Properties

Label 1305.2.c.f.784.1
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.1
Root \(-1.93185i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.f.784.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.93185i q^{2} -1.73205 q^{4} +(-1.73205 - 1.41421i) q^{5} -2.44949i q^{7} -0.517638i q^{8} +(-2.73205 + 3.34607i) q^{10} +4.73205 q^{11} -6.69213i q^{13} -4.73205 q^{14} -4.46410 q^{16} +1.41421i q^{17} +6.73205 q^{19} +(3.00000 + 2.44949i) q^{20} -9.14162i q^{22} -3.48477i q^{23} +(1.00000 + 4.89898i) q^{25} -12.9282 q^{26} +4.24264i q^{28} +1.00000 q^{29} -5.26795 q^{31} +7.58871i q^{32} +2.73205 q^{34} +(-3.46410 + 4.24264i) q^{35} +0.656339i q^{37} -13.0053i q^{38} +(-0.732051 + 0.896575i) q^{40} -6.92820 q^{41} -0.656339i q^{43} -8.19615 q^{44} -6.73205 q^{46} +1.41421i q^{47} +1.00000 q^{49} +(9.46410 - 1.93185i) q^{50} +11.5911i q^{52} +8.76268i q^{53} +(-8.19615 - 6.69213i) q^{55} -1.26795 q^{56} -1.93185i q^{58} +10.3923 q^{59} -10.9282 q^{61} +10.1769i q^{62} +5.73205 q^{64} +(-9.46410 + 11.5911i) q^{65} -4.24264i q^{67} -2.44949i q^{68} +(8.19615 + 6.69213i) q^{70} +3.46410 q^{71} +7.34847i q^{73} +1.26795 q^{74} -11.6603 q^{76} -11.5911i q^{77} -6.19615 q^{79} +(7.73205 + 6.31319i) q^{80} +13.3843i q^{82} +4.52004i q^{83} +(2.00000 - 2.44949i) q^{85} -1.26795 q^{86} -2.44949i q^{88} -10.3923 q^{89} -16.3923 q^{91} +6.03579i q^{92} +2.73205 q^{94} +(-11.6603 - 9.52056i) q^{95} +6.03579i q^{97} -1.93185i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{10} + 12 q^{11} - 12 q^{14} - 4 q^{16} + 20 q^{19} + 12 q^{20} + 4 q^{25} - 24 q^{26} + 4 q^{29} - 28 q^{31} + 4 q^{34} + 4 q^{40} - 12 q^{44} - 20 q^{46} + 4 q^{49} + 24 q^{50} - 12 q^{55} - 12 q^{56}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.93185i 1.36603i −0.730406 0.683013i \(-0.760669\pi\)
0.730406 0.683013i \(-0.239331\pi\)
\(3\) 0 0
\(4\) −1.73205 −0.866025
\(5\) −1.73205 1.41421i −0.774597 0.632456i
\(6\) 0 0
\(7\) 2.44949i 0.925820i −0.886405 0.462910i \(-0.846805\pi\)
0.886405 0.462910i \(-0.153195\pi\)
\(8\) 0.517638i 0.183013i
\(9\) 0 0
\(10\) −2.73205 + 3.34607i −0.863950 + 1.05812i
\(11\) 4.73205 1.42677 0.713384 0.700774i \(-0.247162\pi\)
0.713384 + 0.700774i \(0.247162\pi\)
\(12\) 0 0
\(13\) 6.69213i 1.85606i −0.372502 0.928032i \(-0.621500\pi\)
0.372502 0.928032i \(-0.378500\pi\)
\(14\) −4.73205 −1.26469
\(15\) 0 0
\(16\) −4.46410 −1.11603
\(17\) 1.41421i 0.342997i 0.985184 + 0.171499i \(0.0548609\pi\)
−0.985184 + 0.171499i \(0.945139\pi\)
\(18\) 0 0
\(19\) 6.73205 1.54444 0.772219 0.635356i \(-0.219147\pi\)
0.772219 + 0.635356i \(0.219147\pi\)
\(20\) 3.00000 + 2.44949i 0.670820 + 0.547723i
\(21\) 0 0
\(22\) 9.14162i 1.94900i
\(23\) 3.48477i 0.726624i −0.931668 0.363312i \(-0.881646\pi\)
0.931668 0.363312i \(-0.118354\pi\)
\(24\) 0 0
\(25\) 1.00000 + 4.89898i 0.200000 + 0.979796i
\(26\) −12.9282 −2.53543
\(27\) 0 0
\(28\) 4.24264i 0.801784i
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −5.26795 −0.946152 −0.473076 0.881022i \(-0.656856\pi\)
−0.473076 + 0.881022i \(0.656856\pi\)
\(32\) 7.58871i 1.34151i
\(33\) 0 0
\(34\) 2.73205 0.468543
\(35\) −3.46410 + 4.24264i −0.585540 + 0.717137i
\(36\) 0 0
\(37\) 0.656339i 0.107901i 0.998544 + 0.0539507i \(0.0171814\pi\)
−0.998544 + 0.0539507i \(0.982819\pi\)
\(38\) 13.0053i 2.10974i
\(39\) 0 0
\(40\) −0.732051 + 0.896575i −0.115747 + 0.141761i
\(41\) −6.92820 −1.08200 −0.541002 0.841021i \(-0.681955\pi\)
−0.541002 + 0.841021i \(0.681955\pi\)
\(42\) 0 0
\(43\) 0.656339i 0.100091i −0.998747 0.0500454i \(-0.984063\pi\)
0.998747 0.0500454i \(-0.0159366\pi\)
\(44\) −8.19615 −1.23562
\(45\) 0 0
\(46\) −6.73205 −0.992587
\(47\) 1.41421i 0.206284i 0.994667 + 0.103142i \(0.0328896\pi\)
−0.994667 + 0.103142i \(0.967110\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 9.46410 1.93185i 1.33843 0.273205i
\(51\) 0 0
\(52\) 11.5911i 1.60740i
\(53\) 8.76268i 1.20365i 0.798629 + 0.601824i \(0.205559\pi\)
−0.798629 + 0.601824i \(0.794441\pi\)
\(54\) 0 0
\(55\) −8.19615 6.69213i −1.10517 0.902367i
\(56\) −1.26795 −0.169437
\(57\) 0 0
\(58\) 1.93185i 0.253665i
\(59\) 10.3923 1.35296 0.676481 0.736460i \(-0.263504\pi\)
0.676481 + 0.736460i \(0.263504\pi\)
\(60\) 0 0
\(61\) −10.9282 −1.39921 −0.699607 0.714528i \(-0.746641\pi\)
−0.699607 + 0.714528i \(0.746641\pi\)
\(62\) 10.1769i 1.29247i
\(63\) 0 0
\(64\) 5.73205 0.716506
\(65\) −9.46410 + 11.5911i −1.17388 + 1.43770i
\(66\) 0 0
\(67\) 4.24264i 0.518321i −0.965834 0.259161i \(-0.916554\pi\)
0.965834 0.259161i \(-0.0834459\pi\)
\(68\) 2.44949i 0.297044i
\(69\) 0 0
\(70\) 8.19615 + 6.69213i 0.979628 + 0.799863i
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 0 0
\(73\) 7.34847i 0.860073i 0.902811 + 0.430037i \(0.141499\pi\)
−0.902811 + 0.430037i \(0.858501\pi\)
\(74\) 1.26795 0.147396
\(75\) 0 0
\(76\) −11.6603 −1.33752
\(77\) 11.5911i 1.32093i
\(78\) 0 0
\(79\) −6.19615 −0.697122 −0.348561 0.937286i \(-0.613330\pi\)
−0.348561 + 0.937286i \(0.613330\pi\)
\(80\) 7.73205 + 6.31319i 0.864470 + 0.705836i
\(81\) 0 0
\(82\) 13.3843i 1.47804i
\(83\) 4.52004i 0.496139i 0.968742 + 0.248070i \(0.0797961\pi\)
−0.968742 + 0.248070i \(0.920204\pi\)
\(84\) 0 0
\(85\) 2.00000 2.44949i 0.216930 0.265684i
\(86\) −1.26795 −0.136726
\(87\) 0 0
\(88\) 2.44949i 0.261116i
\(89\) −10.3923 −1.10158 −0.550791 0.834643i \(-0.685674\pi\)
−0.550791 + 0.834643i \(0.685674\pi\)
\(90\) 0 0
\(91\) −16.3923 −1.71838
\(92\) 6.03579i 0.629275i
\(93\) 0 0
\(94\) 2.73205 0.281790
\(95\) −11.6603 9.52056i −1.19632 0.976789i
\(96\) 0 0
\(97\) 6.03579i 0.612842i 0.951896 + 0.306421i \(0.0991315\pi\)
−0.951896 + 0.306421i \(0.900869\pi\)
\(98\) 1.93185i 0.195146i
\(99\) 0 0
\(100\) −1.73205 8.48528i −0.173205 0.848528i
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 0.656339i 0.0646710i −0.999477 0.0323355i \(-0.989705\pi\)
0.999477 0.0323355i \(-0.0102945\pi\)
\(104\) −3.46410 −0.339683
\(105\) 0 0
\(106\) 16.9282 1.64421
\(107\) 3.96524i 0.383334i −0.981460 0.191667i \(-0.938611\pi\)
0.981460 0.191667i \(-0.0613894\pi\)
\(108\) 0 0
\(109\) 9.85641 0.944073 0.472036 0.881579i \(-0.343519\pi\)
0.472036 + 0.881579i \(0.343519\pi\)
\(110\) −12.9282 + 15.8338i −1.23266 + 1.50969i
\(111\) 0 0
\(112\) 10.9348i 1.03324i
\(113\) 1.69161i 0.159134i −0.996830 0.0795669i \(-0.974646\pi\)
0.996830 0.0795669i \(-0.0253537\pi\)
\(114\) 0 0
\(115\) −4.92820 + 6.03579i −0.459557 + 0.562840i
\(116\) −1.73205 −0.160817
\(117\) 0 0
\(118\) 20.0764i 1.84818i
\(119\) 3.46410 0.317554
\(120\) 0 0
\(121\) 11.3923 1.03566
\(122\) 21.1117i 1.91136i
\(123\) 0 0
\(124\) 9.12436 0.819391
\(125\) 5.19615 9.89949i 0.464758 0.885438i
\(126\) 0 0
\(127\) 4.24264i 0.376473i −0.982124 0.188237i \(-0.939723\pi\)
0.982124 0.188237i \(-0.0602772\pi\)
\(128\) 4.10394i 0.362740i
\(129\) 0 0
\(130\) 22.3923 + 18.2832i 1.96394 + 1.60355i
\(131\) 1.26795 0.110781 0.0553906 0.998465i \(-0.482360\pi\)
0.0553906 + 0.998465i \(0.482360\pi\)
\(132\) 0 0
\(133\) 16.4901i 1.42987i
\(134\) −8.19615 −0.708040
\(135\) 0 0
\(136\) 0.732051 0.0627728
\(137\) 5.00052i 0.427223i 0.976919 + 0.213611i \(0.0685226\pi\)
−0.976919 + 0.213611i \(0.931477\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 6.00000 7.34847i 0.507093 0.621059i
\(141\) 0 0
\(142\) 6.69213i 0.561591i
\(143\) 31.6675i 2.64817i
\(144\) 0 0
\(145\) −1.73205 1.41421i −0.143839 0.117444i
\(146\) 14.1962 1.17488
\(147\) 0 0
\(148\) 1.13681i 0.0934454i
\(149\) 12.9282 1.05912 0.529560 0.848273i \(-0.322357\pi\)
0.529560 + 0.848273i \(0.322357\pi\)
\(150\) 0 0
\(151\) 22.7846 1.85419 0.927093 0.374832i \(-0.122300\pi\)
0.927093 + 0.374832i \(0.122300\pi\)
\(152\) 3.48477i 0.282652i
\(153\) 0 0
\(154\) −22.3923 −1.80442
\(155\) 9.12436 + 7.45001i 0.732886 + 0.598399i
\(156\) 0 0
\(157\) 6.03579i 0.481709i −0.970561 0.240854i \(-0.922572\pi\)
0.970561 0.240854i \(-0.0774276\pi\)
\(158\) 11.9700i 0.952286i
\(159\) 0 0
\(160\) 10.7321 13.1440i 0.848443 1.03913i
\(161\) −8.53590 −0.672723
\(162\) 0 0
\(163\) 5.55532i 0.435126i −0.976046 0.217563i \(-0.930189\pi\)
0.976046 0.217563i \(-0.0698108\pi\)
\(164\) 12.0000 0.937043
\(165\) 0 0
\(166\) 8.73205 0.677739
\(167\) 8.38375i 0.648754i −0.945928 0.324377i \(-0.894845\pi\)
0.945928 0.324377i \(-0.105155\pi\)
\(168\) 0 0
\(169\) −31.7846 −2.44497
\(170\) −4.73205 3.86370i −0.362932 0.296333i
\(171\) 0 0
\(172\) 1.13681i 0.0866811i
\(173\) 9.52056i 0.723835i −0.932210 0.361917i \(-0.882122\pi\)
0.932210 0.361917i \(-0.117878\pi\)
\(174\) 0 0
\(175\) 12.0000 2.44949i 0.907115 0.185164i
\(176\) −21.1244 −1.59231
\(177\) 0 0
\(178\) 20.0764i 1.50479i
\(179\) 9.46410 0.707380 0.353690 0.935363i \(-0.384927\pi\)
0.353690 + 0.935363i \(0.384927\pi\)
\(180\) 0 0
\(181\) −16.0000 −1.18927 −0.594635 0.803996i \(-0.702704\pi\)
−0.594635 + 0.803996i \(0.702704\pi\)
\(182\) 31.6675i 2.34735i
\(183\) 0 0
\(184\) −1.80385 −0.132981
\(185\) 0.928203 1.13681i 0.0682429 0.0835801i
\(186\) 0 0
\(187\) 6.69213i 0.489377i
\(188\) 2.44949i 0.178647i
\(189\) 0 0
\(190\) −18.3923 + 22.5259i −1.33432 + 1.63420i
\(191\) 9.12436 0.660215 0.330108 0.943943i \(-0.392915\pi\)
0.330108 + 0.943943i \(0.392915\pi\)
\(192\) 0 0
\(193\) 9.14162i 0.658028i 0.944325 + 0.329014i \(0.106716\pi\)
−0.944325 + 0.329014i \(0.893284\pi\)
\(194\) 11.6603 0.837157
\(195\) 0 0
\(196\) −1.73205 −0.123718
\(197\) 16.7675i 1.19463i 0.802005 + 0.597317i \(0.203767\pi\)
−0.802005 + 0.597317i \(0.796233\pi\)
\(198\) 0 0
\(199\) 14.0000 0.992434 0.496217 0.868199i \(-0.334722\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) 2.53590 0.517638i 0.179315 0.0366025i
\(201\) 0 0
\(202\) 11.5911i 0.815548i
\(203\) 2.44949i 0.171920i
\(204\) 0 0
\(205\) 12.0000 + 9.79796i 0.838116 + 0.684319i
\(206\) −1.26795 −0.0883422
\(207\) 0 0
\(208\) 29.8744i 2.07141i
\(209\) 31.8564 2.20355
\(210\) 0 0
\(211\) −11.2679 −0.775718 −0.387859 0.921719i \(-0.626785\pi\)
−0.387859 + 0.921719i \(0.626785\pi\)
\(212\) 15.1774i 1.04239i
\(213\) 0 0
\(214\) −7.66025 −0.523644
\(215\) −0.928203 + 1.13681i −0.0633029 + 0.0775299i
\(216\) 0 0
\(217\) 12.9038i 0.875966i
\(218\) 19.0411i 1.28963i
\(219\) 0 0
\(220\) 14.1962 + 11.5911i 0.957104 + 0.781472i
\(221\) 9.46410 0.636624
\(222\) 0 0
\(223\) 23.8386i 1.59635i 0.602427 + 0.798174i \(0.294200\pi\)
−0.602427 + 0.798174i \(0.705800\pi\)
\(224\) 18.5885 1.24199
\(225\) 0 0
\(226\) −3.26795 −0.217381
\(227\) 10.6574i 0.707354i −0.935368 0.353677i \(-0.884931\pi\)
0.935368 0.353677i \(-0.115069\pi\)
\(228\) 0 0
\(229\) 22.7846 1.50565 0.752825 0.658221i \(-0.228691\pi\)
0.752825 + 0.658221i \(0.228691\pi\)
\(230\) 11.6603 + 9.52056i 0.768854 + 0.627767i
\(231\) 0 0
\(232\) 0.517638i 0.0339846i
\(233\) 26.0106i 1.70401i −0.523530 0.852007i \(-0.675385\pi\)
0.523530 0.852007i \(-0.324615\pi\)
\(234\) 0 0
\(235\) 2.00000 2.44949i 0.130466 0.159787i
\(236\) −18.0000 −1.17170
\(237\) 0 0
\(238\) 6.69213i 0.433786i
\(239\) −10.3923 −0.672222 −0.336111 0.941822i \(-0.609112\pi\)
−0.336111 + 0.941822i \(0.609112\pi\)
\(240\) 0 0
\(241\) 4.53590 0.292183 0.146091 0.989271i \(-0.453331\pi\)
0.146091 + 0.989271i \(0.453331\pi\)
\(242\) 22.0082i 1.41474i
\(243\) 0 0
\(244\) 18.9282 1.21175
\(245\) −1.73205 1.41421i −0.110657 0.0903508i
\(246\) 0 0
\(247\) 45.0518i 2.86657i
\(248\) 2.72689i 0.173158i
\(249\) 0 0
\(250\) −19.1244 10.0382i −1.20953 0.634871i
\(251\) 9.12436 0.575924 0.287962 0.957642i \(-0.407022\pi\)
0.287962 + 0.957642i \(0.407022\pi\)
\(252\) 0 0
\(253\) 16.4901i 1.03672i
\(254\) −8.19615 −0.514272
\(255\) 0 0
\(256\) 19.3923 1.21202
\(257\) 4.62158i 0.288286i −0.989557 0.144143i \(-0.953957\pi\)
0.989557 0.144143i \(-0.0460425\pi\)
\(258\) 0 0
\(259\) 1.60770 0.0998973
\(260\) 16.3923 20.0764i 1.01661 1.24508i
\(261\) 0 0
\(262\) 2.44949i 0.151330i
\(263\) 24.5964i 1.51668i 0.651859 + 0.758341i \(0.273990\pi\)
−0.651859 + 0.758341i \(0.726010\pi\)
\(264\) 0 0
\(265\) 12.3923 15.1774i 0.761253 0.932341i
\(266\) −31.8564 −1.95324
\(267\) 0 0
\(268\) 7.34847i 0.448879i
\(269\) −12.0000 −0.731653 −0.365826 0.930683i \(-0.619214\pi\)
−0.365826 + 0.930683i \(0.619214\pi\)
\(270\) 0 0
\(271\) −23.2679 −1.41343 −0.706714 0.707500i \(-0.749823\pi\)
−0.706714 + 0.707500i \(0.749823\pi\)
\(272\) 6.31319i 0.382794i
\(273\) 0 0
\(274\) 9.66025 0.583597
\(275\) 4.73205 + 23.1822i 0.285353 + 1.39794i
\(276\) 0 0
\(277\) 23.6627i 1.42175i −0.703317 0.710877i \(-0.748298\pi\)
0.703317 0.710877i \(-0.251702\pi\)
\(278\) 15.4548i 0.926918i
\(279\) 0 0
\(280\) 2.19615 + 1.79315i 0.131245 + 0.107161i
\(281\) 8.78461 0.524046 0.262023 0.965062i \(-0.415610\pi\)
0.262023 + 0.965062i \(0.415610\pi\)
\(282\) 0 0
\(283\) 1.96902i 0.117046i 0.998286 + 0.0585229i \(0.0186391\pi\)
−0.998286 + 0.0585229i \(0.981361\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) −61.1769 −3.61747
\(287\) 16.9706i 1.00174i
\(288\) 0 0
\(289\) 15.0000 0.882353
\(290\) −2.73205 + 3.34607i −0.160432 + 0.196488i
\(291\) 0 0
\(292\) 12.7279i 0.744845i
\(293\) 25.8348i 1.50928i −0.656137 0.754642i \(-0.727811\pi\)
0.656137 0.754642i \(-0.272189\pi\)
\(294\) 0 0
\(295\) −18.0000 14.6969i −1.04800 0.855689i
\(296\) 0.339746 0.0197473
\(297\) 0 0
\(298\) 24.9754i 1.44678i
\(299\) −23.3205 −1.34866
\(300\) 0 0
\(301\) −1.60770 −0.0926660
\(302\) 44.0165i 2.53286i
\(303\) 0 0
\(304\) −30.0526 −1.72363
\(305\) 18.9282 + 15.4548i 1.08383 + 0.884940i
\(306\) 0 0
\(307\) 18.9396i 1.08094i 0.841364 + 0.540469i \(0.181753\pi\)
−0.841364 + 0.540469i \(0.818247\pi\)
\(308\) 20.0764i 1.14396i
\(309\) 0 0
\(310\) 14.3923 17.6269i 0.817428 1.00114i
\(311\) −24.5885 −1.39428 −0.697142 0.716933i \(-0.745545\pi\)
−0.697142 + 0.716933i \(0.745545\pi\)
\(312\) 0 0
\(313\) 18.7637i 1.06059i −0.847814 0.530294i \(-0.822082\pi\)
0.847814 0.530294i \(-0.177918\pi\)
\(314\) −11.6603 −0.658026
\(315\) 0 0
\(316\) 10.7321 0.603725
\(317\) 25.3543i 1.42404i −0.702159 0.712020i \(-0.747781\pi\)
0.702159 0.712020i \(-0.252219\pi\)
\(318\) 0 0
\(319\) 4.73205 0.264944
\(320\) −9.92820 8.10634i −0.555003 0.453158i
\(321\) 0 0
\(322\) 16.4901i 0.918957i
\(323\) 9.52056i 0.529738i
\(324\) 0 0
\(325\) 32.7846 6.69213i 1.81856 0.371213i
\(326\) −10.7321 −0.594393
\(327\) 0 0
\(328\) 3.58630i 0.198020i
\(329\) 3.46410 0.190982
\(330\) 0 0
\(331\) −7.80385 −0.428938 −0.214469 0.976731i \(-0.568802\pi\)
−0.214469 + 0.976731i \(0.568802\pi\)
\(332\) 7.82894i 0.429669i
\(333\) 0 0
\(334\) −16.1962 −0.886214
\(335\) −6.00000 + 7.34847i −0.327815 + 0.401490i
\(336\) 0 0
\(337\) 23.0064i 1.25324i 0.779327 + 0.626618i \(0.215561\pi\)
−0.779327 + 0.626618i \(0.784439\pi\)
\(338\) 61.4032i 3.33989i
\(339\) 0 0
\(340\) −3.46410 + 4.24264i −0.187867 + 0.230089i
\(341\) −24.9282 −1.34994
\(342\) 0 0
\(343\) 19.5959i 1.05808i
\(344\) −0.339746 −0.0183179
\(345\) 0 0
\(346\) −18.3923 −0.988776
\(347\) 6.79367i 0.364703i 0.983233 + 0.182352i \(0.0583709\pi\)
−0.983233 + 0.182352i \(0.941629\pi\)
\(348\) 0 0
\(349\) −18.7846 −1.00552 −0.502759 0.864427i \(-0.667682\pi\)
−0.502759 + 0.864427i \(0.667682\pi\)
\(350\) −4.73205 23.1822i −0.252939 1.23914i
\(351\) 0 0
\(352\) 35.9101i 1.91402i
\(353\) 12.1459i 0.646462i −0.946320 0.323231i \(-0.895231\pi\)
0.946320 0.323231i \(-0.104769\pi\)
\(354\) 0 0
\(355\) −6.00000 4.89898i −0.318447 0.260011i
\(356\) 18.0000 0.953998
\(357\) 0 0
\(358\) 18.2832i 0.966299i
\(359\) −10.7321 −0.566416 −0.283208 0.959059i \(-0.591399\pi\)
−0.283208 + 0.959059i \(0.591399\pi\)
\(360\) 0 0
\(361\) 26.3205 1.38529
\(362\) 30.9096i 1.62457i
\(363\) 0 0
\(364\) 28.3923 1.48816
\(365\) 10.3923 12.7279i 0.543958 0.666210i
\(366\) 0 0
\(367\) 25.1512i 1.31288i −0.754377 0.656442i \(-0.772061\pi\)
0.754377 0.656442i \(-0.227939\pi\)
\(368\) 15.5563i 0.810931i
\(369\) 0 0
\(370\) −2.19615 1.79315i −0.114173 0.0932215i
\(371\) 21.4641 1.11436
\(372\) 0 0
\(373\) 19.5959i 1.01464i 0.861758 + 0.507319i \(0.169363\pi\)
−0.861758 + 0.507319i \(0.830637\pi\)
\(374\) 12.9282 0.668501
\(375\) 0 0
\(376\) 0.732051 0.0377526
\(377\) 6.69213i 0.344662i
\(378\) 0 0
\(379\) 5.80385 0.298124 0.149062 0.988828i \(-0.452375\pi\)
0.149062 + 0.988828i \(0.452375\pi\)
\(380\) 20.1962 + 16.4901i 1.03604 + 0.845924i
\(381\) 0 0
\(382\) 17.6269i 0.901871i
\(383\) 23.5612i 1.20392i −0.798527 0.601959i \(-0.794387\pi\)
0.798527 0.601959i \(-0.205613\pi\)
\(384\) 0 0
\(385\) −16.3923 + 20.0764i −0.835429 + 1.02319i
\(386\) 17.6603 0.898883
\(387\) 0 0
\(388\) 10.4543i 0.530737i
\(389\) 20.7846 1.05382 0.526911 0.849921i \(-0.323350\pi\)
0.526911 + 0.849921i \(0.323350\pi\)
\(390\) 0 0
\(391\) 4.92820 0.249230
\(392\) 0.517638i 0.0261447i
\(393\) 0 0
\(394\) 32.3923 1.63190
\(395\) 10.7321 + 8.76268i 0.539988 + 0.440898i
\(396\) 0 0
\(397\) 4.89898i 0.245873i 0.992415 + 0.122936i \(0.0392311\pi\)
−0.992415 + 0.122936i \(0.960769\pi\)
\(398\) 27.0459i 1.35569i
\(399\) 0 0
\(400\) −4.46410 21.8695i −0.223205 1.09348i
\(401\) −10.1436 −0.506547 −0.253273 0.967395i \(-0.581507\pi\)
−0.253273 + 0.967395i \(0.581507\pi\)
\(402\) 0 0
\(403\) 35.2538i 1.75612i
\(404\) −10.3923 −0.517036
\(405\) 0 0
\(406\) −4.73205 −0.234848
\(407\) 3.10583i 0.153950i
\(408\) 0 0
\(409\) −22.9282 −1.13373 −0.566863 0.823812i \(-0.691843\pi\)
−0.566863 + 0.823812i \(0.691843\pi\)
\(410\) 18.9282 23.1822i 0.934797 1.14489i
\(411\) 0 0
\(412\) 1.13681i 0.0560067i
\(413\) 25.4558i 1.25260i
\(414\) 0 0
\(415\) 6.39230 7.82894i 0.313786 0.384308i
\(416\) 50.7846 2.48992
\(417\) 0 0
\(418\) 61.5419i 3.01011i
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −1.46410 −0.0713559 −0.0356780 0.999363i \(-0.511359\pi\)
−0.0356780 + 0.999363i \(0.511359\pi\)
\(422\) 21.7680i 1.05965i
\(423\) 0 0
\(424\) 4.53590 0.220283
\(425\) −6.92820 + 1.41421i −0.336067 + 0.0685994i
\(426\) 0 0
\(427\) 26.7685i 1.29542i
\(428\) 6.86800i 0.331977i
\(429\) 0 0
\(430\) 2.19615 + 1.79315i 0.105908 + 0.0864734i
\(431\) −25.1769 −1.21273 −0.606365 0.795187i \(-0.707373\pi\)
−0.606365 + 0.795187i \(0.707373\pi\)
\(432\) 0 0
\(433\) 22.5259i 1.08252i −0.840854 0.541262i \(-0.817947\pi\)
0.840854 0.541262i \(-0.182053\pi\)
\(434\) 24.9282 1.19659
\(435\) 0 0
\(436\) −17.0718 −0.817591
\(437\) 23.4596i 1.12223i
\(438\) 0 0
\(439\) 20.9282 0.998849 0.499424 0.866358i \(-0.333545\pi\)
0.499424 + 0.866358i \(0.333545\pi\)
\(440\) −3.46410 + 4.24264i −0.165145 + 0.202260i
\(441\) 0 0
\(442\) 18.2832i 0.869645i
\(443\) 21.0101i 0.998221i 0.866538 + 0.499111i \(0.166340\pi\)
−0.866538 + 0.499111i \(0.833660\pi\)
\(444\) 0 0
\(445\) 18.0000 + 14.6969i 0.853282 + 0.696702i
\(446\) 46.0526 2.18065
\(447\) 0 0
\(448\) 14.0406i 0.663356i
\(449\) 1.85641 0.0876092 0.0438046 0.999040i \(-0.486052\pi\)
0.0438046 + 0.999040i \(0.486052\pi\)
\(450\) 0 0
\(451\) −32.7846 −1.54377
\(452\) 2.92996i 0.137814i
\(453\) 0 0
\(454\) −20.5885 −0.966264
\(455\) 28.3923 + 23.1822i 1.33105 + 1.08680i
\(456\) 0 0
\(457\) 18.7637i 0.877730i 0.898553 + 0.438865i \(0.144619\pi\)
−0.898553 + 0.438865i \(0.855381\pi\)
\(458\) 44.0165i 2.05676i
\(459\) 0 0
\(460\) 8.53590 10.4543i 0.397988 0.487434i
\(461\) −11.0718 −0.515665 −0.257832 0.966190i \(-0.583008\pi\)
−0.257832 + 0.966190i \(0.583008\pi\)
\(462\) 0 0
\(463\) 32.3238i 1.50222i −0.660179 0.751108i \(-0.729520\pi\)
0.660179 0.751108i \(-0.270480\pi\)
\(464\) −4.46410 −0.207241
\(465\) 0 0
\(466\) −50.2487 −2.32773
\(467\) 18.1817i 0.841349i −0.907212 0.420674i \(-0.861793\pi\)
0.907212 0.420674i \(-0.138207\pi\)
\(468\) 0 0
\(469\) −10.3923 −0.479872
\(470\) −4.73205 3.86370i −0.218273 0.178219i
\(471\) 0 0
\(472\) 5.37945i 0.247609i
\(473\) 3.10583i 0.142806i
\(474\) 0 0
\(475\) 6.73205 + 32.9802i 0.308888 + 1.51323i
\(476\) −6.00000 −0.275010
\(477\) 0 0
\(478\) 20.0764i 0.918273i
\(479\) −11.6603 −0.532771 −0.266385 0.963867i \(-0.585829\pi\)
−0.266385 + 0.963867i \(0.585829\pi\)
\(480\) 0 0
\(481\) 4.39230 0.200272
\(482\) 8.76268i 0.399129i
\(483\) 0 0
\(484\) −19.7321 −0.896911
\(485\) 8.53590 10.4543i 0.387595 0.474705i
\(486\) 0 0
\(487\) 6.03579i 0.273508i 0.990605 + 0.136754i \(0.0436670\pi\)
−0.990605 + 0.136754i \(0.956333\pi\)
\(488\) 5.65685i 0.256074i
\(489\) 0 0
\(490\) −2.73205 + 3.34607i −0.123421 + 0.151160i
\(491\) −10.7321 −0.484331 −0.242165 0.970235i \(-0.577858\pi\)
−0.242165 + 0.970235i \(0.577858\pi\)
\(492\) 0 0
\(493\) 1.41421i 0.0636930i
\(494\) −87.0333 −3.91581
\(495\) 0 0
\(496\) 23.5167 1.05593
\(497\) 8.48528i 0.380617i
\(498\) 0 0
\(499\) 14.9282 0.668278 0.334139 0.942524i \(-0.391554\pi\)
0.334139 + 0.942524i \(0.391554\pi\)
\(500\) −9.00000 + 17.1464i −0.402492 + 0.766812i
\(501\) 0 0
\(502\) 17.6269i 0.786727i
\(503\) 41.5670i 1.85338i 0.375826 + 0.926690i \(0.377359\pi\)
−0.375826 + 0.926690i \(0.622641\pi\)
\(504\) 0 0
\(505\) −10.3923 8.48528i −0.462451 0.377590i
\(506\) −31.8564 −1.41619
\(507\) 0 0
\(508\) 7.34847i 0.326036i
\(509\) 26.5359 1.17618 0.588092 0.808794i \(-0.299879\pi\)
0.588092 + 0.808794i \(0.299879\pi\)
\(510\) 0 0
\(511\) 18.0000 0.796273
\(512\) 29.2552i 1.29291i
\(513\) 0 0
\(514\) −8.92820 −0.393806
\(515\) −0.928203 + 1.13681i −0.0409015 + 0.0500939i
\(516\) 0 0
\(517\) 6.69213i 0.294320i
\(518\) 3.10583i 0.136462i
\(519\) 0 0
\(520\) 6.00000 + 4.89898i 0.263117 + 0.214834i
\(521\) 16.3923 0.718160 0.359080 0.933307i \(-0.383091\pi\)
0.359080 + 0.933307i \(0.383091\pi\)
\(522\) 0 0
\(523\) 40.8091i 1.78446i 0.451583 + 0.892229i \(0.350860\pi\)
−0.451583 + 0.892229i \(0.649140\pi\)
\(524\) −2.19615 −0.0959394
\(525\) 0 0
\(526\) 47.5167 2.07182
\(527\) 7.45001i 0.324527i
\(528\) 0 0
\(529\) 10.8564 0.472018
\(530\) −29.3205 23.9401i −1.27360 1.03989i
\(531\) 0 0
\(532\) 28.5617i 1.23831i
\(533\) 46.3644i 2.00827i
\(534\) 0 0
\(535\) −5.60770 + 6.86800i −0.242442 + 0.296929i
\(536\) −2.19615 −0.0948593
\(537\) 0 0
\(538\) 23.1822i 0.999456i
\(539\) 4.73205 0.203824
\(540\) 0 0
\(541\) 21.6077 0.928987 0.464494 0.885576i \(-0.346236\pi\)
0.464494 + 0.885576i \(0.346236\pi\)
\(542\) 44.9502i 1.93078i
\(543\) 0 0
\(544\) −10.7321 −0.460133
\(545\) −17.0718 13.9391i −0.731275 0.597084i
\(546\) 0 0
\(547\) 2.44949i 0.104733i −0.998628 0.0523663i \(-0.983324\pi\)
0.998628 0.0523663i \(-0.0166763\pi\)
\(548\) 8.66115i 0.369986i
\(549\) 0 0
\(550\) 44.7846 9.14162i 1.90962 0.389800i
\(551\) 6.73205 0.286795
\(552\) 0 0
\(553\) 15.1774i 0.645409i
\(554\) −45.7128 −1.94215
\(555\) 0 0
\(556\) −13.8564 −0.587643
\(557\) 28.8391i 1.22195i 0.791650 + 0.610975i \(0.209223\pi\)
−0.791650 + 0.610975i \(0.790777\pi\)
\(558\) 0 0
\(559\) −4.39230 −0.185775
\(560\) 15.4641 18.9396i 0.653478 0.800343i
\(561\) 0 0
\(562\) 16.9706i 0.715860i
\(563\) 16.1112i 0.679004i 0.940605 + 0.339502i \(0.110259\pi\)
−0.940605 + 0.339502i \(0.889741\pi\)
\(564\) 0 0
\(565\) −2.39230 + 2.92996i −0.100645 + 0.123264i
\(566\) 3.80385 0.159888
\(567\) 0 0
\(568\) 1.79315i 0.0752389i
\(569\) 14.5359 0.609377 0.304688 0.952452i \(-0.401448\pi\)
0.304688 + 0.952452i \(0.401448\pi\)
\(570\) 0 0
\(571\) −4.67949 −0.195831 −0.0979153 0.995195i \(-0.531217\pi\)
−0.0979153 + 0.995195i \(0.531217\pi\)
\(572\) 54.8497i 2.29338i
\(573\) 0 0
\(574\) 32.7846 1.36840
\(575\) 17.0718 3.48477i 0.711943 0.145325i
\(576\) 0 0
\(577\) 0.656339i 0.0273237i 0.999907 + 0.0136619i \(0.00434884\pi\)
−0.999907 + 0.0136619i \(0.995651\pi\)
\(578\) 28.9778i 1.20532i
\(579\) 0 0
\(580\) 3.00000 + 2.44949i 0.124568 + 0.101710i
\(581\) 11.0718 0.459336
\(582\) 0 0
\(583\) 41.4655i 1.71732i
\(584\) 3.80385 0.157404
\(585\) 0 0
\(586\) −49.9090 −2.06172
\(587\) 15.5563i 0.642079i −0.947066 0.321040i \(-0.895968\pi\)
0.947066 0.321040i \(-0.104032\pi\)
\(588\) 0 0
\(589\) −35.4641 −1.46127
\(590\) −28.3923 + 34.7733i −1.16889 + 1.43160i
\(591\) 0 0
\(592\) 2.92996i 0.120421i
\(593\) 28.3586i 1.16455i 0.812993 + 0.582274i \(0.197837\pi\)
−0.812993 + 0.582274i \(0.802163\pi\)
\(594\) 0 0
\(595\) −6.00000 4.89898i −0.245976 0.200839i
\(596\) −22.3923 −0.917225
\(597\) 0 0
\(598\) 45.0518i 1.84230i
\(599\) 4.73205 0.193346 0.0966732 0.995316i \(-0.469180\pi\)
0.0966732 + 0.995316i \(0.469180\pi\)
\(600\) 0 0
\(601\) −24.7846 −1.01099 −0.505493 0.862831i \(-0.668689\pi\)
−0.505493 + 0.862831i \(0.668689\pi\)
\(602\) 3.10583i 0.126584i
\(603\) 0 0
\(604\) −39.4641 −1.60577
\(605\) −19.7321 16.1112i −0.802222 0.655011i
\(606\) 0 0
\(607\) 26.1122i 1.05986i −0.848041 0.529930i \(-0.822218\pi\)
0.848041 0.529930i \(-0.177782\pi\)
\(608\) 51.0876i 2.07187i
\(609\) 0 0
\(610\) 29.8564 36.5665i 1.20885 1.48053i
\(611\) 9.46410 0.382877
\(612\) 0 0
\(613\) 1.31268i 0.0530185i −0.999649 0.0265093i \(-0.991561\pi\)
0.999649 0.0265093i \(-0.00843915\pi\)
\(614\) 36.5885 1.47659
\(615\) 0 0
\(616\) −6.00000 −0.241747
\(617\) 7.55154i 0.304014i −0.988379 0.152007i \(-0.951426\pi\)
0.988379 0.152007i \(-0.0485736\pi\)
\(618\) 0 0
\(619\) 34.1962 1.37446 0.687230 0.726440i \(-0.258827\pi\)
0.687230 + 0.726440i \(0.258827\pi\)
\(620\) −15.8038 12.9038i −0.634698 0.518229i
\(621\) 0 0
\(622\) 47.5013i 1.90463i
\(623\) 25.4558i 1.01987i
\(624\) 0 0
\(625\) −23.0000 + 9.79796i −0.920000 + 0.391918i
\(626\) −36.2487 −1.44879
\(627\) 0 0
\(628\) 10.4543i 0.417172i
\(629\) −0.928203 −0.0370099
\(630\) 0 0
\(631\) 36.3923 1.44875 0.724377 0.689404i \(-0.242127\pi\)
0.724377 + 0.689404i \(0.242127\pi\)
\(632\) 3.20736i 0.127582i
\(633\) 0 0
\(634\) −48.9808 −1.94527
\(635\) −6.00000 + 7.34847i −0.238103 + 0.291615i
\(636\) 0 0
\(637\) 6.69213i 0.265152i
\(638\) 9.14162i 0.361920i
\(639\) 0 0
\(640\) 5.80385 7.10823i 0.229417 0.280978i
\(641\) 34.6410 1.36824 0.684119 0.729370i \(-0.260187\pi\)
0.684119 + 0.729370i \(0.260187\pi\)
\(642\) 0 0
\(643\) 18.9396i 0.746904i 0.927649 + 0.373452i \(0.121826\pi\)
−0.927649 + 0.373452i \(0.878174\pi\)
\(644\) 14.7846 0.582595
\(645\) 0 0
\(646\) 18.3923 0.723636
\(647\) 19.9749i 0.785293i −0.919690 0.392646i \(-0.871560\pi\)
0.919690 0.392646i \(-0.128440\pi\)
\(648\) 0 0
\(649\) 49.1769 1.93036
\(650\) −12.9282 63.3350i −0.507086 2.48420i
\(651\) 0 0
\(652\) 9.62209i 0.376830i
\(653\) 1.69161i 0.0661980i −0.999452 0.0330990i \(-0.989462\pi\)
0.999452 0.0330990i \(-0.0105377\pi\)
\(654\) 0 0
\(655\) −2.19615 1.79315i −0.0858108 0.0700642i
\(656\) 30.9282 1.20754
\(657\) 0 0
\(658\) 6.69213i 0.260886i
\(659\) −26.4449 −1.03015 −0.515073 0.857146i \(-0.672235\pi\)
−0.515073 + 0.857146i \(0.672235\pi\)
\(660\) 0 0
\(661\) 40.7846 1.58634 0.793169 0.609002i \(-0.208430\pi\)
0.793169 + 0.609002i \(0.208430\pi\)
\(662\) 15.0759i 0.585941i
\(663\) 0 0
\(664\) 2.33975 0.0907998
\(665\) −23.3205 + 28.5617i −0.904331 + 1.10757i
\(666\) 0 0
\(667\) 3.48477i 0.134931i
\(668\) 14.5211i 0.561837i
\(669\) 0 0
\(670\) 14.1962 + 11.5911i 0.548445 + 0.447804i
\(671\) −51.7128 −1.99635
\(672\) 0 0
\(673\) 12.4233i 0.478884i −0.970911 0.239442i \(-0.923036\pi\)
0.970911 0.239442i \(-0.0769644\pi\)
\(674\) 44.4449 1.71195
\(675\) 0 0
\(676\) 55.0526 2.11741
\(677\) 46.9464i 1.80430i 0.431424 + 0.902149i \(0.358011\pi\)
−0.431424 + 0.902149i \(0.641989\pi\)
\(678\) 0 0
\(679\) 14.7846 0.567381
\(680\) −1.26795 1.03528i −0.0486236 0.0397010i
\(681\) 0 0
\(682\) 48.1576i 1.84405i
\(683\) 31.7690i 1.21561i 0.794087 + 0.607804i \(0.207949\pi\)
−0.794087 + 0.607804i \(0.792051\pi\)
\(684\) 0 0
\(685\) 7.07180 8.66115i 0.270199 0.330925i
\(686\) −37.8564 −1.44536
\(687\) 0 0
\(688\) 2.92996i 0.111704i
\(689\) 58.6410 2.23404
\(690\) 0 0
\(691\) −13.7128 −0.521660 −0.260830 0.965385i \(-0.583996\pi\)
−0.260830 + 0.965385i \(0.583996\pi\)
\(692\) 16.4901i 0.626859i
\(693\) 0 0
\(694\) 13.1244 0.498194
\(695\) −13.8564 11.3137i −0.525603 0.429153i
\(696\) 0 0
\(697\) 9.79796i 0.371124i
\(698\) 36.2891i 1.37356i
\(699\) 0 0
\(700\) −20.7846 + 4.24264i −0.785584 + 0.160357i
\(701\) 27.7128 1.04670 0.523349 0.852118i \(-0.324682\pi\)
0.523349 + 0.852118i \(0.324682\pi\)
\(702\) 0 0
\(703\) 4.41851i 0.166647i
\(704\) 27.1244 1.02229
\(705\) 0 0
\(706\) −23.4641 −0.883083
\(707\) 14.6969i 0.552735i
\(708\) 0 0
\(709\) 0.392305 0.0147333 0.00736666 0.999973i \(-0.497655\pi\)
0.00736666 + 0.999973i \(0.497655\pi\)
\(710\) −9.46410 + 11.5911i −0.355181 + 0.435007i
\(711\) 0 0
\(712\) 5.37945i 0.201604i
\(713\) 18.3576i 0.687496i
\(714\) 0 0
\(715\) −44.7846 + 54.8497i −1.67485 + 2.05126i
\(716\) −16.3923 −0.612609
\(717\) 0 0
\(718\) 20.7327i 0.773739i
\(719\) 7.85641 0.292995 0.146497 0.989211i \(-0.453200\pi\)
0.146497 + 0.989211i \(0.453200\pi\)
\(720\) 0 0
\(721\) −1.60770 −0.0598737
\(722\) 50.8473i 1.89234i
\(723\) 0 0
\(724\) 27.7128 1.02994
\(725\) 1.00000 + 4.89898i 0.0371391 + 0.181944i
\(726\) 0 0
\(727\) 46.6690i 1.73086i 0.501031 + 0.865430i \(0.332954\pi\)
−0.501031 + 0.865430i \(0.667046\pi\)
\(728\) 8.48528i 0.314485i
\(729\) 0 0
\(730\) −24.5885 20.0764i −0.910060 0.743061i
\(731\) 0.928203 0.0343308
\(732\) 0 0
\(733\) 12.7279i 0.470117i 0.971981 + 0.235058i \(0.0755281\pi\)
−0.971981 + 0.235058i \(0.924472\pi\)
\(734\) −48.5885 −1.79343
\(735\) 0 0
\(736\) 26.4449 0.974771
\(737\) 20.0764i 0.739523i
\(738\) 0 0
\(739\) −32.9808 −1.21322 −0.606608 0.795001i \(-0.707470\pi\)
−0.606608 + 0.795001i \(0.707470\pi\)
\(740\) −1.60770 + 1.96902i −0.0591000 + 0.0723825i
\(741\) 0 0
\(742\) 41.4655i 1.52224i
\(743\) 9.89949i 0.363177i 0.983375 + 0.181589i \(0.0581239\pi\)
−0.983375 + 0.181589i \(0.941876\pi\)
\(744\) 0 0
\(745\) −22.3923 18.2832i −0.820391 0.669846i
\(746\) 37.8564 1.38602
\(747\) 0 0
\(748\) 11.5911i 0.423813i
\(749\) −9.71281 −0.354898
\(750\) 0 0
\(751\) −15.9090 −0.580526 −0.290263 0.956947i \(-0.593743\pi\)
−0.290263 + 0.956947i \(0.593743\pi\)
\(752\) 6.31319i 0.230218i
\(753\) 0 0
\(754\) −12.9282 −0.470817
\(755\) −39.4641 32.2223i −1.43625 1.17269i
\(756\) 0 0
\(757\) 6.03579i 0.219375i −0.993966 0.109687i \(-0.965015\pi\)
0.993966 0.109687i \(-0.0349849\pi\)
\(758\) 11.2122i 0.407244i
\(759\) 0 0
\(760\) −4.92820 + 6.03579i −0.178765 + 0.218941i
\(761\) −47.5692 −1.72438 −0.862191 0.506583i \(-0.830909\pi\)
−0.862191 + 0.506583i \(0.830909\pi\)
\(762\) 0 0
\(763\) 24.1432i 0.874041i
\(764\) −15.8038 −0.571763
\(765\) 0 0
\(766\) −45.5167 −1.64458
\(767\) 69.5467i 2.51118i
\(768\) 0 0
\(769\) 32.9282 1.18742 0.593711 0.804679i \(-0.297662\pi\)
0.593711 + 0.804679i \(0.297662\pi\)
\(770\) 38.7846 + 31.6675i 1.39770 + 1.14122i
\(771\) 0 0
\(772\) 15.8338i 0.569869i
\(773\) 8.38375i 0.301542i −0.988569 0.150771i \(-0.951824\pi\)
0.988569 0.150771i \(-0.0481757\pi\)
\(774\) 0 0
\(775\) −5.26795 25.8076i −0.189230 0.927035i
\(776\) 3.12436 0.112158
\(777\) 0 0
\(778\) 40.1528i 1.43955i
\(779\) −46.6410 −1.67109
\(780\) 0 0
\(781\) 16.3923 0.586563
\(782\) 9.52056i 0.340454i
\(783\) 0 0
\(784\) −4.46410 −0.159432
\(785\) −8.53590 + 10.4543i −0.304659 + 0.373130i
\(786\) 0 0
\(787\) 49.7749i 1.77428i −0.461498 0.887141i \(-0.652688\pi\)
0.461498 0.887141i \(-0.347312\pi\)
\(788\) 29.0421i 1.03458i
\(789\) 0 0
\(790\) 16.9282 20.7327i 0.602278 0.737637i
\(791\) −4.14359 −0.147329
\(792\) 0 0
\(793\) 73.1330i 2.59703i
\(794\) 9.46410 0.335868
\(795\) 0 0
\(796\) −24.2487 −0.859473
\(797\) 34.6718i 1.22814i −0.789252 0.614069i \(-0.789532\pi\)
0.789252 0.614069i \(-0.210468\pi\)
\(798\) 0 0
\(799\) −2.00000 −0.0707549
\(800\) −37.1769 + 7.58871i −1.31440 + 0.268301i
\(801\) 0 0
\(802\) 19.5959i 0.691956i
\(803\) 34.7733i 1.22712i
\(804\) 0 0
\(805\) 14.7846 + 12.0716i 0.521089 + 0.425467i
\(806\) 68.1051 2.39890
\(807\) 0 0
\(808\) 3.10583i 0.109263i
\(809\) 34.3923 1.20917 0.604585 0.796541i \(-0.293339\pi\)
0.604585 + 0.796541i \(0.293339\pi\)
\(810\) 0 0
\(811\) 4.78461 0.168010 0.0840052 0.996465i \(-0.473229\pi\)
0.0840052 + 0.996465i \(0.473229\pi\)
\(812\) 4.24264i 0.148888i
\(813\) 0 0
\(814\) 6.00000 0.210300
\(815\) −7.85641 + 9.62209i −0.275198 + 0.337047i
\(816\) 0 0
\(817\) 4.41851i 0.154584i
\(818\) 44.2939i 1.54870i
\(819\) 0 0
\(820\) −20.7846 16.9706i −0.725830 0.592638i
\(821\) −50.7846 −1.77240 −0.886198 0.463308i \(-0.846663\pi\)
−0.886198 + 0.463308i \(0.846663\pi\)
\(822\) 0 0
\(823\) 1.61729i 0.0563750i −0.999603 0.0281875i \(-0.991026\pi\)
0.999603 0.0281875i \(-0.00897355\pi\)
\(824\) −0.339746 −0.0118356
\(825\) 0 0
\(826\) −49.1769 −1.71108
\(827\) 33.0817i 1.15036i 0.818025 + 0.575182i \(0.195069\pi\)
−0.818025 + 0.575182i \(0.804931\pi\)
\(828\) 0 0
\(829\) −24.7846 −0.860805 −0.430403 0.902637i \(-0.641628\pi\)
−0.430403 + 0.902637i \(0.641628\pi\)
\(830\) −15.1244 12.3490i −0.524974 0.428640i
\(831\) 0 0
\(832\) 38.3596i 1.32988i
\(833\) 1.41421i 0.0489996i
\(834\) 0 0
\(835\) −11.8564 + 14.5211i −0.410308 + 0.502522i
\(836\) −55.1769 −1.90833
\(837\) 0 0
\(838\) 11.5911i 0.400408i
\(839\) −10.9808 −0.379098 −0.189549 0.981871i \(-0.560703\pi\)
−0.189549 + 0.981871i \(0.560703\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 2.82843i 0.0974740i
\(843\) 0 0
\(844\) 19.5167 0.671791
\(845\) 55.0526 + 44.9502i 1.89387 + 1.54633i
\(846\) 0 0
\(847\) 27.9053i 0.958839i
\(848\) 39.1175i 1.34330i
\(849\) 0 0
\(850\) 2.73205 + 13.3843i 0.0937086 + 0.459076i
\(851\) 2.28719 0.0784038
\(852\) 0 0
\(853\) 6.86800i 0.235156i −0.993064 0.117578i \(-0.962487\pi\)
0.993064 0.117578i \(-0.0375130\pi\)
\(854\) 51.7128 1.76958
\(855\) 0 0
\(856\) −2.05256 −0.0701550
\(857\) 30.4292i 1.03944i −0.854337 0.519720i \(-0.826036\pi\)
0.854337 0.519720i \(-0.173964\pi\)
\(858\) 0 0
\(859\) 15.2679 0.520936 0.260468 0.965483i \(-0.416123\pi\)
0.260468 + 0.965483i \(0.416123\pi\)
\(860\) 1.60770 1.96902i 0.0548219 0.0671429i
\(861\) 0 0
\(862\) 48.6381i 1.65662i
\(863\) 13.0053i 0.442706i 0.975194 + 0.221353i \(0.0710474\pi\)
−0.975194 + 0.221353i \(0.928953\pi\)
\(864\) 0 0
\(865\) −13.4641 + 16.4901i −0.457793 + 0.560680i
\(866\) −43.5167 −1.47876
\(867\) 0 0
\(868\) 22.3500i 0.758609i
\(869\) −29.3205 −0.994630
\(870\) 0 0
\(871\) −28.3923 −0.962037
\(872\) 5.10205i 0.172777i
\(873\) 0 0
\(874\) −45.3205 −1.53299
\(875\) −24.2487 12.7279i −0.819756 0.430282i
\(876\) 0 0
\(877\) 0.480473i 0.0162244i −0.999967 0.00811222i \(-0.997418\pi\)
0.999967 0.00811222i \(-0.00258223\pi\)
\(878\) 40.4302i 1.36445i
\(879\) 0 0
\(880\) 36.5885 + 29.8744i 1.23340 + 1.00706i
\(881\) 57.4641 1.93601 0.968007 0.250922i \(-0.0807337\pi\)
0.968007 + 0.250922i \(0.0807337\pi\)
\(882\) 0 0
\(883\) 52.4002i 1.76341i −0.471803 0.881704i \(-0.656397\pi\)
0.471803 0.881704i \(-0.343603\pi\)
\(884\) −16.3923 −0.551333
\(885\) 0 0
\(886\) 40.5885 1.36360
\(887\) 18.1817i 0.610482i −0.952275 0.305241i \(-0.901263\pi\)
0.952275 0.305241i \(-0.0987370\pi\)
\(888\) 0 0
\(889\) −10.3923 −0.348547
\(890\) 28.3923 34.7733i 0.951712 1.16560i
\(891\) 0 0
\(892\) 41.2896i 1.38248i
\(893\) 9.52056i 0.318593i
\(894\) 0 0
\(895\) −16.3923 13.3843i −0.547934 0.447386i
\(896\) 10.0526 0.335832
\(897\) 0 0
\(898\) 3.58630i 0.119676i
\(899\) −5.26795 −0.175696
\(900\) 0 0
\(901\) −12.3923 −0.412848
\(902\) 63.3350i 2.10882i
\(903\) 0 0
\(904\) −0.875644 −0.0291235
\(905\) 27.7128 + 22.6274i 0.921205 + 0.752161i
\(906\) 0 0
\(907\) 3.28169i 0.108967i −0.998515 0.0544834i \(-0.982649\pi\)
0.998515 0.0544834i \(-0.0173512\pi\)
\(908\) 18.4591i 0.612587i
\(909\) 0 0
\(910\) 44.7846 54.8497i 1.48460 1.81825i
\(911\) 20.1962 0.669128 0.334564 0.942373i \(-0.391411\pi\)
0.334564 + 0.942373i \(0.391411\pi\)
\(912\) 0 0
\(913\) 21.3891i 0.707875i
\(914\) 36.2487 1.19900
\(915\) 0 0
\(916\) −39.4641 −1.30393
\(917\) 3.10583i 0.102563i
\(918\) 0 0
\(919\) 59.9615 1.97795 0.988974 0.148089i \(-0.0473121\pi\)
0.988974 + 0.148089i \(0.0473121\pi\)
\(920\) 3.12436 + 2.55103i 0.103007 + 0.0841048i
\(921\) 0 0
\(922\) 21.3891i 0.704411i
\(923\) 23.1822i 0.763052i
\(924\) 0 0
\(925\) −3.21539 + 0.656339i −0.105721 + 0.0215803i
\(926\) −62.4449 −2.05207
\(927\) 0 0
\(928\) 7.58871i 0.249111i
\(929\) 28.1436 0.923361 0.461681 0.887046i \(-0.347247\pi\)
0.461681 + 0.887046i \(0.347247\pi\)
\(930\) 0 0
\(931\) 6.73205 0.220634
\(932\) 45.0518i 1.47572i
\(933\) 0 0
\(934\) −35.1244 −1.14930
\(935\) 9.46410 11.5911i 0.309509 0.379070i
\(936\) 0 0
\(937\) 56.6429i 1.85044i −0.379429 0.925221i \(-0.623879\pi\)
0.379429 0.925221i \(-0.376121\pi\)
\(938\) 20.0764i 0.655517i
\(939\) 0 0
\(940\) −3.46410 + 4.24264i −0.112987 + 0.138380i
\(941\) −19.8564 −0.647300 −0.323650 0.946177i \(-0.604910\pi\)
−0.323650 + 0.946177i \(0.604910\pi\)
\(942\) 0 0
\(943\) 24.1432i 0.786210i
\(944\) −46.3923 −1.50994
\(945\) 0 0
\(946\) −6.00000 −0.195077
\(947\) 30.8081i 1.00113i 0.865699 + 0.500564i \(0.166874\pi\)
−0.865699 + 0.500564i \(0.833126\pi\)
\(948\) 0 0
\(949\) 49.1769 1.59635
\(950\) 63.7128 13.0053i 2.06712 0.421948i
\(951\) 0 0
\(952\) 1.79315i 0.0581164i
\(953\) 5.65685i 0.183243i 0.995794 + 0.0916217i \(0.0292051\pi\)
−0.995794 + 0.0916217i \(0.970795\pi\)
\(954\) 0 0
\(955\) −15.8038 12.9038i −0.511400 0.417557i
\(956\) 18.0000 0.582162
\(957\) 0 0
\(958\) 22.5259i 0.727778i
\(959\) 12.2487 0.395532
\(960\) 0 0
\(961\) −3.24871 −0.104797
\(962\) 8.48528i 0.273576i
\(963\) 0 0
\(964\) −7.85641 −0.253038
\(965\) 12.9282 15.8338i 0.416174 0.509706i
\(966\) 0 0
\(967\) 27.4249i 0.881924i −0.897526 0.440962i \(-0.854637\pi\)
0.897526 0.440962i \(-0.145363\pi\)
\(968\) 5.89709i 0.189540i
\(969\) 0 0
\(970\) −20.1962 16.4901i −0.648459 0.529465i
\(971\) 4.48334 0.143877 0.0719386 0.997409i \(-0.477081\pi\)
0.0719386 + 0.997409i \(0.477081\pi\)
\(972\) 0 0
\(973\) 19.5959i 0.628216i
\(974\) 11.6603 0.373619
\(975\) 0 0
\(976\) 48.7846 1.56156
\(977\) 8.20788i 0.262593i −0.991343 0.131297i \(-0.958086\pi\)
0.991343 0.131297i \(-0.0419140\pi\)
\(978\) 0 0
\(979\) −49.1769 −1.57170
\(980\) 3.00000 + 2.44949i 0.0958315 + 0.0782461i
\(981\) 0 0
\(982\) 20.7327i 0.661608i
\(983\) 0.859411i 0.0274109i −0.999906 0.0137055i \(-0.995637\pi\)
0.999906 0.0137055i \(-0.00436272\pi\)
\(984\) 0 0
\(985\) 23.7128 29.0421i 0.755553 0.925360i
\(986\) 2.73205 0.0870062
\(987\) 0 0
\(988\) 78.0319i 2.48253i
\(989\) −2.28719 −0.0727283
\(990\) 0 0
\(991\) −6.78461 −0.215520 −0.107760 0.994177i \(-0.534368\pi\)
−0.107760 + 0.994177i \(0.534368\pi\)
\(992\) 39.9769i 1.26927i
\(993\) 0 0
\(994\) −16.3923 −0.519932
\(995\) −24.2487 19.7990i −0.768736 0.627670i
\(996\) 0 0
\(997\) 41.2896i 1.30765i −0.756644 0.653827i \(-0.773162\pi\)
0.756644 0.653827i \(-0.226838\pi\)
\(998\) 28.8391i 0.912885i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.f.784.1 4
3.2 odd 2 145.2.b.b.59.4 yes 4
5.2 odd 4 6525.2.a.bj.1.4 4
5.3 odd 4 6525.2.a.bj.1.1 4
5.4 even 2 inner 1305.2.c.f.784.4 4
12.11 even 2 2320.2.d.f.929.2 4
15.2 even 4 725.2.a.f.1.1 4
15.8 even 4 725.2.a.f.1.4 4
15.14 odd 2 145.2.b.b.59.1 4
60.59 even 2 2320.2.d.f.929.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.b.59.1 4 15.14 odd 2
145.2.b.b.59.4 yes 4 3.2 odd 2
725.2.a.f.1.1 4 15.2 even 4
725.2.a.f.1.4 4 15.8 even 4
1305.2.c.f.784.1 4 1.1 even 1 trivial
1305.2.c.f.784.4 4 5.4 even 2 inner
2320.2.d.f.929.2 4 12.11 even 2
2320.2.d.f.929.4 4 60.59 even 2
6525.2.a.bj.1.1 4 5.3 odd 4
6525.2.a.bj.1.4 4 5.2 odd 4