Properties

Label 1305.2.c.h
Level $1305$
Weight $2$
Character orbit 1305.c
Analytic conductor $10.420$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.84345856.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 41x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{4} + \beta_{3} - 3) q^{4} - \beta_{3} q^{5} + ( - \beta_{5} + \beta_{3} + \cdots + \beta_1) q^{7} + ( - \beta_{5} + \beta_{3} + \cdots - 2 \beta_1) q^{8} + (2 \beta_{5} - \beta_{3} - 2 \beta_{2} + \cdots - 1) q^{10}+ \cdots + (6 \beta_{5} - 4 \beta_{3} + \cdots - 5 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 14 q^{4} - 3 q^{5} - 3 q^{10} + 10 q^{11} - 8 q^{14} + 42 q^{16} - 16 q^{19} - 13 q^{20} + 11 q^{25} + 46 q^{26} - 6 q^{29} + 22 q^{31} - 20 q^{34} + 12 q^{35} + 21 q^{40} - 2 q^{44} - 44 q^{46} + 2 q^{49}+ \cdots + 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 13x^{4} + 41x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + \nu^{4} + 14\nu^{3} + 6\nu^{2} + 47\nu - 5 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{5} - \nu^{4} + 14\nu^{3} - 6\nu^{2} + 47\nu + 5 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} + \nu^{4} - 14\nu^{3} + 10\nu^{2} - 47\nu + 15 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} + 12\nu^{3} + 35\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{5} + \beta_{3} + \beta_{2} - 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -6\beta_{4} - 8\beta_{3} + 2\beta_{2} + 35 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 14\beta_{5} - 12\beta_{3} - 12\beta_{2} + 37\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
784.1
2.77035i
2.30229i
0.156785i
0.156785i
2.30229i
2.77035i
2.77035i 0 −5.67486 1.96358 1.06975i 0 1.86960i 10.1807i 0 −2.96358 5.43981i
784.2 2.30229i 0 −3.30056 −2.17686 + 0.511167i 0 3.91261i 2.99427i 0 1.17686 + 5.01177i
784.3 0.156785i 0 1.97542 −1.28672 + 1.82876i 0 1.09364i 0.623285i 0 0.286721 + 0.201738i
784.4 0.156785i 0 1.97542 −1.28672 1.82876i 0 1.09364i 0.623285i 0 0.286721 0.201738i
784.5 2.30229i 0 −3.30056 −2.17686 0.511167i 0 3.91261i 2.99427i 0 1.17686 5.01177i
784.6 2.77035i 0 −5.67486 1.96358 + 1.06975i 0 1.86960i 10.1807i 0 −2.96358 + 5.43981i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 784.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1305.2.c.h 6
3.b odd 2 1 145.2.b.c 6
5.b even 2 1 inner 1305.2.c.h 6
5.c odd 4 2 6525.2.a.bt 6
12.b even 2 1 2320.2.d.g 6
15.d odd 2 1 145.2.b.c 6
15.e even 4 2 725.2.a.l 6
60.h even 2 1 2320.2.d.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.2.b.c 6 3.b odd 2 1
145.2.b.c 6 15.d odd 2 1
725.2.a.l 6 15.e even 4 2
1305.2.c.h 6 1.a even 1 1 trivial
1305.2.c.h 6 5.b even 2 1 inner
2320.2.d.g 6 12.b even 2 1
2320.2.d.g 6 60.h even 2 1
6525.2.a.bt 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1305, [\chi])\):

\( T_{2}^{6} + 13T_{2}^{4} + 41T_{2}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{6} + 20T_{7}^{4} + 76T_{7}^{2} + 64 \) Copy content Toggle raw display
\( T_{11}^{3} - 5T_{11}^{2} - 6T_{11} + 38 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 13 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 3 T^{5} + \cdots + 125 \) Copy content Toggle raw display
$7$ \( T^{6} + 20 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( (T^{3} - 5 T^{2} - 6 T + 38)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 59 T^{4} + \cdots + 5776 \) Copy content Toggle raw display
$17$ \( T^{6} + 48 T^{4} + \cdots + 784 \) Copy content Toggle raw display
$19$ \( (T^{3} + 8 T^{2} + 6 T - 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 56 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( (T + 1)^{6} \) Copy content Toggle raw display
$31$ \( (T^{3} - 11 T^{2} + \cdots + 22)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 20 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} + 127 T^{4} + \cdots + 196 \) Copy content Toggle raw display
$47$ \( T^{6} + 63 T^{4} + \cdots + 8836 \) Copy content Toggle raw display
$53$ \( T^{6} + 187 T^{4} + \cdots + 5776 \) Copy content Toggle raw display
$59$ \( (T - 10)^{6} \) Copy content Toggle raw display
$61$ \( (T^{3} - 6 T^{2} - 64 T - 64)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 140 T^{4} + \cdots + 92416 \) Copy content Toggle raw display
$71$ \( (T + 2)^{6} \) Copy content Toggle raw display
$73$ \( T^{6} + 188 T^{4} + \cdots + 3136 \) Copy content Toggle raw display
$79$ \( (T^{3} + T^{2} - 54 T + 98)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 48 T^{4} + \cdots + 784 \) Copy content Toggle raw display
$89$ \( (T^{3} + 16 T^{2} + \cdots - 304)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 476 T^{4} + \cdots + 7744 \) Copy content Toggle raw display
show more
show less