Properties

Label 1305.2.c.h.784.2
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1305,2,Mod(784,1305)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1305.784"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1305, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-14,-3,0,0,0,0,-3,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.84345856.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 41x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.2
Root \(-2.30229i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.h.784.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30229i q^{2} -3.30056 q^{4} +(-2.17686 + 0.511167i) q^{5} -3.91261i q^{7} +2.99427i q^{8} +(1.17686 + 5.01177i) q^{10} -2.65427 q^{11} +5.62692i q^{13} -9.00799 q^{14} +0.292570 q^{16} -1.86794i q^{17} -1.69944 q^{19} +(7.18485 - 1.68714i) q^{20} +6.11092i q^{22} -0.691975i q^{23} +(4.47742 - 2.22548i) q^{25} +12.9548 q^{26} +12.9138i q^{28} -1.00000 q^{29} -0.654273 q^{31} +5.31495i q^{32} -4.30056 q^{34} +(2.00000 + 8.51720i) q^{35} +3.91261i q^{37} +3.91261i q^{38} +(-1.53057 - 6.51810i) q^{40} +10.7155i q^{43} +8.76059 q^{44} -1.59313 q^{46} -4.93495i q^{47} -8.30855 q^{49} +(-5.12370 - 10.3083i) q^{50} -18.5720i q^{52} +7.67159i q^{53} +(5.77797 - 1.35678i) q^{55} +11.7154 q^{56} +2.30229i q^{58} +10.0000 q^{59} -4.70743 q^{61} +1.50633i q^{62} +12.8217 q^{64} +(-2.87630 - 12.2490i) q^{65} -6.47253i q^{67} +6.16526i q^{68} +(19.6091 - 4.60459i) q^{70} -2.00000 q^{71} +10.5619i q^{73} +9.00799 q^{74} +5.60911 q^{76} +10.3851i q^{77} +2.05316 q^{79} +(-0.636884 + 0.149552i) q^{80} +1.86794i q^{83} +(0.954832 + 4.06625i) q^{85} +24.6703 q^{86} -7.94761i q^{88} +3.30855 q^{89} +22.0160 q^{91} +2.28390i q^{92} -11.3617 q^{94} +(3.69944 - 0.868699i) q^{95} +0.384703i q^{97} +19.1287i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{4} - 3 q^{5} - 3 q^{10} + 10 q^{11} - 8 q^{14} + 42 q^{16} - 16 q^{19} - 13 q^{20} + 11 q^{25} + 46 q^{26} - 6 q^{29} + 22 q^{31} - 20 q^{34} + 12 q^{35} + 21 q^{40} - 2 q^{44} - 44 q^{46} + 2 q^{49}+ \cdots + 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30229i 1.62797i −0.580887 0.813984i \(-0.697294\pi\)
0.580887 0.813984i \(-0.302706\pi\)
\(3\) 0 0
\(4\) −3.30056 −1.65028
\(5\) −2.17686 + 0.511167i −0.973520 + 0.228601i
\(6\) 0 0
\(7\) 3.91261i 1.47883i −0.673250 0.739415i \(-0.735102\pi\)
0.673250 0.739415i \(-0.264898\pi\)
\(8\) 2.99427i 1.05863i
\(9\) 0 0
\(10\) 1.17686 + 5.01177i 0.372155 + 1.58486i
\(11\) −2.65427 −0.800294 −0.400147 0.916451i \(-0.631041\pi\)
−0.400147 + 0.916451i \(0.631041\pi\)
\(12\) 0 0
\(13\) 5.62692i 1.56063i 0.625388 + 0.780314i \(0.284941\pi\)
−0.625388 + 0.780314i \(0.715059\pi\)
\(14\) −9.00799 −2.40749
\(15\) 0 0
\(16\) 0.292570 0.0731426
\(17\) 1.86794i 0.453043i −0.974006 0.226522i \(-0.927265\pi\)
0.974006 0.226522i \(-0.0727354\pi\)
\(18\) 0 0
\(19\) −1.69944 −0.389879 −0.194939 0.980815i \(-0.562451\pi\)
−0.194939 + 0.980815i \(0.562451\pi\)
\(20\) 7.18485 1.68714i 1.60658 0.377255i
\(21\) 0 0
\(22\) 6.11092i 1.30285i
\(23\) 0.691975i 0.144287i −0.997394 0.0721433i \(-0.977016\pi\)
0.997394 0.0721433i \(-0.0229839\pi\)
\(24\) 0 0
\(25\) 4.47742 2.22548i 0.895483 0.445095i
\(26\) 12.9548 2.54065
\(27\) 0 0
\(28\) 12.9138i 2.44048i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −0.654273 −0.117511 −0.0587555 0.998272i \(-0.518713\pi\)
−0.0587555 + 0.998272i \(0.518713\pi\)
\(32\) 5.31495i 0.939560i
\(33\) 0 0
\(34\) −4.30056 −0.737540
\(35\) 2.00000 + 8.51720i 0.338062 + 1.43967i
\(36\) 0 0
\(37\) 3.91261i 0.643230i 0.946871 + 0.321615i \(0.104226\pi\)
−0.946871 + 0.321615i \(0.895774\pi\)
\(38\) 3.91261i 0.634710i
\(39\) 0 0
\(40\) −1.53057 6.51810i −0.242005 1.03060i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 10.7155i 1.63410i 0.576567 + 0.817050i \(0.304392\pi\)
−0.576567 + 0.817050i \(0.695608\pi\)
\(44\) 8.76059 1.32071
\(45\) 0 0
\(46\) −1.59313 −0.234894
\(47\) 4.93495i 0.719836i −0.932984 0.359918i \(-0.882805\pi\)
0.932984 0.359918i \(-0.117195\pi\)
\(48\) 0 0
\(49\) −8.30855 −1.18694
\(50\) −5.12370 10.3083i −0.724601 1.45782i
\(51\) 0 0
\(52\) 18.5720i 2.57547i
\(53\) 7.67159i 1.05377i 0.849935 + 0.526887i \(0.176641\pi\)
−0.849935 + 0.526887i \(0.823359\pi\)
\(54\) 0 0
\(55\) 5.77797 1.35678i 0.779102 0.182948i
\(56\) 11.7154 1.56554
\(57\) 0 0
\(58\) 2.30229i 0.302306i
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −4.70743 −0.602725 −0.301362 0.953510i \(-0.597441\pi\)
−0.301362 + 0.953510i \(0.597441\pi\)
\(62\) 1.50633i 0.191304i
\(63\) 0 0
\(64\) 12.8217 1.60272
\(65\) −2.87630 12.2490i −0.356761 1.51930i
\(66\) 0 0
\(67\) 6.47253i 0.790746i −0.918521 0.395373i \(-0.870615\pi\)
0.918521 0.395373i \(-0.129385\pi\)
\(68\) 6.16526i 0.747648i
\(69\) 0 0
\(70\) 19.6091 4.60459i 2.34374 0.550354i
\(71\) −2.00000 −0.237356 −0.118678 0.992933i \(-0.537866\pi\)
−0.118678 + 0.992933i \(0.537866\pi\)
\(72\) 0 0
\(73\) 10.5619i 1.23617i 0.786110 + 0.618087i \(0.212092\pi\)
−0.786110 + 0.618087i \(0.787908\pi\)
\(74\) 9.00799 1.04716
\(75\) 0 0
\(76\) 5.60911 0.643409
\(77\) 10.3851i 1.18350i
\(78\) 0 0
\(79\) 2.05316 0.230998 0.115499 0.993308i \(-0.463153\pi\)
0.115499 + 0.993308i \(0.463153\pi\)
\(80\) −0.636884 + 0.149552i −0.0712058 + 0.0167205i
\(81\) 0 0
\(82\) 0 0
\(83\) 1.86794i 0.205034i 0.994731 + 0.102517i \(0.0326895\pi\)
−0.994731 + 0.102517i \(0.967310\pi\)
\(84\) 0 0
\(85\) 0.954832 + 4.06625i 0.103566 + 0.441047i
\(86\) 24.6703 2.66026
\(87\) 0 0
\(88\) 7.94761i 0.847218i
\(89\) 3.30855 0.350705 0.175353 0.984506i \(-0.443893\pi\)
0.175353 + 0.984506i \(0.443893\pi\)
\(90\) 0 0
\(91\) 22.0160 2.30790
\(92\) 2.28390i 0.238113i
\(93\) 0 0
\(94\) −11.3617 −1.17187
\(95\) 3.69944 0.868699i 0.379555 0.0891266i
\(96\) 0 0
\(97\) 0.384703i 0.0390607i 0.999809 + 0.0195303i \(0.00621710\pi\)
−0.999809 + 0.0195303i \(0.993783\pi\)
\(98\) 19.1287i 1.93229i
\(99\) 0 0
\(100\) −14.7780 + 7.34532i −1.47780 + 0.734532i
\(101\) −11.9097 −1.18506 −0.592528 0.805550i \(-0.701870\pi\)
−0.592528 + 0.805550i \(0.701870\pi\)
\(102\) 0 0
\(103\) 14.9585i 1.47390i −0.675946 0.736951i \(-0.736265\pi\)
0.675946 0.736951i \(-0.263735\pi\)
\(104\) −16.8485 −1.65213
\(105\) 0 0
\(106\) 17.6623 1.71551
\(107\) 3.91261i 0.378247i −0.981953 0.189123i \(-0.939435\pi\)
0.981953 0.189123i \(-0.0605646\pi\)
\(108\) 0 0
\(109\) 7.55595 0.723729 0.361864 0.932231i \(-0.382140\pi\)
0.361864 + 0.932231i \(0.382140\pi\)
\(110\) −3.12370 13.3026i −0.297833 1.26835i
\(111\) 0 0
\(112\) 1.14472i 0.108165i
\(113\) 18.6944i 1.75862i 0.476251 + 0.879309i \(0.341995\pi\)
−0.476251 + 0.879309i \(0.658005\pi\)
\(114\) 0 0
\(115\) 0.353715 + 1.50633i 0.0329841 + 0.140466i
\(116\) 3.30056 0.306449
\(117\) 0 0
\(118\) 23.0229i 2.11943i
\(119\) −7.30855 −0.669973
\(120\) 0 0
\(121\) −3.95483 −0.359530
\(122\) 10.8379i 0.981216i
\(123\) 0 0
\(124\) 2.15947 0.193926
\(125\) −8.60911 + 7.13325i −0.770022 + 0.638018i
\(126\) 0 0
\(127\) 4.98929i 0.442728i −0.975191 0.221364i \(-0.928949\pi\)
0.975191 0.221364i \(-0.0710509\pi\)
\(128\) 18.8895i 1.66961i
\(129\) 0 0
\(130\) −28.2008 + 6.62209i −2.47338 + 0.580795i
\(131\) −19.7154 −1.72254 −0.861272 0.508144i \(-0.830332\pi\)
−0.861272 + 0.508144i \(0.830332\pi\)
\(132\) 0 0
\(133\) 6.64926i 0.576564i
\(134\) −14.9017 −1.28731
\(135\) 0 0
\(136\) 5.59313 0.479607
\(137\) 6.26455i 0.535217i −0.963528 0.267608i \(-0.913767\pi\)
0.963528 0.267608i \(-0.0862334\pi\)
\(138\) 0 0
\(139\) −21.9097 −1.85835 −0.929177 0.369636i \(-0.879482\pi\)
−0.929177 + 0.369636i \(0.879482\pi\)
\(140\) −6.60112 28.1115i −0.557896 2.37586i
\(141\) 0 0
\(142\) 4.60459i 0.386408i
\(143\) 14.9354i 1.24896i
\(144\) 0 0
\(145\) 2.17686 0.511167i 0.180778 0.0424501i
\(146\) 24.3165 2.01245
\(147\) 0 0
\(148\) 12.9138i 1.06151i
\(149\) 4.24740 0.347961 0.173980 0.984749i \(-0.444337\pi\)
0.173980 + 0.984749i \(0.444337\pi\)
\(150\) 0 0
\(151\) −11.3085 −0.920277 −0.460138 0.887847i \(-0.652200\pi\)
−0.460138 + 0.887847i \(0.652200\pi\)
\(152\) 5.08858i 0.412739i
\(153\) 0 0
\(154\) 23.9097 1.92670
\(155\) 1.42426 0.334443i 0.114399 0.0268631i
\(156\) 0 0
\(157\) 4.12059i 0.328859i 0.986389 + 0.164430i \(0.0525783\pi\)
−0.986389 + 0.164430i \(0.947422\pi\)
\(158\) 4.72697i 0.376057i
\(159\) 0 0
\(160\) −2.71683 11.5699i −0.214784 0.914681i
\(161\) −2.70743 −0.213375
\(162\) 0 0
\(163\) 3.19755i 0.250452i 0.992128 + 0.125226i \(0.0399655\pi\)
−0.992128 + 0.125226i \(0.960034\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 4.30056 0.333788
\(167\) 14.6050i 1.13017i 0.825032 + 0.565086i \(0.191157\pi\)
−0.825032 + 0.565086i \(0.808843\pi\)
\(168\) 0 0
\(169\) −18.6623 −1.43556
\(170\) 9.36170 2.19830i 0.718010 0.168602i
\(171\) 0 0
\(172\) 35.3672i 2.69672i
\(173\) 9.00120i 0.684348i 0.939637 + 0.342174i \(0.111163\pi\)
−0.939637 + 0.342174i \(0.888837\pi\)
\(174\) 0 0
\(175\) −8.70743 17.5184i −0.658220 1.32427i
\(176\) −0.776562 −0.0585356
\(177\) 0 0
\(178\) 7.61725i 0.570937i
\(179\) −21.3085 −1.59268 −0.796338 0.604852i \(-0.793232\pi\)
−0.796338 + 0.604852i \(0.793232\pi\)
\(180\) 0 0
\(181\) −16.9708 −1.26143 −0.630715 0.776014i \(-0.717238\pi\)
−0.630715 + 0.776014i \(0.717238\pi\)
\(182\) 50.6873i 3.75719i
\(183\) 0 0
\(184\) 2.07196 0.152747
\(185\) −2.00000 8.51720i −0.147043 0.626197i
\(186\) 0 0
\(187\) 4.95804i 0.362568i
\(188\) 16.2881i 1.18793i
\(189\) 0 0
\(190\) −2.00000 8.51720i −0.145095 0.617903i
\(191\) 8.40687 0.608300 0.304150 0.952624i \(-0.401628\pi\)
0.304150 + 0.952624i \(0.401628\pi\)
\(192\) 0 0
\(193\) 0.791267i 0.0569567i 0.999594 + 0.0284783i \(0.00906616\pi\)
−0.999594 + 0.0284783i \(0.990934\pi\)
\(194\) 0.885700 0.0635895
\(195\) 0 0
\(196\) 27.4228 1.95877
\(197\) 24.5062i 1.74599i 0.487726 + 0.872997i \(0.337826\pi\)
−0.487726 + 0.872997i \(0.662174\pi\)
\(198\) 0 0
\(199\) −19.3085 −1.36875 −0.684373 0.729132i \(-0.739924\pi\)
−0.684373 + 0.729132i \(0.739924\pi\)
\(200\) 6.66367 + 13.4066i 0.471193 + 0.947989i
\(201\) 0 0
\(202\) 27.4196i 1.92923i
\(203\) 3.91261i 0.274612i
\(204\) 0 0
\(205\) 0 0
\(206\) −34.4388 −2.39947
\(207\) 0 0
\(208\) 1.64627i 0.114148i
\(209\) 4.51078 0.312017
\(210\) 0 0
\(211\) 19.2554 1.32560 0.662798 0.748798i \(-0.269369\pi\)
0.662798 + 0.748798i \(0.269369\pi\)
\(212\) 25.3205i 1.73902i
\(213\) 0 0
\(214\) −9.00799 −0.615773
\(215\) −5.47742 23.3261i −0.373557 1.59083i
\(216\) 0 0
\(217\) 2.55992i 0.173779i
\(218\) 17.3960i 1.17821i
\(219\) 0 0
\(220\) −19.0705 + 4.47812i −1.28574 + 0.301915i
\(221\) 10.5108 0.707032
\(222\) 0 0
\(223\) 10.8691i 0.727852i 0.931428 + 0.363926i \(0.118564\pi\)
−0.931428 + 0.363926i \(0.881436\pi\)
\(224\) 20.7954 1.38945
\(225\) 0 0
\(226\) 43.0399 2.86297
\(227\) 17.3104i 1.14893i 0.818528 + 0.574467i \(0.194790\pi\)
−0.818528 + 0.574467i \(0.805210\pi\)
\(228\) 0 0
\(229\) −18.7074 −1.23622 −0.618111 0.786091i \(-0.712102\pi\)
−0.618111 + 0.786091i \(0.712102\pi\)
\(230\) 3.46802 0.814355i 0.228674 0.0536970i
\(231\) 0 0
\(232\) 2.99427i 0.196583i
\(233\) 14.6281i 0.958320i −0.877728 0.479160i \(-0.840941\pi\)
0.877728 0.479160i \(-0.159059\pi\)
\(234\) 0 0
\(235\) 2.52258 + 10.7427i 0.164555 + 0.700775i
\(236\) −33.0056 −2.14848
\(237\) 0 0
\(238\) 16.8264i 1.09070i
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) −5.55595 −0.357890 −0.178945 0.983859i \(-0.557268\pi\)
−0.178945 + 0.983859i \(0.557268\pi\)
\(242\) 9.10519i 0.585304i
\(243\) 0 0
\(244\) 15.5371 0.994664
\(245\) 18.0865 4.24706i 1.15551 0.271335i
\(246\) 0 0
\(247\) 9.56263i 0.608455i
\(248\) 1.95907i 0.124401i
\(249\) 0 0
\(250\) 16.4228 + 19.8207i 1.03867 + 1.25357i
\(251\) 9.27137 0.585204 0.292602 0.956234i \(-0.405479\pi\)
0.292602 + 0.956234i \(0.405479\pi\)
\(252\) 0 0
\(253\) 1.83669i 0.115472i
\(254\) −11.4868 −0.720747
\(255\) 0 0
\(256\) −17.8457 −1.11536
\(257\) 14.1129i 0.880337i −0.897915 0.440168i \(-0.854919\pi\)
0.897915 0.440168i \(-0.145081\pi\)
\(258\) 0 0
\(259\) 15.3085 0.951227
\(260\) 9.49339 + 40.4286i 0.588755 + 2.50727i
\(261\) 0 0
\(262\) 45.3907i 2.80425i
\(263\) 6.97962i 0.430382i −0.976572 0.215191i \(-0.930963\pi\)
0.976572 0.215191i \(-0.0690373\pi\)
\(264\) 0 0
\(265\) −3.92147 16.7000i −0.240894 1.02587i
\(266\) 15.3085 0.938627
\(267\) 0 0
\(268\) 21.3630i 1.30495i
\(269\) −7.29257 −0.444636 −0.222318 0.974974i \(-0.571362\pi\)
−0.222318 + 0.974974i \(0.571362\pi\)
\(270\) 0 0
\(271\) −23.3617 −1.41912 −0.709561 0.704644i \(-0.751107\pi\)
−0.709561 + 0.704644i \(0.751107\pi\)
\(272\) 0.546506i 0.0331368i
\(273\) 0 0
\(274\) −14.4228 −0.871316
\(275\) −11.8843 + 5.90702i −0.716649 + 0.356207i
\(276\) 0 0
\(277\) 2.91337i 0.175047i −0.996162 0.0875236i \(-0.972105\pi\)
0.996162 0.0875236i \(-0.0278953\pi\)
\(278\) 50.4425i 3.02534i
\(279\) 0 0
\(280\) −25.5028 + 5.98854i −1.52408 + 0.357884i
\(281\) −30.1730 −1.79997 −0.899986 0.435918i \(-0.856424\pi\)
−0.899986 + 0.435918i \(0.856424\pi\)
\(282\) 0 0
\(283\) 2.01341i 0.119685i 0.998208 + 0.0598425i \(0.0190599\pi\)
−0.998208 + 0.0598425i \(0.980940\pi\)
\(284\) 6.60112 0.391704
\(285\) 0 0
\(286\) −34.3857 −2.03327
\(287\) 0 0
\(288\) 0 0
\(289\) 13.5108 0.794752
\(290\) −1.17686 5.01177i −0.0691074 0.294301i
\(291\) 0 0
\(292\) 34.8601i 2.04003i
\(293\) 10.8691i 0.634982i −0.948261 0.317491i \(-0.897160\pi\)
0.948261 0.317491i \(-0.102840\pi\)
\(294\) 0 0
\(295\) −21.7686 + 5.11167i −1.26742 + 0.297613i
\(296\) −11.7154 −0.680945
\(297\) 0 0
\(298\) 9.77877i 0.566469i
\(299\) 3.89369 0.225178
\(300\) 0 0
\(301\) 41.9256 2.41655
\(302\) 26.0356i 1.49818i
\(303\) 0 0
\(304\) −0.497206 −0.0285167
\(305\) 10.2474 2.40628i 0.586765 0.137783i
\(306\) 0 0
\(307\) 9.02429i 0.515043i −0.966273 0.257522i \(-0.917094\pi\)
0.966273 0.257522i \(-0.0829059\pi\)
\(308\) 34.2768i 1.95310i
\(309\) 0 0
\(310\) −0.769987 3.27907i −0.0437323 0.186238i
\(311\) 11.1143 0.630234 0.315117 0.949053i \(-0.397956\pi\)
0.315117 + 0.949053i \(0.397956\pi\)
\(312\) 0 0
\(313\) 25.7365i 1.45471i 0.686260 + 0.727356i \(0.259251\pi\)
−0.686260 + 0.727356i \(0.740749\pi\)
\(314\) 9.48682 0.535372
\(315\) 0 0
\(316\) −6.77656 −0.381211
\(317\) 0.837444i 0.0470355i −0.999723 0.0235178i \(-0.992513\pi\)
0.999723 0.0235178i \(-0.00748663\pi\)
\(318\) 0 0
\(319\) 2.65427 0.148611
\(320\) −27.9111 + 6.55405i −1.56028 + 0.366382i
\(321\) 0 0
\(322\) 6.23330i 0.347368i
\(323\) 3.17446i 0.176632i
\(324\) 0 0
\(325\) 12.5226 + 25.1941i 0.694628 + 1.39752i
\(326\) 7.36170 0.407727
\(327\) 0 0
\(328\) 0 0
\(329\) −19.3085 −1.06451
\(330\) 0 0
\(331\) 22.0691 1.21303 0.606515 0.795072i \(-0.292567\pi\)
0.606515 + 0.795072i \(0.292567\pi\)
\(332\) 6.16526i 0.338363i
\(333\) 0 0
\(334\) 33.6251 1.83988
\(335\) 3.30855 + 14.0898i 0.180765 + 0.769807i
\(336\) 0 0
\(337\) 7.74780i 0.422049i 0.977481 + 0.211025i \(0.0676800\pi\)
−0.977481 + 0.211025i \(0.932320\pi\)
\(338\) 42.9660i 2.33704i
\(339\) 0 0
\(340\) −3.15148 13.4209i −0.170913 0.727850i
\(341\) 1.73662 0.0940433
\(342\) 0 0
\(343\) 5.11984i 0.276445i
\(344\) −32.0851 −1.72991
\(345\) 0 0
\(346\) 20.7234 1.11410
\(347\) 9.33972i 0.501383i −0.968067 0.250691i \(-0.919342\pi\)
0.968067 0.250691i \(-0.0806579\pi\)
\(348\) 0 0
\(349\) 21.6623 1.15955 0.579777 0.814775i \(-0.303140\pi\)
0.579777 + 0.814775i \(0.303140\pi\)
\(350\) −40.3325 + 20.0471i −2.15586 + 1.07156i
\(351\) 0 0
\(352\) 14.1073i 0.751924i
\(353\) 20.5623i 1.09442i −0.836995 0.547211i \(-0.815690\pi\)
0.836995 0.547211i \(-0.184310\pi\)
\(354\) 0 0
\(355\) 4.35371 1.02233i 0.231071 0.0542599i
\(356\) −10.9201 −0.578762
\(357\) 0 0
\(358\) 49.0585i 2.59282i
\(359\) 30.5639 1.61310 0.806551 0.591164i \(-0.201331\pi\)
0.806551 + 0.591164i \(0.201331\pi\)
\(360\) 0 0
\(361\) −16.1119 −0.847995
\(362\) 39.0718i 2.05357i
\(363\) 0 0
\(364\) −72.6650 −3.80868
\(365\) −5.39888 22.9917i −0.282590 1.20344i
\(366\) 0 0
\(367\) 13.7825i 0.719441i 0.933060 + 0.359721i \(0.117128\pi\)
−0.933060 + 0.359721i \(0.882872\pi\)
\(368\) 0.202451i 0.0105535i
\(369\) 0 0
\(370\) −19.6091 + 4.60459i −1.01943 + 0.239381i
\(371\) 30.0160 1.55835
\(372\) 0 0
\(373\) 27.2659i 1.41178i −0.708324 0.705888i \(-0.750548\pi\)
0.708324 0.705888i \(-0.249452\pi\)
\(374\) 11.4149 0.590248
\(375\) 0 0
\(376\) 14.7766 0.762043
\(377\) 5.62692i 0.289801i
\(378\) 0 0
\(379\) −16.4069 −0.842764 −0.421382 0.906883i \(-0.638455\pi\)
−0.421382 + 0.906883i \(0.638455\pi\)
\(380\) −12.2102 + 2.86719i −0.626371 + 0.147084i
\(381\) 0 0
\(382\) 19.3551i 0.990293i
\(383\) 11.7378i 0.599776i 0.953974 + 0.299888i \(0.0969493\pi\)
−0.953974 + 0.299888i \(0.903051\pi\)
\(384\) 0 0
\(385\) −5.30855 22.6070i −0.270549 1.15216i
\(386\) 1.82173 0.0927236
\(387\) 0 0
\(388\) 1.26974i 0.0644610i
\(389\) −12.0000 −0.608424 −0.304212 0.952604i \(-0.598393\pi\)
−0.304212 + 0.952604i \(0.598393\pi\)
\(390\) 0 0
\(391\) −1.29257 −0.0653681
\(392\) 24.8780i 1.25653i
\(393\) 0 0
\(394\) 56.4204 2.84242
\(395\) −4.46943 + 1.04951i −0.224881 + 0.0528064i
\(396\) 0 0
\(397\) 6.03349i 0.302812i −0.988472 0.151406i \(-0.951620\pi\)
0.988472 0.151406i \(-0.0483801\pi\)
\(398\) 44.4540i 2.22828i
\(399\) 0 0
\(400\) 1.30996 0.651109i 0.0654980 0.0325554i
\(401\) 21.4656 1.07194 0.535971 0.844237i \(-0.319946\pi\)
0.535971 + 0.844237i \(0.319946\pi\)
\(402\) 0 0
\(403\) 3.68155i 0.183391i
\(404\) 39.3085 1.95567
\(405\) 0 0
\(406\) 9.00799 0.447059
\(407\) 10.3851i 0.514773i
\(408\) 0 0
\(409\) 4.49481 0.222254 0.111127 0.993806i \(-0.464554\pi\)
0.111127 + 0.993806i \(0.464554\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 49.3713i 2.43235i
\(413\) 39.1261i 1.92527i
\(414\) 0 0
\(415\) −0.954832 4.06625i −0.0468709 0.199604i
\(416\) −29.9068 −1.46630
\(417\) 0 0
\(418\) 10.3851i 0.507954i
\(419\) 4.19665 0.205020 0.102510 0.994732i \(-0.467313\pi\)
0.102510 + 0.994732i \(0.467313\pi\)
\(420\) 0 0
\(421\) −18.5108 −0.902160 −0.451080 0.892483i \(-0.648961\pi\)
−0.451080 + 0.892483i \(0.648961\pi\)
\(422\) 44.3316i 2.15803i
\(423\) 0 0
\(424\) −22.9708 −1.11556
\(425\) −4.15707 8.36357i −0.201647 0.405693i
\(426\) 0 0
\(427\) 18.4184i 0.891327i
\(428\) 12.9138i 0.624213i
\(429\) 0 0
\(430\) −53.7036 + 12.6106i −2.58982 + 0.608138i
\(431\) −37.1279 −1.78839 −0.894193 0.447681i \(-0.852250\pi\)
−0.894193 + 0.447681i \(0.852250\pi\)
\(432\) 0 0
\(433\) 16.8577i 0.810128i −0.914288 0.405064i \(-0.867249\pi\)
0.914288 0.405064i \(-0.132751\pi\)
\(434\) 5.89369 0.282906
\(435\) 0 0
\(436\) −24.9389 −1.19435
\(437\) 1.17597i 0.0562543i
\(438\) 0 0
\(439\) 9.21821 0.439961 0.219981 0.975504i \(-0.429401\pi\)
0.219981 + 0.975504i \(0.429401\pi\)
\(440\) 4.06256 + 17.3008i 0.193675 + 0.824784i
\(441\) 0 0
\(442\) 24.1989i 1.15102i
\(443\) 18.9023i 0.898078i −0.893512 0.449039i \(-0.851766\pi\)
0.893512 0.449039i \(-0.148234\pi\)
\(444\) 0 0
\(445\) −7.20223 + 1.69122i −0.341419 + 0.0801716i
\(446\) 25.0240 1.18492
\(447\) 0 0
\(448\) 50.1665i 2.37014i
\(449\) −31.3245 −1.47830 −0.739148 0.673543i \(-0.764772\pi\)
−0.739148 + 0.673543i \(0.764772\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 61.7019i 2.90221i
\(453\) 0 0
\(454\) 39.8537 1.87043
\(455\) −47.9256 + 11.2538i −2.24679 + 0.527588i
\(456\) 0 0
\(457\) 36.6287i 1.71342i 0.515799 + 0.856710i \(0.327495\pi\)
−0.515799 + 0.856710i \(0.672505\pi\)
\(458\) 43.0700i 2.01253i
\(459\) 0 0
\(460\) −1.16746 4.97173i −0.0544329 0.231808i
\(461\) −28.8297 −1.34273 −0.671367 0.741125i \(-0.734293\pi\)
−0.671367 + 0.741125i \(0.734293\pi\)
\(462\) 0 0
\(463\) 29.6409i 1.37753i −0.724984 0.688766i \(-0.758153\pi\)
0.724984 0.688766i \(-0.241847\pi\)
\(464\) −0.292570 −0.0135822
\(465\) 0 0
\(466\) −33.6782 −1.56011
\(467\) 26.4746i 1.22510i 0.790432 + 0.612550i \(0.209856\pi\)
−0.790432 + 0.612550i \(0.790144\pi\)
\(468\) 0 0
\(469\) −25.3245 −1.16938
\(470\) 24.7328 5.80773i 1.14084 0.267891i
\(471\) 0 0
\(472\) 29.9427i 1.37822i
\(473\) 28.4419i 1.30776i
\(474\) 0 0
\(475\) −7.60911 + 3.78207i −0.349130 + 0.173533i
\(476\) 24.1223 1.10564
\(477\) 0 0
\(478\) 4.60459i 0.210609i
\(479\) 27.1810 1.24193 0.620967 0.783837i \(-0.286740\pi\)
0.620967 + 0.783837i \(0.286740\pi\)
\(480\) 0 0
\(481\) −22.0160 −1.00384
\(482\) 12.7914i 0.582634i
\(483\) 0 0
\(484\) 13.0532 0.593325
\(485\) −0.196648 0.837444i −0.00892931 0.0380264i
\(486\) 0 0
\(487\) 32.0922i 1.45424i −0.686513 0.727118i \(-0.740859\pi\)
0.686513 0.727118i \(-0.259141\pi\)
\(488\) 14.0953i 0.638065i
\(489\) 0 0
\(490\) −9.77797 41.6405i −0.441724 1.88113i
\(491\) 10.0691 0.454414 0.227207 0.973847i \(-0.427041\pi\)
0.227207 + 0.973847i \(0.427041\pi\)
\(492\) 0 0
\(493\) 1.86794i 0.0841280i
\(494\) −22.0160 −0.990546
\(495\) 0 0
\(496\) −0.191421 −0.00859506
\(497\) 7.82523i 0.351009i
\(498\) 0 0
\(499\) 29.9416 1.34037 0.670185 0.742194i \(-0.266215\pi\)
0.670185 + 0.742194i \(0.266215\pi\)
\(500\) 28.4149 23.5437i 1.27075 1.05291i
\(501\) 0 0
\(502\) 21.3454i 0.952693i
\(503\) 24.0140i 1.07073i 0.844620 + 0.535366i \(0.179826\pi\)
−0.844620 + 0.535366i \(0.820174\pi\)
\(504\) 0 0
\(505\) 25.9256 6.08783i 1.15368 0.270905i
\(506\) 4.22860 0.187984
\(507\) 0 0
\(508\) 16.4674i 0.730625i
\(509\) −21.0771 −0.934227 −0.467113 0.884197i \(-0.654706\pi\)
−0.467113 + 0.884197i \(0.654706\pi\)
\(510\) 0 0
\(511\) 41.3245 1.82809
\(512\) 3.30707i 0.146153i
\(513\) 0 0
\(514\) −32.4920 −1.43316
\(515\) 7.64629 + 32.5625i 0.336936 + 1.43487i
\(516\) 0 0
\(517\) 13.0987i 0.576080i
\(518\) 35.2448i 1.54857i
\(519\) 0 0
\(520\) 36.6768 8.61241i 1.60839 0.377679i
\(521\) −11.6623 −0.510933 −0.255466 0.966818i \(-0.582229\pi\)
−0.255466 + 0.966818i \(0.582229\pi\)
\(522\) 0 0
\(523\) 36.3895i 1.59120i −0.605821 0.795601i \(-0.707155\pi\)
0.605821 0.795601i \(-0.292845\pi\)
\(524\) 65.0719 2.84268
\(525\) 0 0
\(526\) −16.0691 −0.700647
\(527\) 1.22215i 0.0532376i
\(528\) 0 0
\(529\) 22.5212 0.979181
\(530\) −38.4482 + 9.02837i −1.67008 + 0.392167i
\(531\) 0 0
\(532\) 21.9463i 0.951491i
\(533\) 0 0
\(534\) 0 0
\(535\) 2.00000 + 8.51720i 0.0864675 + 0.368231i
\(536\) 19.3805 0.837110
\(537\) 0 0
\(538\) 16.7896i 0.723853i
\(539\) 22.0532 0.949897
\(540\) 0 0
\(541\) 9.92564 0.426737 0.213368 0.976972i \(-0.431557\pi\)
0.213368 + 0.976972i \(0.431557\pi\)
\(542\) 53.7855i 2.31029i
\(543\) 0 0
\(544\) 9.92804 0.425661
\(545\) −16.4482 + 3.86235i −0.704565 + 0.165445i
\(546\) 0 0
\(547\) 9.03245i 0.386200i −0.981179 0.193100i \(-0.938146\pi\)
0.981179 0.193100i \(-0.0618541\pi\)
\(548\) 20.6765i 0.883258i
\(549\) 0 0
\(550\) 13.5997 + 27.3611i 0.579893 + 1.16668i
\(551\) 1.69944 0.0723986
\(552\) 0 0
\(553\) 8.03321i 0.341607i
\(554\) −6.70743 −0.284971
\(555\) 0 0
\(556\) 72.3141 3.06680
\(557\) 13.7145i 0.581101i 0.956860 + 0.290550i \(0.0938384\pi\)
−0.956860 + 0.290550i \(0.906162\pi\)
\(558\) 0 0
\(559\) −60.2953 −2.55022
\(560\) 0.585141 + 2.49188i 0.0247267 + 0.105301i
\(561\) 0 0
\(562\) 69.4672i 2.93030i
\(563\) 20.2781i 0.854621i 0.904105 + 0.427311i \(0.140539\pi\)
−0.904105 + 0.427311i \(0.859461\pi\)
\(564\) 0 0
\(565\) −9.55595 40.6950i −0.402022 1.71205i
\(566\) 4.63547 0.194843
\(567\) 0 0
\(568\) 5.98854i 0.251273i
\(569\) 13.3085 0.557923 0.278962 0.960302i \(-0.410010\pi\)
0.278962 + 0.960302i \(0.410010\pi\)
\(570\) 0 0
\(571\) −16.4204 −0.687174 −0.343587 0.939121i \(-0.611642\pi\)
−0.343587 + 0.939121i \(0.611642\pi\)
\(572\) 49.2951i 2.06113i
\(573\) 0 0
\(574\) 0 0
\(575\) −1.53997 3.09826i −0.0642213 0.129206i
\(576\) 0 0
\(577\) 14.7505i 0.614071i 0.951698 + 0.307036i \(0.0993371\pi\)
−0.951698 + 0.307036i \(0.900663\pi\)
\(578\) 31.1058i 1.29383i
\(579\) 0 0
\(580\) −7.18485 + 1.68714i −0.298334 + 0.0700546i
\(581\) 7.30855 0.303210
\(582\) 0 0
\(583\) 20.3625i 0.843329i
\(584\) −31.6251 −1.30866
\(585\) 0 0
\(586\) −25.0240 −1.03373
\(587\) 6.36385i 0.262664i −0.991338 0.131332i \(-0.958075\pi\)
0.991338 0.131332i \(-0.0419254\pi\)
\(588\) 0 0
\(589\) 1.11190 0.0458150
\(590\) 11.7686 + 50.1177i 0.484505 + 2.06331i
\(591\) 0 0
\(592\) 1.14472i 0.0470475i
\(593\) 30.0706i 1.23485i −0.786629 0.617426i \(-0.788176\pi\)
0.786629 0.617426i \(-0.211824\pi\)
\(594\) 0 0
\(595\) 15.9097 3.73589i 0.652233 0.153157i
\(596\) −14.0188 −0.574233
\(597\) 0 0
\(598\) 8.96442i 0.366582i
\(599\) −25.0587 −1.02387 −0.511936 0.859023i \(-0.671072\pi\)
−0.511936 + 0.859023i \(0.671072\pi\)
\(600\) 0 0
\(601\) 40.0320 1.63294 0.816469 0.577390i \(-0.195929\pi\)
0.816469 + 0.577390i \(0.195929\pi\)
\(602\) 96.5252i 3.93407i
\(603\) 0 0
\(604\) 37.3245 1.51871
\(605\) 8.60911 2.02158i 0.350010 0.0821889i
\(606\) 0 0
\(607\) 41.3557i 1.67858i 0.543687 + 0.839288i \(0.317028\pi\)
−0.543687 + 0.839288i \(0.682972\pi\)
\(608\) 9.03245i 0.366314i
\(609\) 0 0
\(610\) −5.53997 23.5925i −0.224307 0.955234i
\(611\) 27.7686 1.12340
\(612\) 0 0
\(613\) 40.5183i 1.63652i 0.574851 + 0.818258i \(0.305060\pi\)
−0.574851 + 0.818258i \(0.694940\pi\)
\(614\) −20.7766 −0.838474
\(615\) 0 0
\(616\) −31.0959 −1.25289
\(617\) 1.76865i 0.0712033i 0.999366 + 0.0356016i \(0.0113347\pi\)
−0.999366 + 0.0356016i \(0.988665\pi\)
\(618\) 0 0
\(619\) 0.249804 0.0100405 0.00502023 0.999987i \(-0.498402\pi\)
0.00502023 + 0.999987i \(0.498402\pi\)
\(620\) −4.70085 + 1.10385i −0.188791 + 0.0443317i
\(621\) 0 0
\(622\) 25.5884i 1.02600i
\(623\) 12.9451i 0.518633i
\(624\) 0 0
\(625\) 15.0945 19.9288i 0.603780 0.797151i
\(626\) 59.2530 2.36823
\(627\) 0 0
\(628\) 13.6003i 0.542709i
\(629\) 7.30855 0.291411
\(630\) 0 0
\(631\) 9.48922 0.377760 0.188880 0.982000i \(-0.439514\pi\)
0.188880 + 0.982000i \(0.439514\pi\)
\(632\) 6.14770i 0.244542i
\(633\) 0 0
\(634\) −1.92804 −0.0765723
\(635\) 2.55036 + 10.8610i 0.101208 + 0.431005i
\(636\) 0 0
\(637\) 46.7516i 1.85236i
\(638\) 6.11092i 0.241934i
\(639\) 0 0
\(640\) 9.65569 + 41.1197i 0.381675 + 1.62540i
\(641\) 49.9416 1.97258 0.986288 0.165035i \(-0.0527738\pi\)
0.986288 + 0.165035i \(0.0527738\pi\)
\(642\) 0 0
\(643\) 25.8589i 1.01977i 0.860241 + 0.509887i \(0.170313\pi\)
−0.860241 + 0.509887i \(0.829687\pi\)
\(644\) 8.93603 0.352129
\(645\) 0 0
\(646\) 7.30855 0.287551
\(647\) 32.1384i 1.26349i −0.775177 0.631745i \(-0.782339\pi\)
0.775177 0.631745i \(-0.217661\pi\)
\(648\) 0 0
\(649\) −26.5427 −1.04189
\(650\) 58.0042 28.8307i 2.27511 1.13083i
\(651\) 0 0
\(652\) 10.5537i 0.413315i
\(653\) 9.79247i 0.383209i 0.981472 + 0.191604i \(0.0613691\pi\)
−0.981472 + 0.191604i \(0.938631\pi\)
\(654\) 0 0
\(655\) 42.9177 10.0779i 1.67693 0.393775i
\(656\) 0 0
\(657\) 0 0
\(658\) 44.4540i 1.73300i
\(659\) −7.55835 −0.294432 −0.147216 0.989104i \(-0.547031\pi\)
−0.147216 + 0.989104i \(0.547031\pi\)
\(660\) 0 0
\(661\) −10.9041 −0.424119 −0.212060 0.977257i \(-0.568017\pi\)
−0.212060 + 0.977257i \(0.568017\pi\)
\(662\) 50.8096i 1.97477i
\(663\) 0 0
\(664\) −5.59313 −0.217056
\(665\) −3.39888 14.4745i −0.131803 0.561296i
\(666\) 0 0
\(667\) 0.691975i 0.0267934i
\(668\) 48.2048i 1.86510i
\(669\) 0 0
\(670\) 32.4388 7.61725i 1.25322 0.294280i
\(671\) 12.4948 0.482357
\(672\) 0 0
\(673\) 12.6296i 0.486836i 0.969921 + 0.243418i \(0.0782687\pi\)
−0.969921 + 0.243418i \(0.921731\pi\)
\(674\) 17.8377 0.687083
\(675\) 0 0
\(676\) 61.5959 2.36907
\(677\) 8.87065i 0.340927i −0.985364 0.170463i \(-0.945474\pi\)
0.985364 0.170463i \(-0.0545265\pi\)
\(678\) 0 0
\(679\) 1.50519 0.0577641
\(680\) −12.1754 + 2.85902i −0.466907 + 0.109639i
\(681\) 0 0
\(682\) 3.99821i 0.153099i
\(683\) 24.4749i 0.936507i −0.883594 0.468254i \(-0.844883\pi\)
0.883594 0.468254i \(-0.155117\pi\)
\(684\) 0 0
\(685\) 3.20223 + 13.6370i 0.122351 + 0.521045i
\(686\) 11.7874 0.450044
\(687\) 0 0
\(688\) 3.13504i 0.119522i
\(689\) −43.1675 −1.64455
\(690\) 0 0
\(691\) −3.30855 −0.125863 −0.0629315 0.998018i \(-0.520045\pi\)
−0.0629315 + 0.998018i \(0.520045\pi\)
\(692\) 29.7090i 1.12937i
\(693\) 0 0
\(694\) −21.5028 −0.816235
\(695\) 47.6942 11.1995i 1.80914 0.424821i
\(696\) 0 0
\(697\) 0 0
\(698\) 49.8729i 1.88772i
\(699\) 0 0
\(700\) 28.7394 + 57.8205i 1.08625 + 2.18541i
\(701\) 10.8485 0.409743 0.204871 0.978789i \(-0.434322\pi\)
0.204871 + 0.978789i \(0.434322\pi\)
\(702\) 0 0
\(703\) 6.64926i 0.250781i
\(704\) −34.0324 −1.28264
\(705\) 0 0
\(706\) −47.3405 −1.78168
\(707\) 46.5979i 1.75250i
\(708\) 0 0
\(709\) 31.1675 1.17052 0.585259 0.810846i \(-0.300993\pi\)
0.585259 + 0.810846i \(0.300993\pi\)
\(710\) −2.35371 10.0235i −0.0883333 0.376176i
\(711\) 0 0
\(712\) 9.90668i 0.371269i
\(713\) 0.452741i 0.0169553i
\(714\) 0 0
\(715\) 7.63448 + 32.5122i 0.285513 + 1.21589i
\(716\) 70.3301 2.62836
\(717\) 0 0
\(718\) 70.3672i 2.62608i
\(719\) −13.0056 −0.485027 −0.242513 0.970148i \(-0.577972\pi\)
−0.242513 + 0.970148i \(0.577972\pi\)
\(720\) 0 0
\(721\) −58.5268 −2.17965
\(722\) 37.0943i 1.38051i
\(723\) 0 0
\(724\) 56.0132 2.08171
\(725\) −4.47742 + 2.22548i −0.166287 + 0.0826521i
\(726\) 0 0
\(727\) 1.19089i 0.0441677i −0.999756 0.0220839i \(-0.992970\pi\)
0.999756 0.0220839i \(-0.00703008\pi\)
\(728\) 65.9218i 2.44322i
\(729\) 0 0
\(730\) −52.9336 + 12.4298i −1.95916 + 0.460048i
\(731\) 20.0160 0.740318
\(732\) 0 0
\(733\) 34.5990i 1.27794i −0.769231 0.638971i \(-0.779360\pi\)
0.769231 0.638971i \(-0.220640\pi\)
\(734\) 31.7314 1.17123
\(735\) 0 0
\(736\) 3.67781 0.135566
\(737\) 17.1799i 0.632829i
\(738\) 0 0
\(739\) 41.7821 1.53698 0.768491 0.639861i \(-0.221008\pi\)
0.768491 + 0.639861i \(0.221008\pi\)
\(740\) 6.60112 + 28.1115i 0.242662 + 1.03340i
\(741\) 0 0
\(742\) 69.1056i 2.53695i
\(743\) 4.02130i 0.147527i −0.997276 0.0737636i \(-0.976499\pi\)
0.997276 0.0737636i \(-0.0235010\pi\)
\(744\) 0 0
\(745\) −9.24599 + 2.17113i −0.338747 + 0.0795442i
\(746\) −62.7742 −2.29833
\(747\) 0 0
\(748\) 16.3643i 0.598338i
\(749\) −15.3085 −0.559362
\(750\) 0 0
\(751\) −0.497206 −0.0181433 −0.00907166 0.999959i \(-0.502888\pi\)
−0.00907166 + 0.999959i \(0.502888\pi\)
\(752\) 1.44382i 0.0526507i
\(753\) 0 0
\(754\) −12.9548 −0.471787
\(755\) 24.6171 5.78056i 0.895908 0.210376i
\(756\) 0 0
\(757\) 18.6944i 0.679458i −0.940523 0.339729i \(-0.889665\pi\)
0.940523 0.339729i \(-0.110335\pi\)
\(758\) 37.7734i 1.37199i
\(759\) 0 0
\(760\) 2.60112 + 11.0771i 0.0943524 + 0.401809i
\(761\) 3.38291 0.122630 0.0613151 0.998118i \(-0.480471\pi\)
0.0613151 + 0.998118i \(0.480471\pi\)
\(762\) 0 0
\(763\) 29.5635i 1.07027i
\(764\) −27.7474 −1.00386
\(765\) 0 0
\(766\) 27.0240 0.976416
\(767\) 56.2692i 2.03176i
\(768\) 0 0
\(769\) 7.41486 0.267387 0.133693 0.991023i \(-0.457316\pi\)
0.133693 + 0.991023i \(0.457316\pi\)
\(770\) −52.0479 + 12.2218i −1.87568 + 0.440444i
\(771\) 0 0
\(772\) 2.61162i 0.0939944i
\(773\) 33.2775i 1.19691i −0.801156 0.598455i \(-0.795782\pi\)
0.801156 0.598455i \(-0.204218\pi\)
\(774\) 0 0
\(775\) −2.92945 + 1.45607i −0.105229 + 0.0523036i
\(776\) −1.15190 −0.0413510
\(777\) 0 0
\(778\) 27.6275i 0.990495i
\(779\) 0 0
\(780\) 0 0
\(781\) 5.30855 0.189955
\(782\) 2.97588i 0.106417i
\(783\) 0 0
\(784\) −2.43084 −0.0868156
\(785\) −2.10631 8.96994i −0.0751775 0.320151i
\(786\) 0 0
\(787\) 18.2878i 0.651890i 0.945389 + 0.325945i \(0.105682\pi\)
−0.945389 + 0.325945i \(0.894318\pi\)
\(788\) 80.8841i 2.88138i
\(789\) 0 0
\(790\) 2.41627 + 10.2899i 0.0859671 + 0.366100i
\(791\) 73.1439 2.60070
\(792\) 0 0
\(793\) 26.4883i 0.940629i
\(794\) −13.8909 −0.492968
\(795\) 0 0
\(796\) 63.7290 2.25881
\(797\) 44.5845i 1.57926i 0.613581 + 0.789632i \(0.289729\pi\)
−0.613581 + 0.789632i \(0.710271\pi\)
\(798\) 0 0
\(799\) −9.21821 −0.326117
\(800\) 11.8283 + 23.7973i 0.418194 + 0.841360i
\(801\) 0 0
\(802\) 49.4202i 1.74509i
\(803\) 28.0341i 0.989302i
\(804\) 0 0
\(805\) 5.89369 1.38395i 0.207725 0.0487778i
\(806\) −8.47600 −0.298554
\(807\) 0 0
\(808\) 35.6607i 1.25454i
\(809\) 14.1063 0.495952 0.247976 0.968766i \(-0.420235\pi\)
0.247976 + 0.968766i \(0.420235\pi\)
\(810\) 0 0
\(811\) 28.0000 0.983213 0.491606 0.870817i \(-0.336410\pi\)
0.491606 + 0.870817i \(0.336410\pi\)
\(812\) 12.9138i 0.453186i
\(813\) 0 0
\(814\) −23.9097 −0.838033
\(815\) −1.63448 6.96061i −0.0572535 0.243820i
\(816\) 0 0
\(817\) 18.2104i 0.637100i
\(818\) 10.3484i 0.361822i
\(819\) 0 0
\(820\) 0 0
\(821\) −18.1571 −0.633686 −0.316843 0.948478i \(-0.602623\pi\)
−0.316843 + 0.948478i \(0.602623\pi\)
\(822\) 0 0
\(823\) 3.25189i 0.113354i −0.998393 0.0566770i \(-0.981949\pi\)
0.998393 0.0566770i \(-0.0180505\pi\)
\(824\) 44.7897 1.56032
\(825\) 0 0
\(826\) −90.0799 −3.13428
\(827\) 10.7155i 0.372615i −0.982492 0.186307i \(-0.940348\pi\)
0.982492 0.186307i \(-0.0596520\pi\)
\(828\) 0 0
\(829\) −52.3461 −1.81805 −0.909027 0.416736i \(-0.863174\pi\)
−0.909027 + 0.416736i \(0.863174\pi\)
\(830\) −9.36170 + 2.19830i −0.324949 + 0.0763043i
\(831\) 0 0
\(832\) 72.1469i 2.50124i
\(833\) 15.5199i 0.537733i
\(834\) 0 0
\(835\) −7.46561 31.7931i −0.258358 1.10024i
\(836\) −14.8881 −0.514916
\(837\) 0 0
\(838\) 9.66192i 0.333765i
\(839\) 24.6703 0.851712 0.425856 0.904791i \(-0.359973\pi\)
0.425856 + 0.904791i \(0.359973\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 42.6173i 1.46869i
\(843\) 0 0
\(844\) −63.5535 −2.18760
\(845\) 40.6251 9.53954i 1.39755 0.328170i
\(846\) 0 0
\(847\) 15.4737i 0.531684i
\(848\) 2.24448i 0.0770758i
\(849\) 0 0
\(850\) −19.2554 + 9.57079i −0.660454 + 0.328275i
\(851\) 2.70743 0.0928095
\(852\) 0 0
\(853\) 28.1115i 0.962520i 0.876578 + 0.481260i \(0.159821\pi\)
−0.876578 + 0.481260i \(0.840179\pi\)
\(854\) 42.4045 1.45105
\(855\) 0 0
\(856\) 11.7154 0.400425
\(857\) 8.39482i 0.286762i −0.989668 0.143381i \(-0.954203\pi\)
0.989668 0.143381i \(-0.0457974\pi\)
\(858\) 0 0
\(859\) −17.8405 −0.608711 −0.304356 0.952559i \(-0.598441\pi\)
−0.304356 + 0.952559i \(0.598441\pi\)
\(860\) 18.0785 + 76.9893i 0.616473 + 2.62531i
\(861\) 0 0
\(862\) 85.4793i 2.91144i
\(863\) 2.48249i 0.0845049i −0.999107 0.0422524i \(-0.986547\pi\)
0.999107 0.0422524i \(-0.0134534\pi\)
\(864\) 0 0
\(865\) −4.60112 19.5943i −0.156443 0.666227i
\(866\) −38.8113 −1.31886
\(867\) 0 0
\(868\) 8.44916i 0.286783i
\(869\) −5.44964 −0.184866
\(870\) 0 0
\(871\) 36.4204 1.23406
\(872\) 22.6245i 0.766164i
\(873\) 0 0
\(874\) 2.70743 0.0915802
\(875\) 27.9097 + 33.6841i 0.943519 + 1.13873i
\(876\) 0 0
\(877\) 25.9813i 0.877325i −0.898652 0.438662i \(-0.855452\pi\)
0.898652 0.438662i \(-0.144548\pi\)
\(878\) 21.2230i 0.716243i
\(879\) 0 0
\(880\) 1.69046 0.396953i 0.0569856 0.0133813i
\(881\) −25.1279 −0.846580 −0.423290 0.905994i \(-0.639125\pi\)
−0.423290 + 0.905994i \(0.639125\pi\)
\(882\) 0 0
\(883\) 10.9684i 0.369117i −0.982822 0.184559i \(-0.940914\pi\)
0.982822 0.184559i \(-0.0590856\pi\)
\(884\) −34.6915 −1.16680
\(885\) 0 0
\(886\) −43.5188 −1.46204
\(887\) 2.99897i 0.100695i −0.998732 0.0503477i \(-0.983967\pi\)
0.998732 0.0503477i \(-0.0160330\pi\)
\(888\) 0 0
\(889\) −19.5212 −0.654719
\(890\) 3.89369 + 16.5817i 0.130517 + 0.555819i
\(891\) 0 0
\(892\) 35.8742i 1.20116i
\(893\) 8.38665i 0.280649i
\(894\) 0 0
\(895\) 46.3857 10.8922i 1.55050 0.364087i
\(896\) −73.9073 −2.46907
\(897\) 0 0
\(898\) 72.1183i 2.40662i
\(899\) 0.654273 0.0218212
\(900\) 0 0
\(901\) 14.3301 0.477405
\(902\) 0 0
\(903\) 0 0
\(904\) −55.9760 −1.86173
\(905\) 36.9430 8.67492i 1.22803 0.288364i
\(906\) 0 0
\(907\) 50.5567i 1.67871i 0.543585 + 0.839354i \(0.317066\pi\)
−0.543585 + 0.839354i \(0.682934\pi\)
\(908\) 57.1341i 1.89606i
\(909\) 0 0
\(910\) 25.9097 + 110.339i 0.858897 + 3.65770i
\(911\) −35.9044 −1.18957 −0.594784 0.803886i \(-0.702762\pi\)
−0.594784 + 0.803886i \(0.702762\pi\)
\(912\) 0 0
\(913\) 4.95804i 0.164087i
\(914\) 84.3301 2.78939
\(915\) 0 0
\(916\) 61.7450 2.04011
\(917\) 77.1388i 2.54735i
\(918\) 0 0
\(919\) −15.2022 −0.501475 −0.250738 0.968055i \(-0.580673\pi\)
−0.250738 + 0.968055i \(0.580673\pi\)
\(920\) −4.51036 + 1.05912i −0.148702 + 0.0349181i
\(921\) 0 0
\(922\) 66.3745i 2.18593i
\(923\) 11.2538i 0.370425i
\(924\) 0 0
\(925\) 8.70743 + 17.5184i 0.286299 + 0.576001i
\(926\) −68.2422 −2.24258
\(927\) 0 0
\(928\) 5.31495i 0.174472i
\(929\) −6.00000 −0.196854 −0.0984268 0.995144i \(-0.531381\pi\)
−0.0984268 + 0.995144i \(0.531381\pi\)
\(930\) 0 0
\(931\) 14.1199 0.462761
\(932\) 48.2810i 1.58150i
\(933\) 0 0
\(934\) 60.9524 1.99442
\(935\) −2.53439 10.7929i −0.0828833 0.352967i
\(936\) 0 0
\(937\) 32.1859i 1.05147i −0.850649 0.525734i \(-0.823791\pi\)
0.850649 0.525734i \(-0.176209\pi\)
\(938\) 58.3045i 1.90371i
\(939\) 0 0
\(940\) −8.32594 35.4568i −0.271562 1.15647i
\(941\) −22.3697 −0.729231 −0.364616 0.931158i \(-0.618800\pi\)
−0.364616 + 0.931158i \(0.618800\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 2.92570 0.0952236
\(945\) 0 0
\(946\) −65.4816 −2.12899
\(947\) 0.122381i 0.00397684i −0.999998 0.00198842i \(-0.999367\pi\)
0.999998 0.00198842i \(-0.000632935\pi\)
\(948\) 0 0
\(949\) −59.4308 −1.92921
\(950\) 8.70743 + 17.5184i 0.282506 + 0.568372i
\(951\) 0 0
\(952\) 21.8838i 0.709257i
\(953\) 55.4917i 1.79755i −0.438409 0.898776i \(-0.644458\pi\)
0.438409 0.898776i \(-0.355542\pi\)
\(954\) 0 0
\(955\) −18.3006 + 4.29732i −0.592192 + 0.139058i
\(956\) 6.60112 0.213495
\(957\) 0 0
\(958\) 62.5787i 2.02183i
\(959\) −24.5108 −0.791494
\(960\) 0 0
\(961\) −30.5719 −0.986191
\(962\) 50.6873i 1.63422i
\(963\) 0 0
\(964\) 18.3377 0.590619
\(965\) −0.404470 1.72248i −0.0130203 0.0554485i
\(966\) 0 0
\(967\) 49.0722i 1.57806i 0.614357 + 0.789028i \(0.289416\pi\)
−0.614357 + 0.789028i \(0.710584\pi\)
\(968\) 11.8418i 0.380611i
\(969\) 0 0
\(970\) −1.92804 + 0.452741i −0.0619057 + 0.0145366i
\(971\) −2.08793 −0.0670050 −0.0335025 0.999439i \(-0.510666\pi\)
−0.0335025 + 0.999439i \(0.510666\pi\)
\(972\) 0 0
\(973\) 85.7241i 2.74819i
\(974\) −73.8856 −2.36745
\(975\) 0 0
\(976\) −1.37725 −0.0440849
\(977\) 36.5119i 1.16812i 0.811711 + 0.584059i \(0.198536\pi\)
−0.811711 + 0.584059i \(0.801464\pi\)
\(978\) 0 0
\(979\) −8.78179 −0.280667
\(980\) −59.6956 + 14.0177i −1.90691 + 0.447778i
\(981\) 0 0
\(982\) 23.1821i 0.739771i
\(983\) 32.8698i 1.04838i 0.851601 + 0.524191i \(0.175632\pi\)
−0.851601 + 0.524191i \(0.824368\pi\)
\(984\) 0 0
\(985\) −12.5268 53.3465i −0.399136 1.69976i
\(986\) 4.30056 0.136958
\(987\) 0 0
\(988\) 31.5620i 1.00412i
\(989\) 7.41486 0.235779
\(990\) 0 0
\(991\) −36.0160 −1.14409 −0.572043 0.820224i \(-0.693849\pi\)
−0.572043 + 0.820224i \(0.693849\pi\)
\(992\) 3.47743i 0.110409i
\(993\) 0 0
\(994\) 18.0160 0.571432
\(995\) 42.0320 9.86990i 1.33250 0.312897i
\(996\) 0 0
\(997\) 56.8063i 1.79907i −0.436844 0.899537i \(-0.643904\pi\)
0.436844 0.899537i \(-0.356096\pi\)
\(998\) 68.9344i 2.18208i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.h.784.2 6
3.2 odd 2 145.2.b.c.59.5 yes 6
5.2 odd 4 6525.2.a.bt.1.5 6
5.3 odd 4 6525.2.a.bt.1.2 6
5.4 even 2 inner 1305.2.c.h.784.5 6
12.11 even 2 2320.2.d.g.929.6 6
15.2 even 4 725.2.a.l.1.2 6
15.8 even 4 725.2.a.l.1.5 6
15.14 odd 2 145.2.b.c.59.2 6
60.59 even 2 2320.2.d.g.929.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.c.59.2 6 15.14 odd 2
145.2.b.c.59.5 yes 6 3.2 odd 2
725.2.a.l.1.2 6 15.2 even 4
725.2.a.l.1.5 6 15.8 even 4
1305.2.c.h.784.2 6 1.1 even 1 trivial
1305.2.c.h.784.5 6 5.4 even 2 inner
2320.2.d.g.929.1 6 60.59 even 2
2320.2.d.g.929.6 6 12.11 even 2
6525.2.a.bt.1.2 6 5.3 odd 4
6525.2.a.bt.1.5 6 5.2 odd 4