Properties

Label 1305.2.c.e.784.2
Level $1305$
Weight $2$
Character 1305.784
Analytic conductor $10.420$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(784,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.784");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 784.2
Root \(1.68614 + 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 1305.784
Dual form 1305.2.c.e.784.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{2} -1.00000 q^{4} +(2.18614 + 0.469882i) q^{5} -1.58457i q^{7} -1.73205i q^{8} +(0.813859 - 3.78651i) q^{10} -6.37228 q^{11} -0.939764i q^{13} -2.74456 q^{14} -5.00000 q^{16} -5.04868i q^{17} -4.00000 q^{19} +(-2.18614 - 0.469882i) q^{20} +11.0371i q^{22} +3.46410i q^{23} +(4.55842 + 2.05446i) q^{25} -1.62772 q^{26} +1.58457i q^{28} -1.00000 q^{29} +2.37228 q^{31} +5.19615i q^{32} -8.74456 q^{34} +(0.744563 - 3.46410i) q^{35} -10.0974i q^{37} +6.92820i q^{38} +(0.813859 - 3.78651i) q^{40} -6.74456 q^{41} -5.69349i q^{43} +6.37228 q^{44} +6.00000 q^{46} -5.69349i q^{47} +4.48913 q^{49} +(3.55842 - 7.89542i) q^{50} +0.939764i q^{52} +0.939764i q^{53} +(-13.9307 - 2.99422i) q^{55} -2.74456 q^{56} +1.73205i q^{58} +0.744563 q^{59} +6.00000 q^{61} -4.10891i q^{62} -1.00000 q^{64} +(0.441578 - 2.05446i) q^{65} -8.51278i q^{67} +5.04868i q^{68} +(-6.00000 - 1.28962i) q^{70} +4.74456 q^{71} +6.92820i q^{73} -17.4891 q^{74} +4.00000 q^{76} +10.0974i q^{77} -5.62772 q^{79} +(-10.9307 - 2.34941i) q^{80} +11.6819i q^{82} +16.7306i q^{83} +(2.37228 - 11.0371i) q^{85} -9.86141 q^{86} +11.0371i q^{88} +10.7446 q^{89} -1.48913 q^{91} -3.46410i q^{92} -9.86141 q^{94} +(-8.74456 - 1.87953i) q^{95} -6.92820i q^{97} -7.77539i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 3 q^{5} + 9 q^{10} - 14 q^{11} + 12 q^{14} - 20 q^{16} - 16 q^{19} - 3 q^{20} + q^{25} - 18 q^{26} - 4 q^{29} - 2 q^{31} - 12 q^{34} - 20 q^{35} + 9 q^{40} - 4 q^{41} + 14 q^{44} + 24 q^{46}+ \cdots - 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205i 1.22474i −0.790569 0.612372i \(-0.790215\pi\)
0.790569 0.612372i \(-0.209785\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.18614 + 0.469882i 0.977672 + 0.210138i
\(6\) 0 0
\(7\) 1.58457i 0.598913i −0.954110 0.299456i \(-0.903195\pi\)
0.954110 0.299456i \(-0.0968053\pi\)
\(8\) 1.73205i 0.612372i
\(9\) 0 0
\(10\) 0.813859 3.78651i 0.257365 1.19740i
\(11\) −6.37228 −1.92132 −0.960658 0.277736i \(-0.910416\pi\)
−0.960658 + 0.277736i \(0.910416\pi\)
\(12\) 0 0
\(13\) 0.939764i 0.260644i −0.991472 0.130322i \(-0.958399\pi\)
0.991472 0.130322i \(-0.0416010\pi\)
\(14\) −2.74456 −0.733515
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 5.04868i 1.22448i −0.790671 0.612242i \(-0.790268\pi\)
0.790671 0.612242i \(-0.209732\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) −2.18614 0.469882i −0.488836 0.105069i
\(21\) 0 0
\(22\) 11.0371i 2.35312i
\(23\) 3.46410i 0.722315i 0.932505 + 0.361158i \(0.117618\pi\)
−0.932505 + 0.361158i \(0.882382\pi\)
\(24\) 0 0
\(25\) 4.55842 + 2.05446i 0.911684 + 0.410891i
\(26\) −1.62772 −0.319222
\(27\) 0 0
\(28\) 1.58457i 0.299456i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 2.37228 0.426074 0.213037 0.977044i \(-0.431664\pi\)
0.213037 + 0.977044i \(0.431664\pi\)
\(32\) 5.19615i 0.918559i
\(33\) 0 0
\(34\) −8.74456 −1.49968
\(35\) 0.744563 3.46410i 0.125854 0.585540i
\(36\) 0 0
\(37\) 10.0974i 1.65999i −0.557768 0.829997i \(-0.688342\pi\)
0.557768 0.829997i \(-0.311658\pi\)
\(38\) 6.92820i 1.12390i
\(39\) 0 0
\(40\) 0.813859 3.78651i 0.128682 0.598699i
\(41\) −6.74456 −1.05332 −0.526662 0.850075i \(-0.676557\pi\)
−0.526662 + 0.850075i \(0.676557\pi\)
\(42\) 0 0
\(43\) 5.69349i 0.868248i −0.900853 0.434124i \(-0.857058\pi\)
0.900853 0.434124i \(-0.142942\pi\)
\(44\) 6.37228 0.960658
\(45\) 0 0
\(46\) 6.00000 0.884652
\(47\) 5.69349i 0.830480i −0.909712 0.415240i \(-0.863698\pi\)
0.909712 0.415240i \(-0.136302\pi\)
\(48\) 0 0
\(49\) 4.48913 0.641304
\(50\) 3.55842 7.89542i 0.503237 1.11658i
\(51\) 0 0
\(52\) 0.939764i 0.130322i
\(53\) 0.939764i 0.129086i 0.997915 + 0.0645432i \(0.0205590\pi\)
−0.997915 + 0.0645432i \(0.979441\pi\)
\(54\) 0 0
\(55\) −13.9307 2.99422i −1.87842 0.403741i
\(56\) −2.74456 −0.366758
\(57\) 0 0
\(58\) 1.73205i 0.227429i
\(59\) 0.744563 0.0969338 0.0484669 0.998825i \(-0.484566\pi\)
0.0484669 + 0.998825i \(0.484566\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 4.10891i 0.521832i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.441578 2.05446i 0.0547710 0.254824i
\(66\) 0 0
\(67\) 8.51278i 1.04000i −0.854166 0.520001i \(-0.825932\pi\)
0.854166 0.520001i \(-0.174068\pi\)
\(68\) 5.04868i 0.612242i
\(69\) 0 0
\(70\) −6.00000 1.28962i −0.717137 0.154139i
\(71\) 4.74456 0.563076 0.281538 0.959550i \(-0.409155\pi\)
0.281538 + 0.959550i \(0.409155\pi\)
\(72\) 0 0
\(73\) 6.92820i 0.810885i 0.914121 + 0.405442i \(0.132883\pi\)
−0.914121 + 0.405442i \(0.867117\pi\)
\(74\) −17.4891 −2.03307
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) 10.0974i 1.15070i
\(78\) 0 0
\(79\) −5.62772 −0.633168 −0.316584 0.948565i \(-0.602536\pi\)
−0.316584 + 0.948565i \(0.602536\pi\)
\(80\) −10.9307 2.34941i −1.22209 0.262672i
\(81\) 0 0
\(82\) 11.6819i 1.29005i
\(83\) 16.7306i 1.83642i 0.396092 + 0.918211i \(0.370366\pi\)
−0.396092 + 0.918211i \(0.629634\pi\)
\(84\) 0 0
\(85\) 2.37228 11.0371i 0.257310 1.19714i
\(86\) −9.86141 −1.06338
\(87\) 0 0
\(88\) 11.0371i 1.17656i
\(89\) 10.7446 1.13892 0.569461 0.822019i \(-0.307152\pi\)
0.569461 + 0.822019i \(0.307152\pi\)
\(90\) 0 0
\(91\) −1.48913 −0.156103
\(92\) 3.46410i 0.361158i
\(93\) 0 0
\(94\) −9.86141 −1.01713
\(95\) −8.74456 1.87953i −0.897173 0.192835i
\(96\) 0 0
\(97\) 6.92820i 0.703452i −0.936103 0.351726i \(-0.885595\pi\)
0.936103 0.351726i \(-0.114405\pi\)
\(98\) 7.77539i 0.785433i
\(99\) 0 0
\(100\) −4.55842 2.05446i −0.455842 0.205446i
\(101\) 14.7446 1.46714 0.733569 0.679615i \(-0.237853\pi\)
0.733569 + 0.679615i \(0.237853\pi\)
\(102\) 0 0
\(103\) 3.46410i 0.341328i −0.985329 0.170664i \(-0.945409\pi\)
0.985329 0.170664i \(-0.0545913\pi\)
\(104\) −1.62772 −0.159611
\(105\) 0 0
\(106\) 1.62772 0.158098
\(107\) 1.58457i 0.153187i −0.997062 0.0765933i \(-0.975596\pi\)
0.997062 0.0765933i \(-0.0244043\pi\)
\(108\) 0 0
\(109\) −1.11684 −0.106974 −0.0534871 0.998569i \(-0.517034\pi\)
−0.0534871 + 0.998569i \(0.517034\pi\)
\(110\) −5.18614 + 24.1287i −0.494479 + 2.30058i
\(111\) 0 0
\(112\) 7.92287i 0.748641i
\(113\) 8.80773i 0.828562i −0.910149 0.414281i \(-0.864033\pi\)
0.910149 0.414281i \(-0.135967\pi\)
\(114\) 0 0
\(115\) −1.62772 + 7.57301i −0.151786 + 0.706187i
\(116\) 1.00000 0.0928477
\(117\) 0 0
\(118\) 1.28962i 0.118719i
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 29.6060 2.69145
\(122\) 10.3923i 0.940875i
\(123\) 0 0
\(124\) −2.37228 −0.213037
\(125\) 9.00000 + 6.63325i 0.804984 + 0.593296i
\(126\) 0 0
\(127\) 3.46410i 0.307389i 0.988118 + 0.153695i \(0.0491172\pi\)
−0.988118 + 0.153695i \(0.950883\pi\)
\(128\) 12.1244i 1.07165i
\(129\) 0 0
\(130\) −3.55842 0.764836i −0.312094 0.0670805i
\(131\) 4.00000 0.349482 0.174741 0.984614i \(-0.444091\pi\)
0.174741 + 0.984614i \(0.444091\pi\)
\(132\) 0 0
\(133\) 6.33830i 0.549600i
\(134\) −14.7446 −1.27374
\(135\) 0 0
\(136\) −8.74456 −0.749840
\(137\) 6.92820i 0.591916i −0.955201 0.295958i \(-0.904361\pi\)
0.955201 0.295958i \(-0.0956389\pi\)
\(138\) 0 0
\(139\) −8.74456 −0.741704 −0.370852 0.928692i \(-0.620934\pi\)
−0.370852 + 0.928692i \(0.620934\pi\)
\(140\) −0.744563 + 3.46410i −0.0629270 + 0.292770i
\(141\) 0 0
\(142\) 8.21782i 0.689624i
\(143\) 5.98844i 0.500778i
\(144\) 0 0
\(145\) −2.18614 0.469882i −0.181549 0.0390216i
\(146\) 12.0000 0.993127
\(147\) 0 0
\(148\) 10.0974i 0.829997i
\(149\) −21.1168 −1.72996 −0.864980 0.501807i \(-0.832669\pi\)
−0.864980 + 0.501807i \(0.832669\pi\)
\(150\) 0 0
\(151\) −9.48913 −0.772214 −0.386107 0.922454i \(-0.626180\pi\)
−0.386107 + 0.922454i \(0.626180\pi\)
\(152\) 6.92820i 0.561951i
\(153\) 0 0
\(154\) 17.4891 1.40931
\(155\) 5.18614 + 1.11469i 0.416561 + 0.0895342i
\(156\) 0 0
\(157\) 13.8564i 1.10586i 0.833227 + 0.552931i \(0.186491\pi\)
−0.833227 + 0.552931i \(0.813509\pi\)
\(158\) 9.74749i 0.775469i
\(159\) 0 0
\(160\) −2.44158 + 11.3595i −0.193024 + 0.898049i
\(161\) 5.48913 0.432604
\(162\) 0 0
\(163\) 6.28339i 0.492153i 0.969250 + 0.246077i \(0.0791415\pi\)
−0.969250 + 0.246077i \(0.920858\pi\)
\(164\) 6.74456 0.526662
\(165\) 0 0
\(166\) 28.9783 2.24915
\(167\) 9.80240i 0.758532i 0.925288 + 0.379266i \(0.123824\pi\)
−0.925288 + 0.379266i \(0.876176\pi\)
\(168\) 0 0
\(169\) 12.1168 0.932065
\(170\) −19.1168 4.10891i −1.46620 0.315139i
\(171\) 0 0
\(172\) 5.69349i 0.434124i
\(173\) 10.6873i 0.812537i 0.913754 + 0.406269i \(0.133170\pi\)
−0.913754 + 0.406269i \(0.866830\pi\)
\(174\) 0 0
\(175\) 3.25544 7.22316i 0.246088 0.546019i
\(176\) 31.8614 2.40164
\(177\) 0 0
\(178\) 18.6101i 1.39489i
\(179\) 16.7446 1.25155 0.625774 0.780005i \(-0.284783\pi\)
0.625774 + 0.780005i \(0.284783\pi\)
\(180\) 0 0
\(181\) −13.8614 −1.03031 −0.515155 0.857097i \(-0.672266\pi\)
−0.515155 + 0.857097i \(0.672266\pi\)
\(182\) 2.57924i 0.191186i
\(183\) 0 0
\(184\) 6.00000 0.442326
\(185\) 4.74456 22.0742i 0.348827 1.62293i
\(186\) 0 0
\(187\) 32.1716i 2.35262i
\(188\) 5.69349i 0.415240i
\(189\) 0 0
\(190\) −3.25544 + 15.1460i −0.236174 + 1.09881i
\(191\) 16.0000 1.15772 0.578860 0.815427i \(-0.303498\pi\)
0.578860 + 0.815427i \(0.303498\pi\)
\(192\) 0 0
\(193\) 6.92820i 0.498703i −0.968413 0.249351i \(-0.919783\pi\)
0.968413 0.249351i \(-0.0802174\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) −4.48913 −0.320652
\(197\) 27.1229i 1.93243i −0.257743 0.966214i \(-0.582979\pi\)
0.257743 0.966214i \(-0.417021\pi\)
\(198\) 0 0
\(199\) 9.48913 0.672666 0.336333 0.941743i \(-0.390813\pi\)
0.336333 + 0.941743i \(0.390813\pi\)
\(200\) 3.55842 7.89542i 0.251618 0.558290i
\(201\) 0 0
\(202\) 25.5383i 1.79687i
\(203\) 1.58457i 0.111215i
\(204\) 0 0
\(205\) −14.7446 3.16915i −1.02980 0.221343i
\(206\) −6.00000 −0.418040
\(207\) 0 0
\(208\) 4.69882i 0.325804i
\(209\) 25.4891 1.76312
\(210\) 0 0
\(211\) −11.1168 −0.765315 −0.382658 0.923890i \(-0.624991\pi\)
−0.382658 + 0.923890i \(0.624991\pi\)
\(212\) 0.939764i 0.0645432i
\(213\) 0 0
\(214\) −2.74456 −0.187614
\(215\) 2.67527 12.4468i 0.182452 0.848862i
\(216\) 0 0
\(217\) 3.75906i 0.255181i
\(218\) 1.93443i 0.131016i
\(219\) 0 0
\(220\) 13.9307 + 2.99422i 0.939208 + 0.201870i
\(221\) −4.74456 −0.319154
\(222\) 0 0
\(223\) 10.3923i 0.695920i 0.937509 + 0.347960i \(0.113126\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) 8.23369 0.550136
\(225\) 0 0
\(226\) −15.2554 −1.01478
\(227\) 13.5615i 0.900105i −0.893002 0.450053i \(-0.851405\pi\)
0.893002 0.450053i \(-0.148595\pi\)
\(228\) 0 0
\(229\) 1.25544 0.0829616 0.0414808 0.999139i \(-0.486792\pi\)
0.0414808 + 0.999139i \(0.486792\pi\)
\(230\) 13.1168 + 2.81929i 0.864899 + 0.185899i
\(231\) 0 0
\(232\) 1.73205i 0.113715i
\(233\) 16.0858i 1.05382i −0.849923 0.526908i \(-0.823351\pi\)
0.849923 0.526908i \(-0.176649\pi\)
\(234\) 0 0
\(235\) 2.67527 12.4468i 0.174515 0.811937i
\(236\) −0.744563 −0.0484669
\(237\) 0 0
\(238\) 13.8564i 0.898177i
\(239\) −6.23369 −0.403224 −0.201612 0.979465i \(-0.564618\pi\)
−0.201612 + 0.979465i \(0.564618\pi\)
\(240\) 0 0
\(241\) 12.3723 0.796969 0.398484 0.917175i \(-0.369536\pi\)
0.398484 + 0.917175i \(0.369536\pi\)
\(242\) 51.2790i 3.29634i
\(243\) 0 0
\(244\) −6.00000 −0.384111
\(245\) 9.81386 + 2.10936i 0.626984 + 0.134762i
\(246\) 0 0
\(247\) 3.75906i 0.239183i
\(248\) 4.10891i 0.260916i
\(249\) 0 0
\(250\) 11.4891 15.5885i 0.726636 0.985901i
\(251\) −1.62772 −0.102741 −0.0513703 0.998680i \(-0.516359\pi\)
−0.0513703 + 0.998680i \(0.516359\pi\)
\(252\) 0 0
\(253\) 22.0742i 1.38779i
\(254\) 6.00000 0.376473
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 12.3267i 0.768921i 0.923142 + 0.384460i \(0.125612\pi\)
−0.923142 + 0.384460i \(0.874388\pi\)
\(258\) 0 0
\(259\) −16.0000 −0.994192
\(260\) −0.441578 + 2.05446i −0.0273855 + 0.127412i
\(261\) 0 0
\(262\) 6.92820i 0.428026i
\(263\) 26.4781i 1.63271i 0.577551 + 0.816355i \(0.304008\pi\)
−0.577551 + 0.816355i \(0.695992\pi\)
\(264\) 0 0
\(265\) −0.441578 + 2.05446i −0.0271259 + 0.126204i
\(266\) 10.9783 0.673120
\(267\) 0 0
\(268\) 8.51278i 0.520001i
\(269\) 0.510875 0.0311486 0.0155743 0.999879i \(-0.495042\pi\)
0.0155743 + 0.999879i \(0.495042\pi\)
\(270\) 0 0
\(271\) 19.8614 1.20649 0.603247 0.797554i \(-0.293873\pi\)
0.603247 + 0.797554i \(0.293873\pi\)
\(272\) 25.2434i 1.53060i
\(273\) 0 0
\(274\) −12.0000 −0.724947
\(275\) −29.0475 13.0916i −1.75163 0.789451i
\(276\) 0 0
\(277\) 6.92820i 0.416275i −0.978100 0.208138i \(-0.933260\pi\)
0.978100 0.208138i \(-0.0667402\pi\)
\(278\) 15.1460i 0.908398i
\(279\) 0 0
\(280\) −6.00000 1.28962i −0.358569 0.0770696i
\(281\) −4.37228 −0.260828 −0.130414 0.991460i \(-0.541631\pi\)
−0.130414 + 0.991460i \(0.541631\pi\)
\(282\) 0 0
\(283\) 30.5870i 1.81821i −0.416568 0.909104i \(-0.636767\pi\)
0.416568 0.909104i \(-0.363233\pi\)
\(284\) −4.74456 −0.281538
\(285\) 0 0
\(286\) 10.3723 0.613326
\(287\) 10.6873i 0.630849i
\(288\) 0 0
\(289\) −8.48913 −0.499360
\(290\) −0.813859 + 3.78651i −0.0477915 + 0.222351i
\(291\) 0 0
\(292\) 6.92820i 0.405442i
\(293\) 22.0742i 1.28959i −0.764355 0.644795i \(-0.776943\pi\)
0.764355 0.644795i \(-0.223057\pi\)
\(294\) 0 0
\(295\) 1.62772 + 0.349857i 0.0947694 + 0.0203694i
\(296\) −17.4891 −1.01653
\(297\) 0 0
\(298\) 36.5754i 2.11876i
\(299\) 3.25544 0.188267
\(300\) 0 0
\(301\) −9.02175 −0.520005
\(302\) 16.4356i 0.945765i
\(303\) 0 0
\(304\) 20.0000 1.14708
\(305\) 13.1168 + 2.81929i 0.751068 + 0.161432i
\(306\) 0 0
\(307\) 15.7908i 0.901231i −0.892718 0.450615i \(-0.851205\pi\)
0.892718 0.450615i \(-0.148795\pi\)
\(308\) 10.0974i 0.575350i
\(309\) 0 0
\(310\) 1.93070 8.98266i 0.109657 0.510181i
\(311\) 18.9783 1.07616 0.538079 0.842894i \(-0.319150\pi\)
0.538079 + 0.842894i \(0.319150\pi\)
\(312\) 0 0
\(313\) 2.22938i 0.126012i −0.998013 0.0630061i \(-0.979931\pi\)
0.998013 0.0630061i \(-0.0200688\pi\)
\(314\) 24.0000 1.35440
\(315\) 0 0
\(316\) 5.62772 0.316584
\(317\) 15.7359i 0.883818i 0.897060 + 0.441909i \(0.145699\pi\)
−0.897060 + 0.441909i \(0.854301\pi\)
\(318\) 0 0
\(319\) 6.37228 0.356779
\(320\) −2.18614 0.469882i −0.122209 0.0262672i
\(321\) 0 0
\(322\) 9.50744i 0.529829i
\(323\) 20.1947i 1.12366i
\(324\) 0 0
\(325\) 1.93070 4.28384i 0.107096 0.237625i
\(326\) 10.8832 0.602762
\(327\) 0 0
\(328\) 11.6819i 0.645026i
\(329\) −9.02175 −0.497385
\(330\) 0 0
\(331\) 0.138593 0.00761778 0.00380889 0.999993i \(-0.498788\pi\)
0.00380889 + 0.999993i \(0.498788\pi\)
\(332\) 16.7306i 0.918211i
\(333\) 0 0
\(334\) 16.9783 0.929009
\(335\) 4.00000 18.6101i 0.218543 1.01678i
\(336\) 0 0
\(337\) 25.2434i 1.37509i 0.726140 + 0.687547i \(0.241313\pi\)
−0.726140 + 0.687547i \(0.758687\pi\)
\(338\) 20.9870i 1.14154i
\(339\) 0 0
\(340\) −2.37228 + 11.0371i −0.128655 + 0.598572i
\(341\) −15.1168 −0.818623
\(342\) 0 0
\(343\) 18.2054i 0.982998i
\(344\) −9.86141 −0.531691
\(345\) 0 0
\(346\) 18.5109 0.995151
\(347\) 19.8997i 1.06827i −0.845398 0.534137i \(-0.820637\pi\)
0.845398 0.534137i \(-0.179363\pi\)
\(348\) 0 0
\(349\) 1.86141 0.0996388 0.0498194 0.998758i \(-0.484135\pi\)
0.0498194 + 0.998758i \(0.484135\pi\)
\(350\) −12.5109 5.63858i −0.668734 0.301395i
\(351\) 0 0
\(352\) 33.1113i 1.76484i
\(353\) 23.9538i 1.27493i −0.770479 0.637465i \(-0.779983\pi\)
0.770479 0.637465i \(-0.220017\pi\)
\(354\) 0 0
\(355\) 10.3723 + 2.22938i 0.550504 + 0.118323i
\(356\) −10.7446 −0.569461
\(357\) 0 0
\(358\) 29.0024i 1.53283i
\(359\) −31.1168 −1.64228 −0.821142 0.570724i \(-0.806663\pi\)
−0.821142 + 0.570724i \(0.806663\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 24.0087i 1.26187i
\(363\) 0 0
\(364\) 1.48913 0.0780514
\(365\) −3.25544 + 15.1460i −0.170397 + 0.792779i
\(366\) 0 0
\(367\) 10.3923i 0.542474i −0.962513 0.271237i \(-0.912567\pi\)
0.962513 0.271237i \(-0.0874327\pi\)
\(368\) 17.3205i 0.902894i
\(369\) 0 0
\(370\) −38.2337 8.21782i −1.98767 0.427224i
\(371\) 1.48913 0.0773115
\(372\) 0 0
\(373\) 5.39853i 0.279525i 0.990185 + 0.139763i \(0.0446340\pi\)
−0.990185 + 0.139763i \(0.955366\pi\)
\(374\) 55.7228 2.88136
\(375\) 0 0
\(376\) −9.86141 −0.508563
\(377\) 0.939764i 0.0484003i
\(378\) 0 0
\(379\) 21.4891 1.10382 0.551911 0.833903i \(-0.313899\pi\)
0.551911 + 0.833903i \(0.313899\pi\)
\(380\) 8.74456 + 1.87953i 0.448587 + 0.0964177i
\(381\) 0 0
\(382\) 27.7128i 1.41791i
\(383\) 18.6101i 0.950933i −0.879734 0.475467i \(-0.842279\pi\)
0.879734 0.475467i \(-0.157721\pi\)
\(384\) 0 0
\(385\) −4.74456 + 22.0742i −0.241805 + 1.12501i
\(386\) −12.0000 −0.610784
\(387\) 0 0
\(388\) 6.92820i 0.351726i
\(389\) −2.74456 −0.139155 −0.0695774 0.997577i \(-0.522165\pi\)
−0.0695774 + 0.997577i \(0.522165\pi\)
\(390\) 0 0
\(391\) 17.4891 0.884463
\(392\) 7.77539i 0.392717i
\(393\) 0 0
\(394\) −46.9783 −2.36673
\(395\) −12.3030 2.64436i −0.619030 0.133052i
\(396\) 0 0
\(397\) 7.27806i 0.365275i 0.983180 + 0.182638i \(0.0584635\pi\)
−0.983180 + 0.182638i \(0.941536\pi\)
\(398\) 16.4356i 0.823845i
\(399\) 0 0
\(400\) −22.7921 10.2723i −1.13961 0.513614i
\(401\) 13.1168 0.655024 0.327512 0.944847i \(-0.393790\pi\)
0.327512 + 0.944847i \(0.393790\pi\)
\(402\) 0 0
\(403\) 2.22938i 0.111054i
\(404\) −14.7446 −0.733569
\(405\) 0 0
\(406\) 2.74456 0.136210
\(407\) 64.3432i 3.18937i
\(408\) 0 0
\(409\) 30.4674 1.50651 0.753257 0.657726i \(-0.228481\pi\)
0.753257 + 0.657726i \(0.228481\pi\)
\(410\) −5.48913 + 25.5383i −0.271089 + 1.26125i
\(411\) 0 0
\(412\) 3.46410i 0.170664i
\(413\) 1.17981i 0.0580549i
\(414\) 0 0
\(415\) −7.86141 + 36.5754i −0.385901 + 1.79542i
\(416\) 4.88316 0.239416
\(417\) 0 0
\(418\) 44.1485i 2.15937i
\(419\) 24.7446 1.20885 0.604425 0.796662i \(-0.293403\pi\)
0.604425 + 0.796662i \(0.293403\pi\)
\(420\) 0 0
\(421\) −20.9783 −1.02242 −0.511209 0.859457i \(-0.670802\pi\)
−0.511209 + 0.859457i \(0.670802\pi\)
\(422\) 19.2549i 0.937316i
\(423\) 0 0
\(424\) 1.62772 0.0790490
\(425\) 10.3723 23.0140i 0.503130 1.11634i
\(426\) 0 0
\(427\) 9.50744i 0.460097i
\(428\) 1.58457i 0.0765933i
\(429\) 0 0
\(430\) −21.5584 4.63370i −1.03964 0.223457i
\(431\) 11.2554 0.542155 0.271078 0.962557i \(-0.412620\pi\)
0.271078 + 0.962557i \(0.412620\pi\)
\(432\) 0 0
\(433\) 14.4463i 0.694246i 0.937820 + 0.347123i \(0.112841\pi\)
−0.937820 + 0.347123i \(0.887159\pi\)
\(434\) −6.51087 −0.312532
\(435\) 0 0
\(436\) 1.11684 0.0534871
\(437\) 13.8564i 0.662842i
\(438\) 0 0
\(439\) −30.2337 −1.44298 −0.721488 0.692427i \(-0.756541\pi\)
−0.721488 + 0.692427i \(0.756541\pi\)
\(440\) −5.18614 + 24.1287i −0.247240 + 1.15029i
\(441\) 0 0
\(442\) 8.21782i 0.390882i
\(443\) 7.22316i 0.343183i 0.985168 + 0.171591i \(0.0548908\pi\)
−0.985168 + 0.171591i \(0.945109\pi\)
\(444\) 0 0
\(445\) 23.4891 + 5.04868i 1.11349 + 0.239330i
\(446\) 18.0000 0.852325
\(447\) 0 0
\(448\) 1.58457i 0.0748641i
\(449\) 34.4674 1.62662 0.813308 0.581833i \(-0.197664\pi\)
0.813308 + 0.581833i \(0.197664\pi\)
\(450\) 0 0
\(451\) 42.9783 2.02377
\(452\) 8.80773i 0.414281i
\(453\) 0 0
\(454\) −23.4891 −1.10240
\(455\) −3.25544 0.699713i −0.152617 0.0328031i
\(456\) 0 0
\(457\) 2.57924i 0.120652i −0.998179 0.0603259i \(-0.980786\pi\)
0.998179 0.0603259i \(-0.0192140\pi\)
\(458\) 2.17448i 0.101607i
\(459\) 0 0
\(460\) 1.62772 7.57301i 0.0758928 0.353094i
\(461\) −4.51087 −0.210092 −0.105046 0.994467i \(-0.533499\pi\)
−0.105046 + 0.994467i \(0.533499\pi\)
\(462\) 0 0
\(463\) 20.4897i 0.952235i 0.879382 + 0.476118i \(0.157956\pi\)
−0.879382 + 0.476118i \(0.842044\pi\)
\(464\) 5.00000 0.232119
\(465\) 0 0
\(466\) −27.8614 −1.29065
\(467\) 39.7446i 1.83916i 0.392902 + 0.919580i \(0.371471\pi\)
−0.392902 + 0.919580i \(0.628529\pi\)
\(468\) 0 0
\(469\) −13.4891 −0.622870
\(470\) −21.5584 4.63370i −0.994416 0.213736i
\(471\) 0 0
\(472\) 1.28962i 0.0593596i
\(473\) 36.2805i 1.66818i
\(474\) 0 0
\(475\) −18.2337 8.21782i −0.836619 0.377060i
\(476\) 8.00000 0.366679
\(477\) 0 0
\(478\) 10.7971i 0.493846i
\(479\) −10.3723 −0.473922 −0.236961 0.971519i \(-0.576151\pi\)
−0.236961 + 0.971519i \(0.576151\pi\)
\(480\) 0 0
\(481\) −9.48913 −0.432667
\(482\) 21.4294i 0.976083i
\(483\) 0 0
\(484\) −29.6060 −1.34573
\(485\) 3.25544 15.1460i 0.147822 0.687746i
\(486\) 0 0
\(487\) 9.10268i 0.412482i −0.978501 0.206241i \(-0.933877\pi\)
0.978501 0.206241i \(-0.0661231\pi\)
\(488\) 10.3923i 0.470438i
\(489\) 0 0
\(490\) 3.65352 16.9981i 0.165049 0.767896i
\(491\) 17.6277 0.795528 0.397764 0.917488i \(-0.369786\pi\)
0.397764 + 0.917488i \(0.369786\pi\)
\(492\) 0 0
\(493\) 5.04868i 0.227381i
\(494\) 6.51087 0.292938
\(495\) 0 0
\(496\) −11.8614 −0.532593
\(497\) 7.51811i 0.337233i
\(498\) 0 0
\(499\) −16.7446 −0.749590 −0.374795 0.927108i \(-0.622287\pi\)
−0.374795 + 0.927108i \(0.622287\pi\)
\(500\) −9.00000 6.63325i −0.402492 0.296648i
\(501\) 0 0
\(502\) 2.81929i 0.125831i
\(503\) 39.7446i 1.77212i −0.463567 0.886062i \(-0.653431\pi\)
0.463567 0.886062i \(-0.346569\pi\)
\(504\) 0 0
\(505\) 32.2337 + 6.92820i 1.43438 + 0.308301i
\(506\) −38.2337 −1.69969
\(507\) 0 0
\(508\) 3.46410i 0.153695i
\(509\) 5.86141 0.259802 0.129901 0.991527i \(-0.458534\pi\)
0.129901 + 0.991527i \(0.458534\pi\)
\(510\) 0 0
\(511\) 10.9783 0.485649
\(512\) 8.66025i 0.382733i
\(513\) 0 0
\(514\) 21.3505 0.941732
\(515\) 1.62772 7.57301i 0.0717259 0.333707i
\(516\) 0 0
\(517\) 36.2805i 1.59561i
\(518\) 27.7128i 1.21763i
\(519\) 0 0
\(520\) −3.55842 0.764836i −0.156047 0.0335403i
\(521\) 25.8614 1.13301 0.566504 0.824059i \(-0.308295\pi\)
0.566504 + 0.824059i \(0.308295\pi\)
\(522\) 0 0
\(523\) 4.75372i 0.207866i −0.994584 0.103933i \(-0.966857\pi\)
0.994584 0.103933i \(-0.0331427\pi\)
\(524\) −4.00000 −0.174741
\(525\) 0 0
\(526\) 45.8614 1.99965
\(527\) 11.9769i 0.521721i
\(528\) 0 0
\(529\) 11.0000 0.478261
\(530\) 3.55842 + 0.764836i 0.154568 + 0.0332223i
\(531\) 0 0
\(532\) 6.33830i 0.274800i
\(533\) 6.33830i 0.274542i
\(534\) 0 0
\(535\) 0.744563 3.46410i 0.0321903 0.149766i
\(536\) −14.7446 −0.636868
\(537\) 0 0
\(538\) 0.884861i 0.0381491i
\(539\) −28.6060 −1.23215
\(540\) 0 0
\(541\) 34.7446 1.49379 0.746893 0.664945i \(-0.231545\pi\)
0.746893 + 0.664945i \(0.231545\pi\)
\(542\) 34.4010i 1.47765i
\(543\) 0 0
\(544\) 26.2337 1.12476
\(545\) −2.44158 0.524785i −0.104586 0.0224793i
\(546\) 0 0
\(547\) 4.75372i 0.203254i −0.994823 0.101627i \(-0.967595\pi\)
0.994823 0.101627i \(-0.0324049\pi\)
\(548\) 6.92820i 0.295958i
\(549\) 0 0
\(550\) −22.6753 + 50.3118i −0.966877 + 2.14530i
\(551\) 4.00000 0.170406
\(552\) 0 0
\(553\) 8.91754i 0.379212i
\(554\) −12.0000 −0.509831
\(555\) 0 0
\(556\) 8.74456 0.370852
\(557\) 30.8820i 1.30851i −0.756274 0.654255i \(-0.772982\pi\)
0.756274 0.654255i \(-0.227018\pi\)
\(558\) 0 0
\(559\) −5.35053 −0.226303
\(560\) −3.72281 + 17.3205i −0.157318 + 0.731925i
\(561\) 0 0
\(562\) 7.57301i 0.319448i
\(563\) 1.23472i 0.0520371i 0.999661 + 0.0260186i \(0.00828290\pi\)
−0.999661 + 0.0260186i \(0.991717\pi\)
\(564\) 0 0
\(565\) 4.13859 19.2549i 0.174112 0.810061i
\(566\) −52.9783 −2.22684
\(567\) 0 0
\(568\) 8.21782i 0.344812i
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 5.98844i 0.250389i
\(573\) 0 0
\(574\) 18.5109 0.772629
\(575\) −7.11684 + 15.7908i −0.296793 + 0.658523i
\(576\) 0 0
\(577\) 8.80773i 0.366671i −0.983050 0.183335i \(-0.941311\pi\)
0.983050 0.183335i \(-0.0586894\pi\)
\(578\) 14.7036i 0.611589i
\(579\) 0 0
\(580\) 2.18614 + 0.469882i 0.0907746 + 0.0195108i
\(581\) 26.5109 1.09986
\(582\) 0 0
\(583\) 5.98844i 0.248016i
\(584\) 12.0000 0.496564
\(585\) 0 0
\(586\) −38.2337 −1.57942
\(587\) 36.9253i 1.52407i 0.647536 + 0.762035i \(0.275800\pi\)
−0.647536 + 0.762035i \(0.724200\pi\)
\(588\) 0 0
\(589\) −9.48913 −0.390993
\(590\) 0.605969 2.81929i 0.0249474 0.116068i
\(591\) 0 0
\(592\) 50.4868i 2.07499i
\(593\) 14.2063i 0.583381i 0.956513 + 0.291691i \(0.0942178\pi\)
−0.956513 + 0.291691i \(0.905782\pi\)
\(594\) 0 0
\(595\) −17.4891 3.75906i −0.716984 0.154106i
\(596\) 21.1168 0.864980
\(597\) 0 0
\(598\) 5.63858i 0.230579i
\(599\) −21.3505 −0.872359 −0.436180 0.899860i \(-0.643669\pi\)
−0.436180 + 0.899860i \(0.643669\pi\)
\(600\) 0 0
\(601\) −18.7446 −0.764607 −0.382303 0.924037i \(-0.624869\pi\)
−0.382303 + 0.924037i \(0.624869\pi\)
\(602\) 15.6261i 0.636873i
\(603\) 0 0
\(604\) 9.48913 0.386107
\(605\) 64.7228 + 13.9113i 2.63136 + 0.565575i
\(606\) 0 0
\(607\) 25.8882i 1.05077i 0.850865 + 0.525385i \(0.176079\pi\)
−0.850865 + 0.525385i \(0.823921\pi\)
\(608\) 20.7846i 0.842927i
\(609\) 0 0
\(610\) 4.88316 22.7190i 0.197713 0.919867i
\(611\) −5.35053 −0.216459
\(612\) 0 0
\(613\) 39.4496i 1.59336i 0.604404 + 0.796678i \(0.293411\pi\)
−0.604404 + 0.796678i \(0.706589\pi\)
\(614\) −27.3505 −1.10378
\(615\) 0 0
\(616\) 17.4891 0.704657
\(617\) 24.5437i 0.988091i 0.869436 + 0.494045i \(0.164482\pi\)
−0.869436 + 0.494045i \(0.835518\pi\)
\(618\) 0 0
\(619\) −25.6277 −1.03006 −0.515032 0.857171i \(-0.672220\pi\)
−0.515032 + 0.857171i \(0.672220\pi\)
\(620\) −5.18614 1.11469i −0.208280 0.0447671i
\(621\) 0 0
\(622\) 32.8713i 1.31802i
\(623\) 17.0256i 0.682114i
\(624\) 0 0
\(625\) 16.5584 + 18.7302i 0.662337 + 0.749206i
\(626\) −3.86141 −0.154333
\(627\) 0 0
\(628\) 13.8564i 0.552931i
\(629\) −50.9783 −2.03264
\(630\) 0 0
\(631\) 6.23369 0.248159 0.124080 0.992272i \(-0.460402\pi\)
0.124080 + 0.992272i \(0.460402\pi\)
\(632\) 9.74749i 0.387735i
\(633\) 0 0
\(634\) 27.2554 1.08245
\(635\) −1.62772 + 7.57301i −0.0645940 + 0.300526i
\(636\) 0 0
\(637\) 4.21872i 0.167152i
\(638\) 11.0371i 0.436964i
\(639\) 0 0
\(640\) −5.69702 + 26.5055i −0.225194 + 1.04772i
\(641\) −3.48913 −0.137812 −0.0689061 0.997623i \(-0.521951\pi\)
−0.0689061 + 0.997623i \(0.521951\pi\)
\(642\) 0 0
\(643\) 4.75372i 0.187468i −0.995597 0.0937342i \(-0.970120\pi\)
0.995597 0.0937342i \(-0.0298804\pi\)
\(644\) −5.48913 −0.216302
\(645\) 0 0
\(646\) 34.9783 1.37620
\(647\) 27.4179i 1.07791i 0.842335 + 0.538954i \(0.181180\pi\)
−0.842335 + 0.538954i \(0.818820\pi\)
\(648\) 0 0
\(649\) −4.74456 −0.186240
\(650\) −7.41983 3.34408i −0.291030 0.131165i
\(651\) 0 0
\(652\) 6.28339i 0.246077i
\(653\) 17.6155i 0.689346i −0.938723 0.344673i \(-0.887990\pi\)
0.938723 0.344673i \(-0.112010\pi\)
\(654\) 0 0
\(655\) 8.74456 + 1.87953i 0.341678 + 0.0734392i
\(656\) 33.7228 1.31665
\(657\) 0 0
\(658\) 15.6261i 0.609170i
\(659\) −41.3505 −1.61079 −0.805394 0.592740i \(-0.798046\pi\)
−0.805394 + 0.592740i \(0.798046\pi\)
\(660\) 0 0
\(661\) −16.5109 −0.642199 −0.321099 0.947046i \(-0.604052\pi\)
−0.321099 + 0.947046i \(0.604052\pi\)
\(662\) 0.240051i 0.00932984i
\(663\) 0 0
\(664\) 28.9783 1.12457
\(665\) −2.97825 + 13.8564i −0.115492 + 0.537328i
\(666\) 0 0
\(667\) 3.46410i 0.134131i
\(668\) 9.80240i 0.379266i
\(669\) 0 0
\(670\) −32.2337 6.92820i −1.24530 0.267660i
\(671\) −38.2337 −1.47600
\(672\) 0 0
\(673\) 3.40920i 0.131415i 0.997839 + 0.0657075i \(0.0209304\pi\)
−0.997839 + 0.0657075i \(0.979070\pi\)
\(674\) 43.7228 1.68414
\(675\) 0 0
\(676\) −12.1168 −0.466032
\(677\) 0.699713i 0.0268922i −0.999910 0.0134461i \(-0.995720\pi\)
0.999910 0.0134461i \(-0.00428015\pi\)
\(678\) 0 0
\(679\) −10.9783 −0.421307
\(680\) −19.1168 4.10891i −0.733098 0.157570i
\(681\) 0 0
\(682\) 26.1831i 1.00260i
\(683\) 31.8766i 1.21973i −0.792507 0.609863i \(-0.791225\pi\)
0.792507 0.609863i \(-0.208775\pi\)
\(684\) 0 0
\(685\) 3.25544 15.1460i 0.124384 0.578700i
\(686\) −31.5326 −1.20392
\(687\) 0 0
\(688\) 28.4674i 1.08531i
\(689\) 0.883156 0.0336456
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 10.6873i 0.406269i
\(693\) 0 0
\(694\) −34.4674 −1.30836
\(695\) −19.1168 4.10891i −0.725143 0.155860i
\(696\) 0 0
\(697\) 34.0511i 1.28978i
\(698\) 3.22405i 0.122032i
\(699\) 0 0
\(700\) −3.25544 + 7.22316i −0.123044 + 0.273010i
\(701\) 17.1168 0.646494 0.323247 0.946315i \(-0.395225\pi\)
0.323247 + 0.946315i \(0.395225\pi\)
\(702\) 0 0
\(703\) 40.3894i 1.52332i
\(704\) 6.37228 0.240164
\(705\) 0 0
\(706\) −41.4891 −1.56146
\(707\) 23.3639i 0.878688i
\(708\) 0 0
\(709\) −28.0951 −1.05513 −0.527567 0.849514i \(-0.676896\pi\)
−0.527567 + 0.849514i \(0.676896\pi\)
\(710\) 3.86141 17.9653i 0.144916 0.674226i
\(711\) 0 0
\(712\) 18.6101i 0.697444i
\(713\) 8.21782i 0.307760i
\(714\) 0 0
\(715\) −2.81386 + 13.0916i −0.105232 + 0.489597i
\(716\) −16.7446 −0.625774
\(717\) 0 0
\(718\) 53.8960i 2.01138i
\(719\) 3.25544 0.121407 0.0607037 0.998156i \(-0.480666\pi\)
0.0607037 + 0.998156i \(0.480666\pi\)
\(720\) 0 0
\(721\) −5.48913 −0.204426
\(722\) 5.19615i 0.193381i
\(723\) 0 0
\(724\) 13.8614 0.515155
\(725\) −4.55842 2.05446i −0.169296 0.0763006i
\(726\) 0 0
\(727\) 0.294954i 0.0109392i −0.999985 0.00546961i \(-0.998259\pi\)
0.999985 0.00546961i \(-0.00174104\pi\)
\(728\) 2.57924i 0.0955930i
\(729\) 0 0
\(730\) 26.2337 + 5.63858i 0.970952 + 0.208693i
\(731\) −28.7446 −1.06316
\(732\) 0 0
\(733\) 27.7128i 1.02360i −0.859106 0.511798i \(-0.828980\pi\)
0.859106 0.511798i \(-0.171020\pi\)
\(734\) −18.0000 −0.664392
\(735\) 0 0
\(736\) −18.0000 −0.663489
\(737\) 54.2458i 1.99817i
\(738\) 0 0
\(739\) −9.62772 −0.354161 −0.177081 0.984196i \(-0.556665\pi\)
−0.177081 + 0.984196i \(0.556665\pi\)
\(740\) −4.74456 + 22.0742i −0.174414 + 0.811465i
\(741\) 0 0
\(742\) 2.57924i 0.0946869i
\(743\) 17.3205i 0.635428i −0.948187 0.317714i \(-0.897085\pi\)
0.948187 0.317714i \(-0.102915\pi\)
\(744\) 0 0
\(745\) −46.1644 9.92242i −1.69133 0.363529i
\(746\) 9.35053 0.342347
\(747\) 0 0
\(748\) 32.1716i 1.17631i
\(749\) −2.51087 −0.0917454
\(750\) 0 0
\(751\) −20.4674 −0.746865 −0.373433 0.927657i \(-0.621819\pi\)
−0.373433 + 0.927657i \(0.621819\pi\)
\(752\) 28.4674i 1.03810i
\(753\) 0 0
\(754\) 1.62772 0.0592780
\(755\) −20.7446 4.45877i −0.754972 0.162271i
\(756\) 0 0
\(757\) 29.5923i 1.07555i −0.843088 0.537776i \(-0.819265\pi\)
0.843088 0.537776i \(-0.180735\pi\)
\(758\) 37.2203i 1.35190i
\(759\) 0 0
\(760\) −3.25544 + 15.1460i −0.118087 + 0.549404i
\(761\) −38.4674 −1.39444 −0.697221 0.716857i \(-0.745580\pi\)
−0.697221 + 0.716857i \(0.745580\pi\)
\(762\) 0 0
\(763\) 1.76972i 0.0640682i
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) −32.2337 −1.16465
\(767\) 0.699713i 0.0252652i
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 38.2337 + 8.21782i 1.37785 + 0.296150i
\(771\) 0 0
\(772\) 6.92820i 0.249351i
\(773\) 51.6666i 1.85832i 0.369681 + 0.929159i \(0.379467\pi\)
−0.369681 + 0.929159i \(0.620533\pi\)
\(774\) 0 0
\(775\) 10.8139 + 4.87375i 0.388445 + 0.175070i
\(776\) −12.0000 −0.430775
\(777\) 0 0
\(778\) 4.75372i 0.170429i
\(779\) 26.9783 0.966596
\(780\) 0 0
\(781\) −30.2337 −1.08185
\(782\) 30.2921i 1.08324i
\(783\) 0 0
\(784\) −22.4456 −0.801630
\(785\) −6.51087 + 30.2921i −0.232383 + 1.08117i
\(786\) 0 0
\(787\) 13.5615i 0.483414i 0.970349 + 0.241707i \(0.0777072\pi\)
−0.970349 + 0.241707i \(0.922293\pi\)
\(788\) 27.1229i 0.966214i
\(789\) 0 0
\(790\) −4.58017 + 21.3094i −0.162955 + 0.758154i
\(791\) −13.9565 −0.496236
\(792\) 0 0
\(793\) 5.63858i 0.200232i
\(794\) 12.6060 0.447369
\(795\) 0 0
\(796\) −9.48913 −0.336333
\(797\) 4.45877i 0.157938i −0.996877 0.0789688i \(-0.974837\pi\)
0.996877 0.0789688i \(-0.0251628\pi\)
\(798\) 0 0
\(799\) −28.7446 −1.01691
\(800\) −10.6753 + 23.6863i −0.377428 + 0.837436i
\(801\) 0 0
\(802\) 22.7190i 0.802237i
\(803\) 44.1485i 1.55797i
\(804\) 0 0
\(805\) 12.0000 + 2.57924i 0.422944 + 0.0909063i
\(806\) −3.86141 −0.136012
\(807\) 0 0
\(808\) 25.5383i 0.898435i
\(809\) 1.25544 0.0441388 0.0220694 0.999756i \(-0.492975\pi\)
0.0220694 + 0.999756i \(0.492975\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 1.58457i 0.0556076i
\(813\) 0 0
\(814\) 111.446 3.90617
\(815\) −2.95245 + 13.7364i −0.103420 + 0.481164i
\(816\) 0 0
\(817\) 22.7739i 0.796759i
\(818\) 52.7710i 1.84510i
\(819\) 0 0
\(820\) 14.7446 + 3.16915i 0.514902 + 0.110671i
\(821\) −11.6277 −0.405810 −0.202905 0.979198i \(-0.565038\pi\)
−0.202905 + 0.979198i \(0.565038\pi\)
\(822\) 0 0
\(823\) 33.1662i 1.15610i −0.816000 0.578051i \(-0.803813\pi\)
0.816000 0.578051i \(-0.196187\pi\)
\(824\) −6.00000 −0.209020
\(825\) 0 0
\(826\) −2.04350 −0.0711024
\(827\) 33.4063i 1.16165i 0.814028 + 0.580825i \(0.197270\pi\)
−0.814028 + 0.580825i \(0.802730\pi\)
\(828\) 0 0
\(829\) −26.0000 −0.903017 −0.451509 0.892267i \(-0.649114\pi\)
−0.451509 + 0.892267i \(0.649114\pi\)
\(830\) 63.3505 + 13.6164i 2.19893 + 0.472631i
\(831\) 0 0
\(832\) 0.939764i 0.0325804i
\(833\) 22.6641i 0.785266i
\(834\) 0 0
\(835\) −4.60597 + 21.4294i −0.159396 + 0.741596i
\(836\) −25.4891 −0.881560
\(837\) 0 0
\(838\) 42.8588i 1.48053i
\(839\) −13.6277 −0.470481 −0.235241 0.971937i \(-0.575588\pi\)
−0.235241 + 0.971937i \(0.575588\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 36.3354i 1.25220i
\(843\) 0 0
\(844\) 11.1168 0.382658
\(845\) 26.4891 + 5.69349i 0.911254 + 0.195862i
\(846\) 0 0
\(847\) 46.9128i 1.61194i
\(848\) 4.69882i 0.161358i
\(849\) 0 0
\(850\) −39.8614 17.9653i −1.36723 0.616205i
\(851\) 34.9783 1.19904
\(852\) 0 0
\(853\) 5.63858i 0.193061i −0.995330 0.0965307i \(-0.969225\pi\)
0.995330 0.0965307i \(-0.0307746\pi\)
\(854\) −16.4674 −0.563502
\(855\) 0 0
\(856\) −2.74456 −0.0938072
\(857\) 29.9422i 1.02281i −0.859341 0.511403i \(-0.829126\pi\)
0.859341 0.511403i \(-0.170874\pi\)
\(858\) 0 0
\(859\) −11.3940 −0.388759 −0.194380 0.980926i \(-0.562269\pi\)
−0.194380 + 0.980926i \(0.562269\pi\)
\(860\) −2.67527 + 12.4468i −0.0912258 + 0.424431i
\(861\) 0 0
\(862\) 19.4950i 0.664002i
\(863\) 6.63325i 0.225798i −0.993606 0.112899i \(-0.963986\pi\)
0.993606 0.112899i \(-0.0360137\pi\)
\(864\) 0 0
\(865\) −5.02175 + 23.3639i −0.170745 + 0.794395i
\(866\) 25.0217 0.850274
\(867\) 0 0
\(868\) 3.75906i 0.127591i
\(869\) 35.8614 1.21651
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 1.93443i 0.0655081i
\(873\) 0 0
\(874\) −24.0000 −0.811812
\(875\) 10.5109 14.2612i 0.355332 0.482115i
\(876\) 0 0
\(877\) 41.3292i 1.39559i 0.716299 + 0.697793i \(0.245835\pi\)
−0.716299 + 0.697793i \(0.754165\pi\)
\(878\) 52.3663i 1.76728i
\(879\) 0 0
\(880\) 69.6535 + 14.9711i 2.34802 + 0.504676i
\(881\) 8.97825 0.302485 0.151242 0.988497i \(-0.451673\pi\)
0.151242 + 0.988497i \(0.451673\pi\)
\(882\) 0 0
\(883\) 18.6101i 0.626281i −0.949707 0.313140i \(-0.898619\pi\)
0.949707 0.313140i \(-0.101381\pi\)
\(884\) 4.74456 0.159577
\(885\) 0 0
\(886\) 12.5109 0.420311
\(887\) 32.2265i 1.08206i −0.841003 0.541030i \(-0.818035\pi\)
0.841003 0.541030i \(-0.181965\pi\)
\(888\) 0 0
\(889\) 5.48913 0.184099
\(890\) 8.74456 40.6844i 0.293118 1.36374i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) 22.7739i 0.762101i
\(894\) 0 0
\(895\) 36.6060 + 7.86797i 1.22360 + 0.262997i
\(896\) 19.2119 0.641826
\(897\) 0 0
\(898\) 59.6992i 1.99219i
\(899\) −2.37228 −0.0791200
\(900\) 0 0
\(901\) 4.74456 0.158064
\(902\) 74.4405i 2.47860i
\(903\) 0 0
\(904\) −15.2554 −0.507388
\(905\) −30.3030 6.51322i −1.00731 0.216507i
\(906\) 0 0
\(907\) 33.1662i 1.10127i 0.834747 + 0.550634i \(0.185614\pi\)
−0.834747 + 0.550634i \(0.814386\pi\)
\(908\) 13.5615i 0.450053i
\(909\) 0 0
\(910\) −1.21194 + 5.63858i −0.0401754 + 0.186917i
\(911\) 8.88316 0.294312 0.147156 0.989113i \(-0.452988\pi\)
0.147156 + 0.989113i \(0.452988\pi\)
\(912\) 0 0
\(913\) 106.612i 3.52835i
\(914\) −4.46738 −0.147768
\(915\) 0 0
\(916\) −1.25544 −0.0414808
\(917\) 6.33830i 0.209309i
\(918\) 0 0
\(919\) −17.7663 −0.586057 −0.293028 0.956104i \(-0.594663\pi\)
−0.293028 + 0.956104i \(0.594663\pi\)
\(920\) 13.1168 + 2.81929i 0.432450 + 0.0929493i
\(921\) 0 0
\(922\) 7.81306i 0.257310i
\(923\) 4.45877i 0.146762i
\(924\) 0 0
\(925\) 20.7446 46.0280i 0.682077 1.51339i
\(926\) 35.4891 1.16625
\(927\) 0 0
\(928\) 5.19615i 0.170572i
\(929\) −24.5109 −0.804176 −0.402088 0.915601i \(-0.631715\pi\)
−0.402088 + 0.915601i \(0.631715\pi\)
\(930\) 0 0
\(931\) −17.9565 −0.588501
\(932\) 16.0858i 0.526908i
\(933\) 0 0
\(934\) 68.8397 2.25250
\(935\) −15.1168 + 70.3316i −0.494374 + 2.30009i
\(936\) 0 0
\(937\) 21.3745i 0.698275i −0.937071 0.349138i \(-0.886475\pi\)
0.937071 0.349138i \(-0.113525\pi\)
\(938\) 23.3639i 0.762857i
\(939\) 0 0
\(940\) −2.67527 + 12.4468i −0.0872576 + 0.405969i
\(941\) −19.6277 −0.639845 −0.319923 0.947444i \(-0.603657\pi\)
−0.319923 + 0.947444i \(0.603657\pi\)
\(942\) 0 0
\(943\) 23.3639i 0.760832i
\(944\) −3.72281 −0.121167
\(945\) 0 0
\(946\) 62.8397 2.04309
\(947\) 41.0342i 1.33343i −0.745311 0.666716i \(-0.767699\pi\)
0.745311 0.666716i \(-0.232301\pi\)
\(948\) 0 0
\(949\) 6.51087 0.211352
\(950\) −14.2337 + 31.5817i −0.461802 + 1.02464i
\(951\) 0 0
\(952\) 13.8564i 0.449089i
\(953\) 40.0395i 1.29701i −0.761211 0.648504i \(-0.775395\pi\)
0.761211 0.648504i \(-0.224605\pi\)
\(954\) 0 0
\(955\) 34.9783 + 7.51811i 1.13187 + 0.243280i
\(956\) 6.23369 0.201612
\(957\) 0 0
\(958\) 17.9653i 0.580433i
\(959\) −10.9783 −0.354506
\(960\) 0 0
\(961\) −25.3723 −0.818461
\(962\) 16.4356i 0.529907i
\(963\) 0 0
\(964\) −12.3723 −0.398484
\(965\) 3.25544 15.1460i 0.104796 0.487568i
\(966\) 0 0
\(967\) 4.99377i 0.160589i 0.996771 + 0.0802945i \(0.0255861\pi\)
−0.996771 + 0.0802945i \(0.974414\pi\)
\(968\) 51.2790i 1.64817i
\(969\) 0 0
\(970\) −26.2337 5.63858i −0.842313 0.181044i
\(971\) −38.9783 −1.25087 −0.625436 0.780276i \(-0.715079\pi\)
−0.625436 + 0.780276i \(0.715079\pi\)
\(972\) 0 0
\(973\) 13.8564i 0.444216i
\(974\) −15.7663 −0.505185
\(975\) 0 0
\(976\) −30.0000 −0.960277
\(977\) 8.56768i 0.274104i 0.990564 + 0.137052i \(0.0437628\pi\)
−0.990564 + 0.137052i \(0.956237\pi\)
\(978\) 0 0
\(979\) −68.4674 −2.18823
\(980\) −9.81386 2.10936i −0.313492 0.0673810i
\(981\) 0 0
\(982\) 30.5321i 0.974319i
\(983\) 56.1802i 1.79187i −0.444184 0.895936i \(-0.646506\pi\)
0.444184 0.895936i \(-0.353494\pi\)
\(984\) 0 0
\(985\) 12.7446 59.2945i 0.406076 1.88928i
\(986\) 8.74456 0.278484
\(987\) 0 0
\(988\) 3.75906i 0.119591i
\(989\) 19.7228 0.627149
\(990\) 0 0
\(991\) 28.7446 0.913101 0.456551 0.889697i \(-0.349085\pi\)
0.456551 + 0.889697i \(0.349085\pi\)
\(992\) 12.3267i 0.391374i
\(993\) 0 0
\(994\) −13.0217 −0.413025
\(995\) 20.7446 + 4.45877i 0.657647 + 0.141352i
\(996\) 0 0
\(997\) 2.57924i 0.0816854i −0.999166 0.0408427i \(-0.986996\pi\)
0.999166 0.0408427i \(-0.0130042\pi\)
\(998\) 29.0024i 0.918056i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.c.e.784.2 4
3.2 odd 2 145.2.b.a.59.4 yes 4
5.2 odd 4 6525.2.a.bk.1.4 4
5.3 odd 4 6525.2.a.bk.1.1 4
5.4 even 2 inner 1305.2.c.e.784.4 4
12.11 even 2 2320.2.d.c.929.1 4
15.2 even 4 725.2.a.g.1.2 4
15.8 even 4 725.2.a.g.1.3 4
15.14 odd 2 145.2.b.a.59.1 4
60.59 even 2 2320.2.d.c.929.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.b.a.59.1 4 15.14 odd 2
145.2.b.a.59.4 yes 4 3.2 odd 2
725.2.a.g.1.2 4 15.2 even 4
725.2.a.g.1.3 4 15.8 even 4
1305.2.c.e.784.2 4 1.1 even 1 trivial
1305.2.c.e.784.4 4 5.4 even 2 inner
2320.2.d.c.929.1 4 12.11 even 2
2320.2.d.c.929.4 4 60.59 even 2
6525.2.a.bk.1.1 4 5.3 odd 4
6525.2.a.bk.1.4 4 5.2 odd 4