.2096i 0.555328i
\(339\) 0 0
\(340\) −5.95730 5.51484i −0.323080 0.299084i
\(341\) −0.826420 −0.0447531
\(342\) 0 0
\(343\) 8.88031i 0.479491i
\(344\) −19.1872 −1.03450
\(345\) 0 0
\(346\) 15.3074 0.822932
\(347\) 14.9415i 0.802099i −0.916056 0.401050i \(-0.868645\pi\)
0.916056 0.401050i \(-0.131355\pi\)
\(348\) 0 0
\(349\) 12.1055 0.647992 0.323996 0.946058i \(-0.394974\pi\)
0.323996 + 0.946058i \(0.394974\pi\)
\(350\) −0.432041 5.59270i −0.0230935 0.298942i
\(351\) 0 0
\(352\) 0.806487i 0.0429859i
\(353\) 18.1937i 0.968355i 0.874970 + 0.484178i \(0.160881\pi\)
−0.874970 + 0.484178i \(0.839119\pi\)
\(354\) 0 0
\(355\) 17.8421 19.2736i 0.946960 1.02293i
\(356\) −4.74292 −0.251374
\(357\) 0 0
\(358\) 3.20447i 0.169361i
\(359\) −35.1010 −1.85256 −0.926279 0.376838i \(-0.877011\pi\)
−0.926279 + 0.376838i \(0.877011\pi\)
\(360\) 0 0
\(361\) −6.89283 −0.362780
\(362\) 28.9508i 1.52162i
\(363\) 0 0
\(364\) 1.63212 0.0855464
\(365\) 1.84015 + 1.70348i 0.0963181 + 0.0891644i
\(366\) 0 0
\(367\) 23.1943i 1.21073i −0.795946 0.605367i \(-0.793026\pi\)
0.795946 0.605367i \(-0.206974\pi\)
\(368\) 38.4706i 2.00542i
\(369\) 0 0
\(370\) 27.5826 29.7955i 1.43395 1.54900i
\(371\) 2.64845 0.137501
\(372\) 0 0
\(373\) 4.99469i 0.258615i −0.991605 0.129308i \(-0.958725\pi\)
0.991605 0.129308i \(-0.0412754\pi\)
\(374\) 1.08339 0.0560207
\(375\) 0 0
\(376\) 18.7307 0.965964
\(377\) 2.65432i 0.136704i
\(378\) 0 0
\(379\) 28.7738 1.47801 0.739006 0.673699i \(-0.235296\pi\)
0.739006 + 0.673699i \(0.235296\pi\)
\(380\) 4.96705 5.36556i 0.254804 0.275247i
\(381\) 0 0
\(382\) 13.0080i 0.665550i
\(383\) 24.9482i 1.27479i 0.770537 + 0.637396i \(0.219988\pi\)
−0.770537 + 0.637396i \(0.780012\pi\)
\(384\) 0 0
\(385\) 0.175608 + 0.162565i 0.00894981 + 0.00828509i
\(386\) 46.7725 2.38066
\(387\) 0 0
\(388\) 7.97917i 0.405081i
\(389\) 31.0949 1.57657 0.788286 0.615308i \(-0.210969\pi\)
0.788286 + 0.615308i \(0.210969\pi\)
\(390\) 0 0
\(391\) −29.7461 −1.50433
\(392\) 11.9468i 0.603407i
\(393\) 0 0
\(394\) −16.6421 −0.838414
\(395\) −18.8472 + 20.3593i −0.948304 + 1.02439i
\(396\) 0 0
\(397\) 12.1948i 0.612038i 0.952025 + 0.306019i \(0.0989971\pi\)
−0.952025 + 0.306019i \(0.901003\pi\)
\(398\) 39.3528i 1.97258i
\(399\) 0 0
\(400\) 1.92414 + 24.9076i 0.0962068 + 1.24538i
\(401\) −4.33039 −0.216249 −0.108125 0.994137i \(-0.534485\pi\)
−0.108125 + 0.994137i \(0.534485\pi\)
\(402\) 0 0
\(403\) 13.4116i 0.668078i
\(404\) 1.70213 0.0846841
\(405\) 0 0
\(406\) 1.12187 0.0556776
\(407\) 1.73216i 0.0858599i
\(408\) 0 0
\(409\) −5.12178 −0.253256 −0.126628 0.991950i \(-0.540415\pi\)
−0.126628 + 0.991950i \(0.540415\pi\)
\(410\) 17.3706 + 16.0805i 0.857875 + 0.794159i
\(411\) 0 0
\(412\) 5.45812i 0.268902i
\(413\) 0.215096i 0.0105842i
\(414\) 0 0
\(415\) 12.9517 + 11.9898i 0.635775 + 0.588555i
\(416\) −13.0881 −0.641697
\(417\) 0 0
\(418\) 0.975776i 0.0477267i
\(419\) 14.1945 0.693445 0.346723 0.937968i \(-0.387295\pi\)
0.346723 + 0.937968i \(0.387295\pi\)
\(420\) 0 0
\(421\) 4.83364 0.235577 0.117789 0.993039i \(-0.462419\pi\)
0.117789 + 0.993039i \(0.462419\pi\)
\(422\) 30.8657i 1.50252i
\(423\) 0 0
\(424\) −7.35815 −0.357343
\(425\) −19.2590 + 1.48777i −0.934198 + 0.0721676i
\(426\) 0 0
\(427\) 3.74305i 0.181139i
\(428\) 3.27566i 0.158335i
\(429\) 0 0
\(430\) 27.4896 29.6950i 1.32566 1.43202i
\(431\) 18.0910 0.871411 0.435706 0.900089i \(-0.356499\pi\)
0.435706 + 0.900089i \(0.356499\pi\)
\(432\) 0 0
\(433\) 1.71005i 0.0821798i −0.999155 0.0410899i \(-0.986917\pi\)
0.999155 0.0410899i \(-0.0130830\pi\)
\(434\) 5.66853 0.272098
\(435\) 0 0
\(436\) 7.62163 0.365010
\(437\) 26.7914i 1.28161i
\(438\) 0 0
\(439\) −24.3533 −1.16232 −0.581160 0.813789i \(-0.697401\pi\)
−0.581160 + 0.813789i \(0.697401\pi\)
\(440\) −0.487888 0.451652i −0.0232591 0.0215316i
\(441\) 0 0
\(442\) 17.5818i 0.836281i
\(443\) 18.9066i 0.898280i −0.893461 0.449140i \(-0.851730\pi\)
0.893461 0.449140i \(-0.148270\pi\)
\(444\) 0 0
\(445\) −7.66656 + 8.28165i −0.363430 + 0.392588i
\(446\) −32.8140 −1.55379
\(447\) 0 0
\(448\) 1.00661i 0.0475581i
\(449\) 25.2808 1.19307 0.596537 0.802586i \(-0.296543\pi\)
0.596537 + 0.802586i \(0.296543\pi\)
\(450\) 0 0
\(451\) −1.00984 −0.0475515
\(452\) 1.94260i 0.0913723i
\(453\) 0 0
\(454\) −22.9102 −1.07523
\(455\) 2.63820 2.84986i 0.123680 0.133603i
\(456\) 0 0
\(457\) 4.25835i 0.199197i −0.995028 0.0995986i \(-0.968244\pi\)
0.995028 0.0995986i \(-0.0317559\pi\)
\(458\) 12.7760i 0.596984i
\(459\) 0 0
\(460\) −11.8732 10.9914i −0.553591 0.512475i
\(461\) −2.48353 −0.115670 −0.0578349 0.998326i \(-0.518420\pi\)
−0.0578349 + 0.998326i \(0.518420\pi\)
\(462\) 0 0
\(463\) 27.4876i 1.27746i 0.769433 + 0.638728i \(0.220539\pi\)
−0.769433 + 0.638728i \(0.779461\pi\)
\(464\) −4.99637 −0.231951
\(465\) 0 0
\(466\) −36.8769 −1.70829
\(467\) 6.24698i 0.289076i −0.989499 0.144538i \(-0.953830\pi\)
0.989499 0.144538i \(-0.0461695\pi\)
\(468\) 0 0
\(469\) 2.30310 0.106347
\(470\) −26.8356 + 28.9886i −1.23783 + 1.33715i
\(471\) 0 0
\(472\) 0.597598i 0.0275067i
\(473\) 1.72632i 0.0793761i
\(474\) 0 0
\(475\) −1.33999 17.3460i −0.0614831 0.795889i
\(476\) −2.37550 −0.108881
\(477\) 0 0
\(478\) 41.3501i 1.89131i
\(479\) −11.5736 −0.528812 −0.264406 0.964412i \(-0.585176\pi\)
−0.264406 + 0.964412i \(0.585176\pi\)
\(480\) 0 0
\(481\) 28.1104 1.28172
\(482\) 12.3930i 0.564485i
\(483\) 0 0
\(484\) 10.3121 0.468731
\(485\) 13.9325 + 12.8977i 0.632642 + 0.585654i
\(486\) 0 0
\(487\) 31.1947i 1.41357i 0.707431 + 0.706783i \(0.249854\pi\)
−0.707431 + 0.706783i \(0.750146\pi\)
\(488\) 10.3992i 0.470751i
\(489\) 0 0
\(490\) 18.4895 + 17.1163i 0.835272 + 0.773235i
\(491\) 7.93512 0.358107 0.179053 0.983839i \(-0.442697\pi\)
0.179053 + 0.983839i \(0.442697\pi\)
\(492\) 0 0
\(493\) 3.86328i 0.173993i
\(494\) 15.8354 0.712469
\(495\) 0 0
\(496\) −25.2454 −1.13355
\(497\) 7.68543i 0.344739i
\(498\) 0 0
\(499\) 32.8984 1.47274 0.736368 0.676581i \(-0.236539\pi\)
0.736368 + 0.676581i \(0.236539\pi\)
\(500\) −8.23700 6.52247i −0.368370 0.291694i
\(501\) 0 0
\(502\) 14.9932i 0.669179i
\(503\) 40.7038i 1.81489i 0.420168 + 0.907446i \(0.361971\pi\)
−0.420168 + 0.907446i \(0.638029\pi\)
\(504\) 0 0
\(505\) 2.75136 2.97210i 0.122434 0.132257i
\(506\) 2.15925 0.0959905
\(507\) 0 0
\(508\) 12.2132i 0.541871i
\(509\) −36.9407 −1.63737 −0.818684 0.574245i \(-0.805296\pi\)
−0.818684 + 0.574245i \(0.805296\pi\)
\(510\) 0 0
\(511\) 0.733771 0.0324601
\(512\) 6.47089i 0.285976i
\(513\) 0 0
\(514\) −17.4676 −0.770462
\(515\) −9.53047 8.82263i −0.419963 0.388771i
\(516\) 0 0
\(517\) 1.68525i 0.0741172i
\(518\) 11.8811i 0.522026i
\(519\) 0 0
\(520\) −7.32964 + 7.91770i −0.321426 + 0.347214i
\(521\) 33.2555 1.45695 0.728476 0.685072i \(-0.240229\pi\)
0.728476 + 0.685072i \(0.240229\pi\)
\(522\) 0 0
\(523\) 0.341001i 0.0149109i −0.999972 0.00745547i \(-0.997627\pi\)
0.999972 0.00745547i \(-0.00237317\pi\)
\(524\) 8.16644 0.356752
\(525\) 0 0
\(526\) −20.0252 −0.873139
\(527\) 19.5201i 0.850310i
\(528\) 0 0
\(529\) −36.2856 −1.57764
\(530\) 10.5421 11.3878i 0.457917 0.494656i
\(531\) 0 0
\(532\) 2.13954i 0.0927609i
\(533\) 16.3882i 0.709852i
\(534\) 0 0
\(535\) −5.71965 5.29484i −0.247282 0.228916i
\(536\) −6.39866 −0.276380
\(537\) 0 0
\(538\) 39.5012i 1.70302i
\(539\) −1.07489 −0.0462986
\(540\) 0 0
\(541\) −18.4196 −0.791919 −0.395960 0.918268i \(-0.629588\pi\)
−0.395960 + 0.918268i \(0.629588\pi\)
\(542\) 7.63849i 0.328101i
\(543\) 0 0
\(544\) 19.0493 0.816732
\(545\) 12.3198 13.3082i 0.527720 0.570060i
\(546\) 0 0
\(547\) 42.5936i 1.82117i −0.413320 0.910586i \(-0.635631\pi\)
0.413320 0.910586i \(-0.364369\pi\)
\(548\) 13.5841i 0.580284i
\(549\) 0 0
\(550\) 1.39800 0.107997i 0.0596108 0.00460499i
\(551\) 3.47954 0.148233
\(552\) 0 0
\(553\) 8.11836i 0.345228i
\(554\) −26.9187 −1.14367
\(555\) 0 0
\(556\) −1.61832 −0.0686321
\(557\) 17.5805i 0.744908i 0.928051 + 0.372454i \(0.121484\pi\)
−0.928051 + 0.372454i \(0.878516\pi\)
\(558\) 0 0
\(559\) 28.0156 1.18493
\(560\) 5.36445 + 4.96602i 0.226689 + 0.209853i
\(561\) 0 0
\(562\) 23.0988i 0.974365i
\(563\) 6.29621i 0.265354i −0.991159 0.132677i \(-0.957643\pi\)
0.991159 0.132677i \(-0.0423572\pi\)
\(564\) 0 0
\(565\) 3.39199 + 3.14006i 0.142702 + 0.132103i
\(566\) 10.0556 0.422669
\(567\) 0 0
\(568\) 21.3523i 0.895921i
\(569\) −42.3981 −1.77742 −0.888710 0.458469i \(-0.848398\pi\)
−0.888710 + 0.458469i \(0.848398\pi\)
\(570\) 0 0
\(571\) −18.4882 −0.773708 −0.386854 0.922141i \(-0.626438\pi\)
−0.386854 + 0.922141i \(0.626438\pi\)
\(572\) 0.407979i 0.0170585i
\(573\) 0 0
\(574\) 6.92663 0.289112
\(575\) −38.3842 + 2.96521i −1.60073 + 0.123658i
\(576\) 0 0
\(577\) 22.0727i 0.918897i 0.888204 + 0.459448i \(0.151953\pi\)
−0.888204 + 0.459448i \(0.848047\pi\)
\(578\) 3.55791i 0.147990i
\(579\) 0 0
\(580\) 1.42750 1.54203i 0.0592739 0.0640294i
\(581\) 5.16457 0.214262
\(582\) 0 0
\(583\) 0.662030i 0.0274185i
\(584\) −2.03862 −0.0843587
\(585\) 0 0
\(586\) 17.7702 0.734080
\(587\) 44.1932i 1.82405i −0.410136 0.912024i \(-0.634519\pi\)
0.410136 0.912024i \(-0.365481\pi\)
\(588\) 0 0
\(589\) 17.5812 0.724421
\(590\) −0.924873 0.856181i −0.0380764 0.0352484i
\(591\) 0 0
\(592\) 52.9137i 2.17474i
\(593\) 17.4159i 0.715184i −0.933878 0.357592i \(-0.883598\pi\)
0.933878 0.357592i \(-0.116402\pi\)
\(594\) 0 0
\(595\) −3.83981 + 4.14788i −0.157417 + 0.170046i
\(596\) −15.1732 −0.621520
\(597\) 0 0
\(598\) 35.0415i 1.43295i
\(599\) 7.70544 0.314836 0.157418 0.987532i \(-0.449683\pi\)
0.157418 + 0.987532i \(0.449683\pi\)
\(600\) 0 0
\(601\) −31.5500 −1.28695 −0.643476 0.765466i \(-0.722508\pi\)
−0.643476 + 0.765466i \(0.722508\pi\)
\(602\) 11.8410i 0.482605i
\(603\) 0 0
\(604\) 0.688913 0.0280315
\(605\) 16.6687 18.0060i 0.677678 0.732048i
\(606\) 0 0
\(607\) 13.2516i 0.537864i 0.963159 + 0.268932i \(0.0866707\pi\)
−0.963159 + 0.268932i \(0.913329\pi\)
\(608\) 17.1571i 0.695814i
\(609\) 0 0
\(610\) −16.0944 14.8990i −0.651643 0.603244i
\(611\) −27.3491 −1.10643
\(612\) 0 0
\(613\) 29.4609i 1.18991i 0.803758 + 0.594957i \(0.202831\pi\)
−0.803758 + 0.594957i \(0.797169\pi\)
\(614\) 27.5634 1.11237
\(615\) 0 0
\(616\) −0.194548 −0.00783855
\(617\) 5.61068i 0.225877i −0.993602 0.112939i \(-0.963974\pi\)
0.993602 0.112939i \(-0.0360264\pi\)
\(618\) 0 0
\(619\) −40.5248 −1.62883 −0.814415 0.580282i \(-0.802942\pi\)
−0.814415 + 0.580282i \(0.802942\pi\)
\(620\) 7.21281 7.79149i 0.289673 0.312914i
\(621\) 0 0
\(622\) 29.1436i 1.16855i
\(623\) 3.30235i 0.132306i
\(624\) 0 0
\(625\) −24.7034 + 3.83963i −0.988135 + 0.153585i
\(626\) 43.2743 1.72959
\(627\) 0 0
\(628\) 10.1746i 0.406011i
\(629\) −40.9138 −1.63134
\(630\) 0 0
\(631\) −20.2197 −0.804935 −0.402467 0.915434i \(-0.631847\pi\)
−0.402467 + 0.915434i \(0.631847\pi\)
\(632\) 22.5551i 0.897193i
\(633\) 0 0
\(634\) 5.25911 0.208866
\(635\) −21.3255 19.7416i −0.846276 0.783421i
\(636\) 0 0
\(637\) 17.4438i 0.691149i
\(638\) 0.280433i 0.0111024i
\(639\) 0 0
\(640\) −20.5104 18.9870i −0.810744 0.750529i
\(641\) 44.0804 1.74107 0.870535 0.492107i \(-0.163773\pi\)
0.870535 + 0.492107i \(0.163773\pi\)
\(642\) 0 0
\(643\) 3.56303i 0.140512i 0.997529 + 0.0702561i \(0.0223816\pi\)
−0.997529 + 0.0702561i \(0.977618\pi\)
\(644\) −4.73450 −0.186566
\(645\) 0 0
\(646\) −23.0479 −0.906809
\(647\) 40.7523i 1.60214i −0.598573 0.801069i \(-0.704265\pi\)
0.598573 0.801069i \(-0.295735\pi\)
\(648\) 0 0
\(649\) 0.0537673 0.00211055
\(650\) −1.75263 22.6875i −0.0687436 0.889875i
\(651\) 0 0
\(652\) 12.7362i 0.498788i
\(653\) 11.6902i 0.457472i 0.973489 + 0.228736i \(0.0734592\pi\)
−0.973489 + 0.228736i \(0.926541\pi\)
\(654\) 0 0
\(655\) 13.2004 14.2595i 0.515782 0.557164i
\(656\) −30.8484 −1.20443
\(657\) 0 0
\(658\) 11.5594i 0.450631i
\(659\) −28.1795 −1.09772 −0.548858 0.835915i \(-0.684937\pi\)
−0.548858 + 0.835915i \(0.684937\pi\)
\(660\) 0 0
\(661\) −20.6736 −0.804108 −0.402054 0.915616i \(-0.631704\pi\)
−0.402054 + 0.915616i \(0.631704\pi\)
\(662\) 34.2865i 1.33258i
\(663\) 0 0
\(664\) −14.3486 −0.556834
\(665\) −3.73587 3.45840i −0.144871 0.134111i
\(666\) 0 0
\(667\) 7.69972i 0.298134i
\(668\) 17.3544i 0.671461i
\(669\) 0 0
\(670\) 9.16739 9.90289i 0.354167 0.382582i
\(671\) 0.935645 0.0361202
\(672\) 0 0
\(673\) 44.7915i 1.72659i 0.504703 + 0.863293i \(0.331602\pi\)
−0.504703 + 0.863293i \(0.668398\pi\)
\(674\) 11.0695 0.426380
\(675\) 0 0
\(676\) −5.59582 −0.215224
\(677\) 16.8746i 0.648542i 0.945964 + 0.324271i \(0.105119\pi\)
−0.945964 + 0.324271i \(0.894881\pi\)
\(678\) 0 0
\(679\) 5.55565 0.213206
\(680\) 10.6681 11.5240i 0.409102 0.441924i
\(681\) 0 0
\(682\) 1.41695i 0.0542580i
\(683\) 28.6207i 1.09514i 0.836759 + 0.547571i \(0.184447\pi\)
−0.836759 + 0.547571i \(0.815553\pi\)
\(684\) 0 0
\(685\) −23.7193 21.9576i −0.906267 0.838958i
\(686\) 15.2259 0.581328
\(687\) 0 0
\(688\) 52.7353i 2.01051i
\(689\) 10.7438 0.409305
\(690\) 0 0
\(691\) −28.5928 −1.08772 −0.543861 0.839175i \(-0.683038\pi\)
−0.543861 + 0.839175i \(0.683038\pi\)
\(692\) 8.38993i 0.318937i
\(693\) 0 0
\(694\) −25.6182 −0.972452
\(695\) −2.61589 + 2.82576i −0.0992262 + 0.107187i
\(696\) 0 0
\(697\) 23.8525i 0.903479i
\(698\) 20.7557i 0.785615i
\(699\) 0 0
\(700\) −3.06533 + 0.236800i −0.115859 + 0.00895018i
\(701\) −49.6636 −1.87577 −0.937885 0.346946i \(-0.887219\pi\)
−0.937885 + 0.346946i \(0.887219\pi\)
\(702\) 0 0
\(703\) 36.8498i 1.38982i
\(704\) 0.251622 0.00948336
\(705\) 0 0
\(706\) 31.1944 1.17402
\(707\) 1.18514i 0.0445717i
\(708\) 0 0
\(709\) 19.4755 0.731419 0.365710 0.930729i \(-0.380826\pi\)
0.365710 + 0.930729i \(0.380826\pi\)
\(710\) −33.0459 30.5915i −1.24019 1.14808i
\(711\) 0 0
\(712\) 9.17485i 0.343842i
\(713\) 38.9047i 1.45699i
\(714\) 0 0
\(715\) 0.712375 + 0.659466i 0.0266413 + 0.0246626i
\(716\) 1.75636 0.0656381
\(717\) 0 0
\(718\) 60.1830i 2.24601i
\(719\) −34.3195 −1.27990 −0.639951 0.768415i \(-0.721046\pi\)
−0.639951 + 0.768415i \(0.721046\pi\)
\(720\) 0 0
\(721\) −3.80032 −0.141531
\(722\) 11.8182i 0.439829i
\(723\) 0 0
\(724\) −15.8678 −0.589723
\(725\) −0.385107 4.98515i −0.0143025 0.185144i
\(726\) 0 0
\(727\) 19.3206i 0.716560i −0.933614 0.358280i \(-0.883363\pi\)
0.933614 0.358280i \(-0.116637\pi\)
\(728\) 3.15722i 0.117014i
\(729\) 0 0
\(730\) 2.92074 3.15507i 0.108101 0.116774i
\(731\) −40.7758 −1.50815
\(732\) 0 0
\(733\) 3.10588i 0.114718i 0.998354 + 0.0573591i \(0.0182680\pi\)
−0.998354 + 0.0573591i \(0.981732\pi\)
\(734\) −39.7683 −1.46787
\(735\) 0 0
\(736\) 37.9663 1.39946
\(737\) 0.575703i 0.0212063i
\(738\) 0 0
\(739\) −38.7106 −1.42399 −0.711997 0.702183i \(-0.752209\pi\)
−0.711997 + 0.702183i \(0.752209\pi\)
\(740\) −16.3308 15.1179i −0.600332 0.555744i
\(741\) 0 0
\(742\) 4.54096i 0.166704i
\(743\) 8.41130i 0.308581i 0.988026 + 0.154290i \(0.0493091\pi\)
−0.988026 + 0.154290i \(0.950691\pi\)
\(744\) 0 0
\(745\) −24.5264 + 26.4941i −0.898576 + 0.970669i
\(746\) −8.56373 −0.313541
\(747\) 0 0
\(748\) 0.593801i 0.0217115i
\(749\) −2.28074 −0.0833364
\(750\) 0 0
\(751\) −30.5930 −1.11635 −0.558177 0.829722i \(-0.688499\pi\)
−0.558177 + 0.829722i \(0.688499\pi\)
\(752\) 51.4808i 1.87731i
\(753\) 0 0
\(754\) 4.55101 0.165738
\(755\) 1.11357 1.20292i 0.0405271 0.0437786i
\(756\) 0 0
\(757\) 41.6526i 1.51389i 0.653479 + 0.756945i \(0.273309\pi\)
−0.653479 + 0.756945i \(0.726691\pi\)
\(758\) 49.3347i 1.79192i
\(759\) 0 0
\(760\) 10.3793 + 9.60841i 0.376496 + 0.348534i
\(761\) 28.3957 1.02934 0.514671 0.857388i \(-0.327914\pi\)
0.514671 + 0.857388i \(0.327914\pi\)
\(762\) 0 0
\(763\) 5.30670i 0.192115i
\(764\) 7.12965 0.257942
\(765\) 0 0
\(766\) 42.7753 1.54554
\(767\) 0.872565i 0.0315065i
\(768\) 0 0
\(769\) 48.6782 1.75538 0.877690 0.479229i \(-0.159084\pi\)
0.877690 + 0.479229i \(0.159084\pi\)
\(770\) 0.278729 0.301092i 0.0100447 0.0108506i
\(771\) 0 0
\(772\) 25.6358i 0.922652i
\(773\) 54.9974i 1.97812i 0.147513 + 0.989060i \(0.452873\pi\)
−0.147513 + 0.989060i \(0.547127\pi\)
\(774\) 0 0
\(775\) −1.94585 25.1887i −0.0698969 0.904804i
\(776\) −15.4351 −0.554089
\(777\) 0 0
\(778\) 53.3143i 1.91141i
\(779\) 21.4833 0.769717
\(780\) 0 0
\(781\) 1.92112 0.0687429
\(782\) 51.0018i 1.82382i
\(783\) 0 0
\(784\) −32.8355 −1.17270
\(785\) 17.7660 + 16.4464i 0.634094 + 0.586999i
\(786\) 0 0
\(787\) 32.7472i 1.16731i −0.812002 0.583655i \(-0.801622\pi\)
0.812002 0.583655i \(-0.198378\pi\)
\(788\) 9.12143i 0.324938i
\(789\) 0 0
\(790\) 34.9074 + 32.3148i 1.24195 + 1.14971i
\(791\) 1.35257 0.0480920
\(792\) 0